Propiedades estadísticas de redes de parentesco / Statistical properties of kinship networks

Martínez Alcalá, Samuel (2022) Propiedades estadísticas de redes de parentesco / Statistical properties of kinship networks. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
48Mb

Resumen en español

Implementando un modelo para generar poblaciones, se armaron redes con los parentescos entre los miembros de dichas sociedades, y se analizaron sus propiedades estructurales. El modelo crea una población de padres y una de hijos, y se estudian distintos modos de asignar hijos a los padres, así como los tamaños de ambos grupos generacionales. En las poblaciones de hijos creadas se establecen matrimonios entre ellos al azar, formando parejas monógamas, heterosexuales e impidiendo el matrimonio entre hermanos. Se armaron redes formadas por los hombres de la población de hijos, enlazándolos con sus hermanos y cuñados del mismo sexo, tanto cónyuges de sus hermanas como hermanos de su cónyuge y se calcularon su propiedades estructurales, siendo comparados los resultados con los obtenidos para versiones aleatorizadas de las redes de parentesco con igual distribución de grados. Fueron analizadas dos bases de datos de poblaciones reales, con las que se construyeron redes de parentesco en las que no se contaba con la información del sexo de los nodos y por tanto las redes se armaron eligiendo a todas las personas, enlazándolas con sus hermanos y cónyuges. Algunas propiedades de las redes construidas con el modelo mostraron similitud con la de redes reales, pero otras como la distribución de hijos por persona marcan diferencias importantes entre ambos tipos de redes. Debido a esto, fueron estudiadas redes generadas con distribuciones de hijos por persona calculadas de las bases de datos, presentando resultados compatibles con los obtenidos directamente en las redes reales. Se estudiaron también redes generadas con una distribución exponencial, más similares a las de las redes reales. En todos los casos, las redes de parentesco resultaron ser menos cohesivas que las aleatorias, presentando altos valores de los coeficientes de agrupamiento (local, global y medio), así como asortatividad positiva y alta. Las redes en poblaciones de tamaño variable presentaron una transición en la cual se forma una componente gigante. Esto se evidenció como el centro de un pico en las curvas de distancia media entre los nodos de la componente más grande de la red en función del factor de crecimiento poblacional.

Resumen en inglés

Implementing a model to generate populations, networks were built using the kinship between the members of these societies, and their structural properties were analyzed. The model creates a population of parents and one of children, and different ways of assigning children to parents are studied, as well as the sizes of both generational groups. In the created populations of children, marriages are established between them at random, forming monogamous, heterosexual couples and preventing marriage between siblings. Networks formed by men from the population of children were set up, linking them with their brothers and brothers-in-law of the same sex, both spouses of their sisters and brothers of their spouse, and their structural properties were calculated, the results being compared with those obtained for randomized versions of kinship networks with equal distribution of degrees. Two databases of real populations were analyzed, with which kinship networks were built in which the information on the sex of the nodes was not available and therefore the networks were assembled by choosing all the people, linking them with their blood siblings and spouses. Some properties of the networks built with the model showed similarities with those of real networks, but others, such as the distribution of children per person, show important differences between both types of networks. Due to this, networks generated with distributions of children per person calculated from the databases were studied, presenting results compatible with those obtained directly in real networks. Networks generated with an exponential distribution, more similar to those of real networks, were also studied. In all cases, the kinship networks turned out to be less cohesive than the random ones, presenting high values of the clustering coefficients (local, global and medium), as well as positive and high assortativity. The networks in populations of variable size presented a transition in which a giant component is formed. This was evidenced as the center of a peak in the curves of mean distance between the nodes of the largest component of the network as a function of the population growth factor.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Statistics; Estadística; Graphs; Gráficos; [Socio-economic networks; Redes socio-económicas; Random graphs; Grafos aleatorios; Filogeny; Filogenia; Genealogy; Genealogía]
Referencias:[1] Choldin, H. Kinship Networks in the Migration Process. International Migration Review, 7 (2), 163–176, 1973. 1 [2] Menjivar, C. Kinship Networks Among Inmigrants: Lessons From a Qualitative Comparative Approach. International Journal of Comparative Sociology, 36 (3-4), 219, 1995. [3] White, D., Jorion, P. Kinship networks and discrete structure theory: Applications and implications. Social Networks, 18 (3), 267–314, 1996. 1 [4] Levi-Strauss, C. Les Structures elementaires de la Parent´e. Presses Universitaires de France, París, 1949. 1 [5] Kuegler, S. Child Of The Jungle: The True Story Of A Girl Caught Between Two Worlds. Grand Central Publishing, New York, 2007.1 [6] Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies. W. W. Norton, 1999. 1 [7] del Valle, L., Larrosa, J. The Network of Capitular Families of Buenos Aires (1700-1820). Dynamic and Preeminence Cycles. HiSTOReLo. Revista de Historia Regional y Local, 13 (28), 96–137, 2021. 1 [8] Kaplanis, J., Gordon, A., Shor, T., Weissbrod, O., Geiger, D., Wahl, M., et al. Quantitative analysis of population-scale family trees using millions of relatives. Science, 360 (6385), 2018. 1, 41 [9] de Sola Pool, I., Kochen, M. Contacts and Influence. Social Networks, 1 (5-51), 1978/79. 2 [10] Zanette, D. H. Statistical properties of model kinship networks. J. Stat. Mech., 094008, 2019. 2, 5, 6, 11, 31 [11] Derrida, B., Peliti, L. Evolution in a flat fitness landscape. Bull. Math. Biol., 53 (355), 1991. 6 [12] Bollobás, B. Random Graphs. University of Memphis and Trinity College, Cambridge, 2001. 7, 10, 12, 15, 19 [13] Erdios, P., R´enyi, A. On the evolution of random graphs. Publ. Math., 6 (129),1959. 10 [14] Soffer, S. N., Alexei., V. Network clustering coefficient without degree-correlation biases. Phys Rev E, 71 (057101), 2005. 14 [15] Opsahl, T. Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks, 35, 159–167, 2013. 14 [16] Newman, M. E. J. Assortative Mixing in Networks. Phys. Rev. Lett., 89 (208701), 2002. 17 [17] Estrada, E. Combinatorial study of degree assortativity in networks. Phys Rev E, 84 (047101), 2011. 17 [18] Watts, D. J., Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature, 393 (440), 1998. 20, 31 [19] Newman, M. E. J., Strogatz, S. H., Watts, D. J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E., 64 (026118), 2001. 27, 32 [20] Newman, M. E. J. Networks, an introduction. Oxford University Press, 2010. 27, 31 [21] Stauffer, D., Aharony, A. Introduction to Percolation Theory. CRC Press, Boca Raton, 2018. 29 [22] Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E, 67 (026126), 2003.36 [23] Garcell Domínguez, J. F. San José de las Lajas, una fragua tierra adentro. Editorial Unicornio, 2011. 42 [24] Le Riverend, J. La Habana, Biografía de una provincia. Academia de Historia de Cuba, La Habana, 1960. [25] Echezarreta Ruiz, A. Monografía histórica-geográfica de San José de las Lajas. Rotary Club, San José de las Lajas, 1950. [26] Valido Mencio, A. J. Los O’Farrill, el legado de una familia. Trabajo de diploma, Universidad Agraria de la Habana ”Fructuoso Rodríguez Pérez”, 2011. 42 [27] Goode, W. World Revolution and Family Patterns. The Free Press Glencoe, 1963. 44 [28] Beiles, A. A buffered interaction between sex ratio, age difference at marriage, and population growth in humans, and their significance for sex ratio evolution. Heredity, 33 (2), 265–278, 1974. 44 [29] URL "https://www.datosmundial.com/crecimiento-poblacional.php". 46 [30] URL "http://www.indexmundi.com/g/g.aspx?v=21&c=xx&l=es". 46 [31] Mart´ınez Alcal´a, S., Zanette, D. H. Kinship networks in shrinking and growing populations. Phys. A, 588, 2022. 71 [32] Kuperman, M., Abramson, G. Small World Effect in an Epidemiological Model. Phys. Rev. Lett., 83 (13), 2001. 72 [33] Zanette, D., Kuperman, M. Effects of immunization in small-world epidemics. Phys. A, 309 (3-4), 445–452, 2002. [34] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Pys., 87 (925), 2015. [35] Bogua, M., Pastor-Satorras, R., Vespignani, A. Epidemic Spreading in Complex Networks with Degree Correlations. Stat. Mec. Compl. Net., 625, 2003. [36] Brockmann, D., Helbing, D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science, 342 (6164),2013. [37] J., G.-G., Lotero, L., Taraskin, S., Perez-Reche, F. Explosive Contagion in Networks. Sci. Rep., 6 (19767), 2016. [38] Hill, A., Rand, D., Nowak, M., Christakis, N. Infectious Disease Modeling of Social Contagion in Networks. PLoS Comput. Biol., 6 (11), 2010. [39] Campbell, E., Salathe, M. Complex social contagion makes networks more vulnerable to disease outbreaks. Sci. Rep., 3 (1905), 2013. [40] Chen, L., Sun, J. Optimal vaccination and treatment of an epidemic network model. Phys. Rev. Lett., 378 (41), 2014. 72 [41] Lev-Ari, S. Social network size can influence linguistic malleability and the propagation of linguistic change. Cognition, 176, 31–39, 2018. 72 [42] Han, S., Zhuang, F., He, Q., Shi, Z., Ao. Energy model for rumor propagation on social networks. Phys. A, 394, 99–109, 2014. 72 [43] Yan, R., Li, D., Wu, W., Du, D.-Z., Wang, Y. Minimizing Influence of Rumors by Blockers on Social Networks: Algorithms and Analysis. Transactions on Network Science and Engineering, 7 (3), 1067–1078, 2019. [44] Zanette, D. Criticality of rumor propagation on small-world networks. Phys. Rev. E, 65, 041908, 2002. [45] Kuperman, M., Zanette, D. Stochastic resonance in a model of opinion formation on small-world networks. Eur. Phys. J. B, 26, 387–391, 2002. 72 [46] Zanette, D. Models of Social Processes on Small-World Networks. AIP Conference Proceedings, 658 (187), 2003. 72 [47] Michard, Q., Bouchaud, J. Theory of collective opinion shifts: from smooth trends to abrupt swings. Eur. Phys. J., 47, 151–159, 2005. 72 [48] Zanette, D., Gómez Garay, I. Collective behavior of coupled multiplicative processes with stochastic resetting. J. Phys. Complex., 2 (3), 035020, 2021. 72 [49] Bouchaud, J. Crises and Collective Socio-Economic Phenomena: Simple Models and Challenges. Eur. Phys. J., 151, 567–606, 2013. [50] Laguna, M., Risau-Guzman, S., Iglesias, J. Economic exchanges in a stratified society: End of the middle class? Phys. A., 356, 107–113, 2005. [51] Zanette, D., Manrubia, S. Fat tails and black swans: Exact results for multiplicative processes with resets. Chaos, 30 (033104), 2020. [52] Gusman, S., Laguna, M., Iglesias, J. Wealth Distribution in a Network with Correlations Between Links and Success. Econophysics of Wealth Distributions. New Economic Windows. Springer, Milano., 2005. 72
Materias:Física > Física estadística
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:1053
Depositado Por:Tamara Cárcamo
Depositado En:11 Jul 2022 11:49
Última Modificación:11 Jul 2022 11:49

Personal del repositorio solamente: página de control del documento