Sistemas neuromórficos basados en dispositivos memristores producidos por microfabricación, autoensamblados y métodos Sol Gel / Neuromorphic systems based on memristor devices produced by microfabrication, self-assembly and SolGel methods

Diaz Schneider, Juan I. (2021) Sistemas neuromórficos basados en dispositivos memristores producidos por microfabricación, autoensamblados y métodos Sol Gel / Neuromorphic systems based on memristor devices produced by microfabrication, self-assembly and SolGel methods. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
15Mb

Resumen en español

En pleno auge de implementación de técnicas de Machine Learning y redes neuronales dentro del área de inteligencia artificial, se han observado limitaciones de hardware en el sistema electrónico tradicional presente en la mayora de las computadoras. Por este motivo, el desarrollo de nuevas tecnologías es imprescindible para potenciar los sistemas computacionales. Una posible alternativa que se viene estudiando desde hace mas de una década es la implementación de dispositivos memristivos. El memristor es un componente electrónico que fue propuesto hace 30 años y que puede modificar su valor de resistencia mediante la historia de estímulos aplicados sobre el mismo. Sin embargo, no se habían desarrollado memristores físicos hasta 2008. Desde ese momento ha crecido notablemente el estudio de nuevos materiales en búsqueda de nuevas propiedades memristivas. En los últimos años, se han reportado propiedades memristivas en junturas formadas por materiales dieléctricos y nanohilos de plata. Estos materiales abren la posibilidad de formar sistemas con un alto numero de junturas memristivas. En el presente trabajo se estudiaron formados por redes percoladas de nanohilos de plata (AgNWs) recubiertos por polivinilpirrolidona (PVP) de manera de tener un numero elevado de junturas Ag-PVP-Ag. En primer lugar, se sintetizaron nanohilos de plata a partir del método poliol a 130 oC a partir de nitrato de plata (AgNO_3) y PVP, utilizando como agente reductor etilenglicol y cloruro férrico como aditivo. Con el objetivo de estudiar la influencia del peso molecular del PVP en la relacion de aspecto de los AgNWs, se realizaron dos síntesis: la primera utilizando PVP de 360 kg/mol y la segunda de 1.3 Mg/mol. Ambas síntesis presentaron una relación de aspecto entre el largo y el diámetro mayor a 200, obteniendo un mejor resultado en la primer síntesis. Con el objetivo de lograr una mejor distribución de los AgNWs se prepararon y estudiaron dos coloides: uno en isopropanol (IPA) y otro en una solución acuosa con poliestireno sulfonato (PSS). Las redes de AgNWs autoensambladas fueron caracterizadas estructuralmente mediante distintas técnicas. Por otro lado, se sintetizaron películas de TiO_2 por método sol-gel utilizando diluciones de tetraisopropoxido de Titanio en IPA para ser utilizadas como dieléctrico en junturas memristivas. Se diseñaron y fabricaron tres sistemas de muestras: tipo crossbar, autoensamblados y nanocompuestos. La primera de ellas estaba compuesta por una película de TiO_2 entre dos electrodos metálicos: uno de oro y el otro de plata. Los sistemas autoensamblados estaban formados por un deposito de AgNWs sobre electrodos metálicos. Los últimos se formaban por AgNWs en una matriz dieléctrica con electrodos metálicos. Para fabricarlos se utilizaron técnicas de microfabricación, depositos de los AgNWs y formación de películas de dióxido de titanio. Se emplearon dos técnicas de microfabricacion: lift-o y etching. Para realizar el deposito de los AgNWs se emplearon dos métodos: drop casting y spin coating, observando un deposito mas uniforme con el segundo. Se caracterizaron eléctricamente los dispositivos fabricados. Los dispositivos tipo crossbar presentaron un comportamiento óhmico en su estado virgen. Luego de un proceso de electroformado (cambio abrupto del comportamiento a partir de un estímulo), el sistema presento un comportamiento con diferentes estados resistivos evidenciando propiedades interesantes en las junturas metal-TiO_2-metal. Los dispositivos autoensamblados presentaban un comportamiento óhmico en su estado virgen. Se realizo un estudio de la curva de percolación eléctrica mediante la medición de la resistencia luego de sucesivos depósitos. Se obtuvo un exponente crítico de 1.32±0.04 que coincide con datos reportados en la literatura. Se observo un proceso de electroformado en el sistema autoensamblado donde se observaron comportamientos eléctricos muy dinámicos. Se identificaron seis comportamiento característicos en el sistema, entre los que se destacan la presencia de regiones de alta y baja resistencia y la presencia de multiestados resistivos. Se estudio la influencia del ambiente sobre la muestra, observándose comportamientos muy distintos entre ambientes con alta presencia de agua y ambientes secos, aumentando la conductancia con la humedad, abriendo la posibilidad de la presencia de procesos electroquímico en el comportamiento del sistema. Por otra parte, se caracterizaron los sistemas nanocompuestos formados por AgNWs y dieléctricos (PVP y TiO_2) donde se observo un cambio en el comportamiento después del deposito del material dieléctrico, pasando de un estado conductor a uno aislante.

Resumen en inglés

In the midst of the boom in the implementation of Machine Learning and neural networks techniques in the area of articial intelligence, hardware limitations have been observed in the traditional electronic system present in most computers. For this reason, the development of new technologies is essential to enhance computational systems. One possible alternative that has been studied for more than a decade is the implementation of memristive devices. The memristor is an electronic component that was proposed 30 years ago and that can modify its resistance value through the history of stimuli applied to it. However, physical memristors had not been developed until 2008. Since then, the study of new materials in search of new memristive properties has grown signicantly. In recent years, memristive properties have been reported in junctions formed by dielectric materials and silver nanowires. These materials open the possibility of forming systems with a high number of memristive junctions. In the present work, percolated networks of silver nanowires (AgNWs) coated with polyvinylpyrrolidone (PVP) were studied in order to have a high number of Ag-PVP-Ag junctions. First, silver nanowires were synthesized by the polyol method at 130 oC from silver finitrate (AgNO_3) and PVP, using ethylene glycol as reducing agent and ferric chloride as additive. In order to study the influence of the PVP molecular weight on the aspect ratio of the AgNWs, two syntheses were performed: the rst one using PVP of 360 kg/mol and the second one of 1.3 Mg/mol. Both syntheses presented an aspect ratio between length and diameter greater than 200, obtaining a better result in the rst synthesis. In order to achieve a better distribution of the AgNWs, two colloids were prepared and studied: one in isopropanol (IPA) and the other in an aqueous solution with polystyrene sulfonate (PSS). The self-assembled AgNWs networks were structurally characterized by dierent techniques. On the other hand, TiO_2 lms were synthesized by sol-gel method using dilutions of Titanium tetraisopropoxide in IPA to be used as dielectric in memristive junctions. Three sample systems were designed and fabricated: crossbar type, self-assembled and nanocomposites. The rst one was composed of a TiO_2 lm between two metal electrodes: one gold and the other silver. The self-assembled systems were formed by a deposit of AgNWs on metal electrodes. The latter were formed by AgNWs on a dielectric matrix with metal electrodes. Microfabrication techniques, AgNWs deposition and titanium dioxide lm formation were used to fabricate them. Two microfabrication techniques were employed: lift-o and etching. Two methods were used to perform the AgNWs deposition: drop casting and spin coating, observing a more uniform deposit with the second one. The fabricated devices were electrically characterized. The crossbar type devices presented an ohmic behavior in their virgin state. After an electroforming process (abrupt change of the behavior from a stimulus), the system presented a behavior with dierent resistive states showing interesting properties in the metal-TiO_2-metal junctions. The self-assembled devices presented an ohmic behavior in their virgin state. A study of the electrical percolation curve was performed by measuring the resistance after successive deposits. A critical exponent of 1.32± 0.04 was obtained, which agrees with data reported in the literature. An electroforming process was observed in the self-assembled system where highly dynamic electrical behaviors were observed. Six characteristic behaviors were identified in the system, including the presence of high and low resistance regions and the presence of resistive multistates. The influence of the environment on the sample was studied, observing very dierent behaviors between environments with high presence of water and dry environments, increasing the conductance with humidity, opening the possibility of the presence of electrochemical processes in the behavior of the system. On the other hand, nanocomposite systems formed by AgNWs and dielectrics (PVP and TiO_2) were characterized, where a change in behavior was observed after deposition of the dielectric material, going from a conductive to an insulating state.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Nanowires; Nanocables; [Memristor; Memristor; Neuromorphic; Neuromórfico; Self-assembly; Autoensamblado]
Referencias:[1] Hebb, D. O. The organization of behavior; a neuropsycholocigal theory. A Wiley Book in Clinical Psychology, 62, 78, 1949. 1 [2] McCulloch, W. S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5 (4), 115-133, 1943. 1 [3] Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65 (6), 386, 1958. 1, 5 [4] Rumelhart, D. E., Hinton, G. E., Williams, R. J. Learning representations by back-propagating errors. Nature, 323 (6088), 533-536, 1986. 1 [5] Li, Y., Wang, Z., Midya, R., Xia, Q., Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. Journal of Physics D: Applied Physics, 51 (50), 503002, 2018. 1 [6] Heaton, J. Ian goodfellow, yoshua bengio, and aaron courville: Deep learning, 2018. 1 [7] Ha, . R. S., S. D. Adaptive oxide electronics: A review. Journal of applied physics, 110 (7), 14, 2011. 1, 4 [8] Minnai, B. A. B. S. A. . M. P., C. Facile fabrication of complex networks of memristive devices. Scientic report, 7 (1), 1-8, 2017. 2, 3, 5 [9] Li, Y., Wang, Z., Midya, R., Xia, Q., Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. Journal of Physics D: Applied Physics, 51 (50), 503002, 2018. 2 [10] Chua, L. Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18 (5), 507-519, 1971. 2 [11] Chua, L. O., Kang, S. M. Memristive devices and systems. Proceedings of the IEEE, 64 (2), 209-223, 1976. 2 [12] Wikipedia. Memristor | wikipedia, la enciclopedia libre, 2021. URL https:// es.wikipedia.org/w/index.php?title=Memristor&oldid=132761987, [Internet; descargado 2-febrero-2021]. vi, 3 [13] Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S. The missing memristor found. nature, 453 (7191), 80{83, 2008. vi, 3 [14] Hickmott, T. Low-frequency negative resistance in thin anodic oxide lms. Journal of Applied Physics, 33 (9), 2669{2682, 1962. 3 [15] Dearnaley, G., Stoneham, A., Morgan, D. Electrical phenomena in amorphous oxide lms. Reports on Progress in Physics, 33 (3), 1129, 1970. 3 [16] Prezioso, M.-B. F. H. B. D. A. G. C. L. K. K. . S. D. B., M. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521 (7550), 61-61, 2015. 3, 5 [17] Prusakova, C.-C. N. M. T. R. L. L. V. L. y. D. S., V. The development of sol{gel derived tio 2 thin lms and corresponding memristor architectures. RSC advances, 7 (3), 1654-1663, 2017. [18] Manning, B. S. H. J. D. . B. J. J., H. G. Nonpolar resistive switching in ag@ tio2 core-shell nanowires. ACS applied materials and interfaces, 9 (44), 38959-38966, 2017. vi, 3, 7, 8 [19] Manning, N. F. d. R. C. G. B. A. T. O. C. B. S. y. B. J. J., H. G. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nature communications, 9 (1), 1{9, 2018. 7 [20] Ghenzi, N., Sanchez, M., Gomez-Marlasca, F., Levy, P., Rozenberg, M. Hysteresis switching loops in ag-manganite memristive interfaces. Journal of Applied Physics, 107 (9), 093719, 2010. [21] Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. Fully hardwareimplemented memristor convolutional neural network. Nature, 577 (7792), 641-646, 2020. 5 [22] Liu, X., Zeng, Z., Wunsch II, D. C. Memristor-based lstm network with in situ training and its applications. Neural Networks, 131, 300-311, 2020. 5 [23] Nirmalraj, P. N., Bellew, A. T., Bell, A. P., Faireld, J. A., McCarthy, E. K., O'Kelly, C., et al. Manipulating connectivity and electrical conductivity in metallic nanowire networks. Nano letters, 12 (11), 5966-5971, 2012. 7 [24] Diaz-Alvarez, A., Higuchi, R., Sanz-Leon, P., Marcus, I., Shingaya, Y., Stieg, A. Z., et al. Emergent dynamics of neuromorphic nanowire networks. Scientic reports, 9 (1), 1-13, 2019. 8 [25] Hochstetter, J., Zhu, R., Loeer, A., Diaz-Alvarez, A., Nakayama, T., Kuncic, Z. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nature Communications, 12 (1), 1-13, 2021. 7 [26] Du, C., Cai, F., Zidan, M. A., Ma, W., Lee, S. H., Lu, W. D. Reservoir computing using dynamic memristors for temporal information processing. Nature communications, 8 (1), 1-10, 2017. 5, 7 [27] Huang, H.-M., Yang, R., Tan, Z.-H., He, H.-K., Zhou, W., Xiong, J., et al. Quasihodgkin{ huxley neurons with leaky integrate-and-re functions physically realized with memristive devices. Advanced Materials, 31 (3), 1803849, 2019. 6 [28] Zhang, X., Wang, W., Liu, Q., Zhao, X., Wei, J., Cao, R., et al. An articial neuron based on a threshold switching memristor. IEEE Electron Device Letters, 39 (2), 308-311, 2017. 3, 5, 6 [29] Yang, J. J., Strukov, D. B., Stewart, D. R. Memristive devices for computing. Nature nanotechnology, 8 (1), 13-24, 2013. 4 [30] Yang, R., Terabe, K., Yao, Y., Tsuruoka, T., Hasegawa, T., Gimzewski, J. K., et al. Synaptic plasticity and memory functions achieved in a wo3- x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology, 24 (38), 384003, 2013. 4 [31] Kao, Z. W. C. L. C. J. . K. Y. C., Y. F. A study of the variability in contact resistive random access memory by stochastic vacancy model. Nanoscale research letters, 13 (1), 1-10, 2018. 4 [32] Rozenberg, S. M. J. W. R. A. C. G.-M. F. . L. P., M. J. Mechanism for bipolar resistive switching in transition-metal oxides. Physical Review B, 811 (11), 115101, 2010. [33] Ghenzi, N., Sanchez, M. J., Levy, P. A compact model for binary oxides-based memristive interfaces. Journal of Physics D: Applied Physics, 46 (41), 415101, 2013. [34] Ferreyra, C., Acevedo, W. R., Gay, R., Rubi, D., Sanchez, M. J. Oxygen vacancy dynamics in redox-based interfaces: tailoring the memristive response. Journal of Physics D: Applied Physics, 53 (1), 015302, 2019. 4 [35] Valov, I., Waser, R., Jameson, J. R., Kozicki, M. N. Electrochemical metallization memories|fundamentals, applications, prospects. Nanotechnology, 22 (25), 254003, 2011. 4 [36] Waser, R. Redox-based resistive switching memories. Journal of nanoscience and nanotechnology, 12 (10), 7628-7640, 2012. 4 [37] Moon, J., Ma, W., Shin, J. H., Cai, F., Du, C., Lee, S. H., et al. Temporal data classication and forecasting using a memristor-based reservoir computing system. Nature Electronics, 2 (10), 480-487, 2019. 5, 7 [38] Midya, R., Wang, Z., Asapu, S., Zhang, X., Rao, M., Song, W., et al. Reservoir computing using diffusive memristors. Advanced Intelligent Systems, 1 (7), 1900084, 2019. [39] Zhong, Z., Jin, L., Xie, Z. High performance offine handwritten chinese character recognition using googlenet and directional feature maps. En: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pags. 846-850. IEEE, 2015. 5, 6, 7 [40] Svozil, D., Kvasnicka, V., Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemometrics and intelligent laboratory systems, 39 (1), 43-62, 1997. 5 [41] Kubat, M. Neural networks: a comprehensive foundation by simon haykin, macmillan, 1994, isbn 0-02-352781-7. The Knowledge Engineering Review, 13 (4), 409-412, 1999. 5 [42] LeCun, Y., Touresky, D., Hinton, G., Sejnowski, T. A theoretical framework for back-propagation. En: Proceedings of the 1988 connectionist models summer school, tomo 1, pags. 21-28. 1988. 5 [43] Krizhevsky, A., Sutskever, I., Hinton, G. E. Imagenet classication with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105, 2012. 6 [44] Singla, A., Yuan, L., Ebrahimi, T. Food/non-food image classication and food categorization using pre-trained googlenet model. En: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, pags. 3-11. 2016. 6 [45] Lukosevicius, . J. H., M. Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3 (3), 127-149, 2009. 6 [46] Garnett, E., Mai, L., Yang, P. Introduction: 1d nanomaterials/nanowires. Chemical reviews, 119 (15), 8955-8957, 2019. 7 [47] Dasgupta, N. P., Sun, J., Liu, C., Brittman, S., Andrews, S. C., Lim, J., et al. 25th anniversary article: semiconductor nanowires{synthesis, characterization, and applications. Advanced materials, 26 (14), 2137-2184, 2014. 7 [48] Abbasi, N. M., Yu, H., Wang, L., Amer, W. A., Akram, M., Khalid, H., et al. Preparation of silver nanowires and their application in conducting polymer nanocomposites. Materials Chemistry and Physics, 166, 1-15, 2015. 7, 8, 9 [49] Sun, Y., Mayers, B., Herricks, T., Xia, Y. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano letters, 3 (7), 955-960, 2003. 8 [50] Zhang, G., Sun, S., Banis, M. N., Li, R., Cai, M., Sun, X. Morphology-controlled green synthesis of single crystalline silver dendrites, dendritic flowers, and rods, and their growth mechanism. Crystal growth & design, 11 (6), 2493-2499, 2011.8 [51] Zhou, Y., Yu, S. H., Wang, C. Y., Li, X. G., Zhu, Y. R., Chen, Z. Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal ag nanorods and ag dendrites. Advanced Materials, 11 (10), 850-852, 1999. 8 [52] Huang, L., Wang, H., Wang, Z., Mitra, A., Bozhilov, K. N., Yan, Y. Nanowire arrays electrodeposited from liquid crystalline phases. Advanced Materials, 14 (1), 61-64, 2002. 8 [53] Jiu, J., Araki, T., Wang, J., Nogi, M., Sugahara, T., Nagao, S., et al. Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A, 2 (18), 6326-6330, 2014. 8, 14 [54] Haider, A. J., Jameel, Z. N., Al-Hussaini, I. H. Review on: titanium dioxide applications. Energy Procedia, 157, 17-29, 2019. 10 [55] Soler-Illia, G. J., Sanchez, C., Lebeau, B., Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 102 (11), 4093-4138, 2002. 10, 11 [56] Crepaldi, E. L., Soler-Illia, G. J. d. A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C. Controlled formation of highly organized mesoporous titania thin lms: from mesostructured hybrids to mesoporous nanoanatase tio2. Journal of the American Chemical Society, 125 (32), 9770-9786, 2003. 10, 11 [57] Seifried, S., Winterer, M., Hahn, H. Nanocrystalline titania lms and particles by chemical vapor synthesis. Chemical Vapor Deposition, 6 (5), 239-244, 2000. 10 [58] Xiaobo, C. Titanium dioxide nanomaterials and their energy applications. Chinese Journal of Catalysis, 30 (8), 839-851, 2009. 10 [59] Reis, K. P., Ramanan, A., Whittingham, M. S. Hydrothermal synthesis of sodium tungstates. Chemistry of Materials, 2 (3), 219-221, 1990. 10 [60] Nyamukamba, P., Okoh, O., Mungondori, H., Taziwa, R., Zinya, S. Synthetic methods for titanium dioxide nanoparticles: a review. Titanium Dioxide|Material for a Sustainable Environment; Yang, D., Ed, pags. 151-175, 2018. 10, 11 [61] Heaney, M. B. Electrical Conductivity and Resistivity, Electrical measurement, signal processing and displays, 2003. 2003. 11 [62] Stauer, D., Aharony, A. Introduction to percolation theory. CRC press, 2018. 12 [63] Langley, D. P., Lagrange, M., Nguyen, N. D., Bellet, D. Percolation in networks of 1-dimensional objects: comparison between monte carlo simulations and experimental observations. Nanoscale horizons, 3 (5), 545-550, 2018. 12, 55 [64] Langley, D. Silver nanowire networks: effects of percolation and thermal annealing on physical properties. Tesis Doctoral, Grenoble, 2014. 12, 55 [65] Organization, I. L. Etilenglicol, 2018. URL https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0270&p_version=2. 14 [66] Organization, I. L. Alcohol isopropílico, 2018. URL https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0554&p_version=2. 14 [67] Sun, K., Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., et al. Review on application of pedots and pedot: Pss in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 26 (7), 4438-4462, 2015. 15 [68] Heaney, M. B. Electrical Conductivity and Resistivity, Measurement, Instrumentation, and Sensors Handbook, 2014. 2014. 23 [69] Madaria, A. R., Kumar, A., Ishikawa, F. N., Zhou, C. Uniform, highly conductive, and patterned transparent lms of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 3 (8), 564-573, 2010. 36 [70] Bergin, S. M., Chen, Y.-H., Rathmell, A. R., Charbonneau, P., Li, Z.-Y., Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire lms. Nanoscale, 4 (6), 1996-2004, 2012. 36 [71] Araki, T., Jiu, J., Nogi, M., Koga, H., Nagao, S., Sugahara, T., et al. Low haze transparent electrodes and highly conducting air dried lms with ultra-long silver nanowires synthesized by one-step polyol method. Nano Research, 7 (2), 236-245, 2014. 36 [72] Liu, L.-g., Bassett, W. A. Compression of ag and phase transformation of nacl. Journal of applied physics, 44 (4), 1475-1479, 1973. 40, 70 [73] Mao, H., Feng, J., Ma, X., Wu, C., Zhao, X. One-dimensional silver nanowires synthesized by self-seeding polyol process. Journal of nanoparticle research, 14 (6), 1-15, 2012. 41, 42, 43, 71 [74] Ah, C. S., Hong, S. D., Jang, D.-j. Preparation of aucoreagshell nanorods and characterization of their surface plasmon resonances. The Journal of Physical Chemistry B, 105 (33), 7871-7873, 2001. 41 [75] Kumar, D., Singh, K., Verma, V., Bhatti, H., et al. Microwave-assisted synthesis and characterization of silver nanowires by polyol process. Applied Nanoscience, 5 (7), 881-890, 2015. 41 [76] Rahma, A., Munir, M. M., Prasetyo, A., Suendo, V., Rachmawati, H., et al. Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl (pyrrolidone) ber. Biological and Pharmaceutical Bulletin, 39 (2), 163-173, 2016. 42, 43 [77] Sun, Z., Xiao, M., Wang, S., Han, D., Song, S., Chen, G., et al. Electrostatic shield effect: an effective way to suppress dissolution of polysulde anions in lithium-sulfur battery. Journal of Materials Chemistry A, 2 (38), 15938-15944, 2014. 42 [78] Wang, Y., Shen, Y., Zhang, Y., Yue, B., Wu, C. ph-sensitive polyacrylic acid (paa) hydrogels trapped with polysodium-p-styrenesulfonate (pss). Journal of Macromolecular Science, Part B, 45 (4), 563-571, 2006. 43 [79] Llaneza, M. Sinapsis articial utilizando memristores, tesis carrera de grado en ingeniería en telecomunicaciones, instituto balseiro, argentina, 2019. 47 [80] Yang, S. M., Strelcov, E., Paranthaman, M. P., Tselev, A., Noh, T. W., Kalinin, S. V. Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality. Nano letters, 15 (2), 1062-1069, 2015. 69 [81] Moreau, M. L., Granja, L. P., Fuertes, M. C., Martínez, E., Ferrari, V., Levy, P. E., et al. Three-dimensional electrochemical lithography in mesoporous tio2 thin lms. The Journal of Physical Chemistry C, 119 (52), 28954-28960, 2015. [82] Linares Moreau, M., Martínez, E. D., Fuertes, M. C., Zelcer, A., Golmar, F., Granell, P. N., et al. Microscopic electrochemical control of ag nanoparticles into mesoporous tio2 thin lms. The Journal of Physical Chemistry C, 123 (6), 3579-3587, 2019. 69
Materias:Química > Materiales
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Instituto de Nanociencia y Nanotecnología (INN) > Dispositivos y Sensores
Código ID:1058
Depositado Por:Tamara Cárcamo
Depositado En:22 Jun 2022 14:45
Última Modificación:22 Jun 2022 14:45

Personal del repositorio solamente: página de control del documento