Neurogénesis adulta y estabilidad de memorias / Adult neurogenesis and memory stability

Castillo Elías, Julio R. (2022) Neurogénesis adulta y estabilidad de memorias / Adult neurogenesis and memory stability. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
4Mb

Resumen en español

La neurogénesis adulta es el nacimiento e integración de nuevas neuronas en cerebros maduros, y es una componente importante de la plasticidad cerebral. La plasticidad cerebral permite que los circuitos neuronales se adapten a las demandas ambientales, la cual es una función vital para la supervivencia. Se ha observado neurogénesis adulta en una amplia gama de vertebrados, entre ellos aves, peces, roedores, e incluso humanos. Sin embargo, el potencial neurogénico de los mamíferos como los humanos o roedores es mucho menor que el observado en teleósteos, como el pez cebra, el cual en los últimos años ha emergido como un modelo complementario a los roedores para el estudio de la neurogénesis adulta. Si la neurogénesis adulta favorece la plasticidad cerebral >Por qué la evolución seleccionó suprimir la presencia de este fenómeno a medida que subimos en la escala evolutiva? Las nuevas neuronas al madurar se integran funcionalmente a los circuitos pre-establecidos, y para ello compiten por recursos sinápticos con las neuronas maduras pre-existentes. En este trabajo estudiamos la hipótesis de que este continuo reacomodo circuital producto de la neurogénesis adulta por un lado favorece la plasticidad cerebral, pero por otro lado desestabiliza las redes neuronales, y en consecuencia también disminuye la estabilidad de las memorias previamente formadas, ocasionando olvido. Para ello empleamos aproximaciones computacionales y experimentales con el n de evaluar la interacción entre la actividad cognitiva y la neurogénesis adulta en el pallium del pez cebra. Nuestros resultados fueron acordes a esta hipótesis, y por un lado apuntan a que la neurogénesis adulta favorece procesos de aprendizaje, mientras que interfiere con la estabilidad de memorias. Sumado a eso, en otra línea de trabajo, estudiamos cómo la actividad circuital producto de un entrenamiento cognitivo que implica aprendizaje espacial y toma de decisiones, promueve la neurogénesis adulta en el pallium del pez cebra. Para dilucidar cuáles son los mecanismos detrás del aumento observado de la neurogénesis en ciertas regiones del pallium del pez cebra adaptamos un modelo de dinámica poblacional. Nuestro modelo deduce que la actividad circuital promueve tanto la proliferación encadenada de células madre neurales (NSCs) como la sobrevida de las neuronas recientemente generadas.

Resumen en inglés

Adult neurogenesis is a crucial component of brain plasticity because it involves the generation of new neurons that integrate into mature brains. Neural circuits may adjust to external demands thanks to brain plasticity, which is a crucial capability for survival. Adult neurogenesis has been seen in a variety of species, including birds, sh, rodents, and humans. The neurogenic capacity of mammals like humans and rats, on the other hand, is substantially lower than that of teleosts like zebrash. Why did evolution chose to suppress the occurrence of this phenomena as humans progressed up the evolutionary ladder, if adult neurogenesis enhances brain plasticity? As new neurons develop, they get functionally integrated into pre-existing circuits, vying for synaptic resources with mature neurons. In this work, we investigate the idea that while adult neurogenesis' continual circuit reconguration promotes brain plasticity, it also destabilizes neural networks, lowering the stability of previously created memories and so inducing forgetting. The connection between cognitive activity and adult neurogenesis in the zebrash pallium was studied using computational and experimental methods. Our ndings support this idea, indicating that adult neurogenesis improves learning processes while interfering with memory stability. Furthermore, in another line of research, we investigated how circuit activity resulting from cognitive training involving spatial learning and decision making stimulates adult neurogenesis in the zebrash pallium. We adapted a population dynamics model to explore the reasons behind the observed increase in neurogenesis in some locations of the zebrash pallium. Circuit activity enhances both the sequential proliferation of neural stem cells (NSCs) and the survival of newly produced neurons, according to our model.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Plasticity; Plasticidad; Neural networks; Redes neuronales ; Memory; Memoria; [Adult neurogenesis; Neurogénesis adulta; Synaptogenesis; Sinaptogénesis; Neural stem cells; Progenitores ]
Referencias:1] Mongiat, L. A., Schinder, A. F. Adult neurogenesis and the plasticity of the dentate gyrus network. European Journal of Neuroscience, 33 (6), 1055-1061, 2011. 1, 23 [2] Akers, K. G., Martinez-Canabal, A., Restivo, L., Yiu, A. P., De Cristofaro, A., Hsiang, H.-L. L., et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science, 344 (6184), 598-602, 2014. 1, 2, 5, 16, 29 [3] Ganz, J., Brand, M. Adult neurogenesis in sh. Cold Spring Harbor perspectives in biology, 8 (7), a019018, 2016. 1, 29 [4] Chapouton, P., Jagasia, R., Bally-Cuif, L. Adult neurogenesis in non-mammalian vertebrates. Bioessays, 29 (8), 745-757, 2007. 1, 29 [5] Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., et al. Human hippocampal neurogenesis persists throughout aging. Cell stem cell, 22 (4), 589-599, 2018. 1 [6] Moreno-Jimenez, E. P., Flor-García, M., Terreros-Roncal, J., Rabano, A., Cani, F., Pallas-Bazarra, N., et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with alzheimer's disease. Nature medicine, 25 (4), 554-560, 2019. 1 [7] Van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., Gage, F. H. Functional neurogenesis in the adult hippocampus. Nature, 415 (6875),1030-1034, 2002. 1 [8] Toni, N., Laplagne, D. A., Zhao, C., Lombardi, G., Ribak, C. E., Gage, F. H., et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nature neuroscience, 11 (8), 901, 2008. 1 [9] Schmidt, R., Strahle, U., Scholpp, S. Neurogenesis in zebrash-from embryo to adult. Neural development, 8 (1), 1-13, 2013. 1 [10] Kizil, C., Kaslin, J., Kroehne, V., Brand, M. Adult neurogenesis and brain regeneration in zebrash. Developmental neurobiology, 72 (3), 429-461, 2012. 2 [11] Tran, L. M., Josselyn, S. A., Richards, B. A., Frankland, P. W. Forgetting at biologically realistic levels of neurogenesis in a large-scale hippocampal model.Behavioural brain research, 376, 112180, 2019. 2, 5, 16, 19, 22 [12] Kuhn, H. G., Dickinson-Anson, H., Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16 (6), 2027-2033, 1996. 2 [13] Hinsch, K., Zupanc, G. Generation and long-term persistence of new neurons in the adult zebrash brain: a quantitative analysis. Neuroscience, 146 (2), 679-696, 2007. 3 [14] Kempermann, G. Adult neurogenesis: an evolutionary perspective. Cold Spring Harbor perspectives in biology, 8 (2), a018986, 2016. 3 [15] Ganz, J., Kroehne, V., Freudenreich, D., Machate, A., Gearth, M., Braasch, I., et al. Subdivisions of the adult zebrash pallium based on molecular marker analysis. F1000Research, 3, 2014. 4 [16] Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., Brand, M. Neural stem cells and neurogenesis in the adult zebrash brain: origin, proliferation dynamics, migration and cell fate. Developmental biology, 295 (1), 263-277, 2006. 4 [17] Than-Trong, E., Kiani, B., Dray, N., Ortica, S., Simons, B., Rulands, S., et al. Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells. Science advances, 6 (18), eaaz5424, 2020. 4, 43 [18] Agatonovic-Kustrin, S., Beresford, R. Basic concepts of articial neural network (ann) modeling and its application in pharmaceutical research. Journal of phar- maceutical and biomedical analysis, 22 (5), 717-727, 2000. 7 [19] Hertz, J. A. Introduction to the theory of neural computation. CRC Press, 1991. 8 [20] Rojas, R. Neural networks: a systematic introduction. Springer Science & Business Media, 2013. 9, 11, 16 [21] Clelland, C., Choi, M., Romberg, C., Clemenson, G. D., Fragniere, A., Tyers, P., et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325 (5937), 210-213, 2009. 16, 17 [22] Vago, D., Wallenstein, G., Morris, L. Hippocampus. En: M. J. Amino, R. B. Darío (eds.) Encyclopedia of the Neurological Sciences (Second Edition), second edition ed., pags. 566-570. Oxford: Academic Press, 2014. URL https://www.sciencedirect.com/science/article/pii/B9780123851574011519. 17 [23] Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., et al. Dynamics of hippocampal neurogenesis in adult humans. Cell, 153 (6), 1219-1227, 2013. 16 [24] Amaral, D. G., Scharfman, H. E., Lavenex, P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). En: H. E. Scharfman (ed.) The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications, tomo 163 de Progress in Brain Research, pags. 3-790. Elsevier, 2007. URL https://www.sciencedirect.com/science/article/pii/S0079612307630015. 17 [25] Glorot, X., Bengio, Y. Understanding the dificulty of training deep feedforward neural networks. En: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pags. 249-256. JMLR Workshop and Conference Proceedings, 2010. 18 [26] Cameron, H. A., Mckay, R. D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of Comparative Neurology, 435 (4), 406-417, 2001. URL https://doi.org/10.1002/cne.1040. 25 [27] Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muato, M., et al. The zebrash reference genome sequence and its relationship to the human genome. Nature, 496 (7446), 498-503, 2013. 29 [28] Blaser, R. E., Vira, D. Experiments on learning in zebrash (danio rerio): A promising model of neurocognitive function. Neuroscience & Biobehavioral Reviews, 42, 224-231, 2014. 29 [29] Moorman, S. J. Development of sensory systems in zebrash (donio rerio). ILAR journal, 42 (4), 292-298, 2001. 29 [30] Blank, M., Guerim, L. D., Cordeiro, R. F., Vianna, M. R. A one-trial inhibitory avoidance task to zebrash: rapid acquisition of an nmda-dependent long-term memory. Neurobiology of learning and memory, 92 (4), 529-534, 2009. 30 [31] Piato, ^A. L., Capiotti, K. M., Tamborski, A. R., Oses, J. P., Barcellos, L. J., Bogo, M. R., et al. Unpredictable chronic stress model in zebrash (danio rerio): behavioral and physiological responses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35 (2), 561-567, 2011. 30 [32] Manuel, R., Gorissen, M., Piza Roca, C., Zethof, J., Vis, H. v. d., Flik, G., et al. Inhibitory avoidance learning in zebrash (danio rerio): effects of shock intensity and unraveling differences in task performance. Zebrash, 11 (4), 341-352, 2014. 30 [33] Van Praag, H., Kempermann, G., Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience, 2 (3), 266-270, 1999. 35 [34] Kempermann, G., Kuhn, H. G., Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature, 386 (6624), 493-495, 1997. 35 [35] Stranahan, A. M., Khalil, D., Gould, E. Social isolation delays the positive effects of running on adult neurogenesis. Nature neuroscience, 9 (4), 526-533, 2006. 35 [36] Ausas, M. S., Mazzitelli-Fuentes, L., Roman, F. R., Crichigno, S. A., De Vincenti, A. P., Mongiat, L. A. Social isolation impairs active avoidance performance and decreases neurogenesis in the dorsomedial telencephalon of rainbow trout. Physiology & behavior, 198, 1-10, 2019. 35, 39 [37] Anderson, M. L., Sisti, H. M., Curlik, D. M., Shors, T. J. Associative learning increases adult neurogenesis during a critical period. European Journal of Neuroscience, 33 (1), 175-181, 2011. 39 [38] Wikipedia contributors. Gillespie algorithm | Wikipedia, the free encyclopedia, 2021. URL https://en.wikipedia.org/w/index.php?title=Gillespie_algorithm&oldid=1053486398, [Online; accessed 27-January-2022]. 45 [39] Rafati, J., Noelle, D. C. Learning sparse representations in reinforcement learning. arXiv preprint arXiv:1909.01575, 2019. 55
Materias:Medicina > Neurociencias
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica
Código ID:1062
Depositado Por:Tamara Cárcamo
Depositado En:12 Jul 2022 10:24
Última Modificación:12 Jul 2022 10:24

Personal del repositorio solamente: página de control del documento