Desarrollo de métodos variacionales para la optimización de fuentes de neutrones fríos / Development of variational methods for the optimization of cold neutrons sources

Márquez, Ariel (2022) Desarrollo de métodos variacionales para la optimización de fuentes de neutrones fríos / Development of variational methods for the optimization of cold neutrons sources. Tesis Doctoral en Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
17Mb

Resumen en español

En este trabajo, desarrollamos teóricamente e implementamos computacionalmente técnicas de Monte Carlo para el cálculo de magnitudes adjuntas en moderadores criogénicos. Dichas magnitudes permiten establecer la contribución relativa de los diversos puntos del moderador a los efectos de proveer neutrones de una cierta calidad especificada. Por otro lado, se relacionan las mismas magnitudes con el principio variacional a primer orden asociado al cambio de forma del sistema moderador. Esto permite reconocer el impacto que tendrá sobre la corriente de neutrones fríos un determinado cambio geométrico, en forma previa a su cálculo explícito. Como resultado principal de nuestro estudio calculamos una magnitud adjunta Γ†v que, integrada en una región volumétrica cercana al borde del moderador, permite predecir con una exactitud del 3% el cambio que existirá en la corriente de neutrones de interés al remover dicha región, aún para cambios volumétricos considerables. Aplicando dicho concepto a una fuente fría cilíndrica de orthodeuterio de 21 litros, Γ†v revela una baja sensibilidad a los cambios geométricos cuando se comparan fuentes frías del mismo volumen, siempre y cuando su forma externa siga aproximadamente las curvas de nivel de dicha magnitud. Asimismo, Γ† v justifica −en ciertos casos− la incorporación de cavidades reentrantes adyacentes a la ventana de extracción, lo cual permite ganancias de hasta un 18%. Esta ventaja pudo ser extendida a volúmenes iniciales menores a través del agregado de hidrógeno. Por otro lado, se estudiaron diversos criterios de aceptación de neutrones, los cuales se incorporan mediante la condición de borde del problema adjunto. Se concluyó que, ante el requerimiento de neutrones con combinaciones ángulo-energía tales que permitan su transporte en una guía de neutrones, la optimización geométrica del moderador no depende del factor de calidad m de la guía. Contrariamente, al requerir sólo una energía máxima del neutrón, el volumen óptimo de moderador varía sensiblemente con dicha energía.

Resumen en inglés

In this work, we theoretically develop new Monte Carlo techniques for the calculation of adjoint magnitudes in cryogenic moderators and incorporate them into a computer code. These magnitudes establish the relative contribution of the various points of the moderator in order to provide neutrons of a certain specified quality. On the other hand, the same magnitudes are related to the first-order variational principle associated with the change in shape of the moderator system. This allows to recognize the impact that a certain geometric change will have on the cold neutron current, prior to its explicit calculation. As the main result of our study, we calculated an adjoint magnitude Γ†v that, integrated over a volumetric region close to the surface of the moderator, predicts with an accuracy of 3% the change that will exist in the neutron current when removing said region, even for considerable volumetric changes. Applying this concept to a 21-liter cylindrical cold source of ortho-deuterium, Γ†v reveals a low sensitivity to geometric changes when cold sources of the same volume are compared, as long as their external shape roughly follows the contour lines of that magnitude. Likewise, it justifies in certain cases the incorporation of reentrant cavities adjacent to the extraction window, showing intensity gains up to 18%. This advantage could be extended to lower initial volumes through the addition of hydrogen. On the other hand, various neutron acceptance criteria were studied, which are incorporated through the boundary condition of the adjoint problem. It was concluded that, given the requirement of neutrons with angle-energy combinations such that they allow their transport in a neutron guide, the geometric optimization of the moderator does not depend on the quality factor m of the guide. On the contrary, by requiring only a maximum energy of the neutron, the optimal volume of moderator varies significantly with this energy.

Tipo de objeto:Tesis (Tesis Doctoral en Ingeniería Nuclear)
Palabras Clave:Cold neutrons; Neutrones fríos; Variational methods; Métodos variacionales; Monte Carlo methods; Método de Monte Carlo; [Neutronics; Neutrónica; Adjoint function; Función adjunta ]
Referencias:[1] Bauer, G. Physics and technology of spallation neutron sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 463, 505–543, 05 2001. 3 [2] Thiering, R., Lu, W., Ullah, R. Commissioning of the OPAL reactor cold neutron source. 2006. 4 [3] Balmer, R. Modern Engineering Thermodynamics. 2010. 4 [4] Ho, M., Jeong, Y., Park, H., Yeoh, G., Lu, W. Using CFD as preventative maintenance tool for the cold neutron source thermosiphon system. Science and Technology of Nuclear Installations, 2016, 1–11, 01 2016. 4 [5] Qiu, Y. N., Hu, Z. J., Wu, J. H., Li, Q., Zhang, Y., Zhang, P., et al. Cryogenic hydrogen circulation system of neutron source. AIP Conference Proceedings, 1573 (1), 1230–1235, 2014. 5 [6] Chang, H., Kim, S., Weisend II, J., Quack, H. Modified Brayton refrigeration cycles for liquid hydrogen in spallation neutron source moderator. 2016. 4, 5 [7] Defence in Depth in Nuclear Safety. No 10 en INSAG Series. Vienna: IAEA, 1996. 5 [8] Wu, S., Kim, Y. K., Lee, K., Kim, H. Design characteristics of the cold neutron source in HANARO process system and architecture design. 2007. 6 [9] Bonneton, M., Lovotti, O., Mityukhlyaev, V., Thiering, R. Installation and testing of the OPAL (ANSTO) cold neutron source. 2005. 6 [10] Kawai, T., Gutsmiedl, E., Scheuer, A. Design concepts for construction of cold neutron source (INIS-XA-C–030). International Atomic Energy Agency (IAEA), 2003. 6, 7 [11] Bendeich, P., Luzin, V., Law, M. Residual stresses in a welded Zircaloy cold neutron source containment vessel. Materials Science Forum, 777, 194–198, 02 2014. 6 [12] The new liquid deuterium cold neutron source. https://www.nist.gov/ncnr/installation-upgraded-cold-source/new-liquid-deuterium-cold-neutron-source. 7, 8 [13] Optimization of a cold neutron source for a proposed LEU reactor at NIST. https://www.nist.gov/system/files/documents/2020/03/03/Bonk_Surf_Colloquium.pdf. 7, 8, 157 [14] Khajvand, N., Mirvakili, S. M., Faghihi, F. Cold neutron source conceptual designing for Tehran Research Reactor. Annals of Nuclear Energy, 92, 407–412, 06 2016. 7, 8 [15] Basic Design of the Cold Neutron Research Facility in HANARO, KAERI/TR- 3051/2005. https://inis.iaea.org/collection/NCLCollectionStore/ _Public/37/122/37122309.pdf. 7, 8 [16] Mezei, F., Zanini, L., Takibayev, A., Batkov, K., Klinkby, E., Pitcher, E., et al. Low dimensional neutron moderators for enhanced source brightness. Journal of Neutron Research, 17, 11 2013. 7, 8, 166 [17] Cantargi, F. Propiedades neutrónicas de hidrocarburos aromáticos como moderadores criogénicos. Tesis de Doctorado en Física, Universidad Nacional de Cuyo, Instituto Balseiro, 2007. 9 [18] Cantargi, F., Granada, J. Thermal neutron cross-section libraries for aromatic hydrocarbons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (16), 2487–2491, 2010. URL https://www.sciencedirect.com/science/article/pii/S0168583X10004209. 9 [19] Feng, Q., Feng, Q., Kawai, T., Zhong, B., Wei, J., Loong, C.-K., et al. The solution of cold neutron source using solid methane moderator for the CPHS. Physics Procedia, 26, 49–54, 12 2012. 9 [20] Beljakov, A. A., Melikhov, V. V., Pepoylyshev, Y. N., Shabalin, E. P. Solid methane cold moderator for the IBR-2 reactor. Journal of Neutron Research, 3 (3), 209–221, 1996. 9 [21] Huerta Parajon, M., Abad, E., Bermejo, F. A review of the cold neutron moderator materials: Neutronic performance and radiation effects. Physics Procedia, 60, 12 2014. 10 [22] 5.62 Physical Chemistry II: Nuclear Spin Statistics, MIT OpenCourseWare, 2008. URL https://ocw.mit.edu/courses/chemistry/5-62-physical-chemistry-ii-spring-2008/lecture-notes/13_562ln08.pdf. 10 [23] Roder, H. M. Survey of the properties of the hydrogen isotopes below their critical temperatures. U.S. Dept. of Commerce, National Bureau of Standards, for sale by the Supt. of Docs., U.S. Govt. Print. Off., 1973. 11 [24] Prask, H. Materials characterization with cold neutrons. En: Nondestructive Characterization of Materials VII, tomo 210 de Materials Science Forum, págs. 711–718. Trans Tech Publications Ltd, 1996. 13 [25] Institut Laue-Langevin. https://www.ill.eu/users/instruments. 13, 15 [26] Pokotilovski, Y. Experiments with ultracold neutrons - first 50 years. History and Philosophy of Physics, 2018. 13 [27] Gonzalez, F., Fries, E., Cude-Woods, C., Bailey, T., Blatnik, M., Broussard, L., et al. An improved neutron lifetime measurement with UCNτ , 06 2021. 13 [28] Bell, G., Glasstone, S. Nuclear Reactor Theory. Krieger Publishing Company, 1970. 17, 18, 33, 63 [29] Irving, D. The adjoint Boltzmann equation and its simulation by Monte Carlo. Nuclear Engineering and Design, 15, 273 – 293, 1971. URL http://www.sciencedirect.com/science/article/pii/0029549371900690. 30, 45 [30] Saracco, P., Dulla, S., Ravetto, P. The adjoint neutron transport equation and the statistical approach for its solution. The European Physical Journal Plus, 131, 09 2016. 30, 31 [31] Kuščer, I. Reciprocity theorems for thermal neutrons. Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology, 16 (8), 379–382, 1962. URL https://www.sciencedirect.com/science/article/pii/0368323062902008. 33 [32] MacFarlane, R., et al. The NJOY Nuclear Data Processing System, Version 2016. Los Alamos National Laboratory LA-UR-17 20093, 12 2016. 34, 107 [33] Goorley, T., James, M., Booth, T., Brown, F., Bull, J., Cox, L., et al. Features of MCNP6. Annals of Nuclear Energy, 87, 772 – 783, 2016. 38 [34] Williams, M., Engle Jr., W. The concept of spatial channel theory applied to reactor shielding analysis. Oak Ridge National Laboratory - internal document with unlimited distribution, ORNL/TM-5467, 1976. 39, 43 [35] Williams, M. L. Generalized contributon response theory. Nuclear Science and Engineering, 108 (4), 355–383, 1991. URL https://doi.org/10.13182/NSE90-33. 43 [36] Seydaliev, M., Herdenson, D. Contributon theory for shielding analysis. Fusion Technology Institute - University of Wisconsin, UWFDM-1338, 2008. 44 [37] Peng, X., Liang, J., Forget, B., Smith, K. Calculation of adjoint-weighted reactor kinetics parameters in OpenMC. Annals of Nuclear Energy, 128, 231–235, 06 2019. 44 [38] Perfetti, C., Rearden, B., Martin, W. SCALE continuous-energy eigenvalue sensitivity coefficient calculations. Nuclear Science and Engineering, 182, 332–353, 03 2016. 44 [39] Aufiero, M., Bidaud, A., Hursin, M., Leppänen, J., Palmiotti, G., Pelloni, S., et al. A collision history-based approach to sensitivity perturbation calculations in the continuous energy Monte Carlo code SERPENT. Annals of Nuclear Energy, 85, 245–258, 2015. 44 [40] Dubi, A., Gerstl, S. A. W., Dudziak, D. J. Monte Carlo aspects of contributons. Nuclear Science and Engineering, 68 (1), 19–30, 1978. URL https://doi.org/ 10.13182/NSE78-A27266. 45, 46 [41] Dubi, A., Gerstl, S. Contributon Monte Carlo. LA ; 7849-MS. Department of Energy, Los Alamos Scientific Laboratory, 1979. URL https://books.google. com.ar/books?id=FqJdugEACAAJ. [42] Dubi, A., Gerstl, S. A. W. Application of biasing techniques to the contributon Monte Carlo method. Nuclear Science and Engineering, 76 (2), 198–217, 1980. URL https://doi.org/10.13182/NSE80-A19451. 45, 48, 50 [43] Gheorghiu, H. N. M., Rahnema, F. Variational principles for steady-state neutron flux functionals. Transport Theory and Statistical Physics, 27 (1), 67–95, 1998. URL https://doi.org/10.1080/00411459808205141. 62, 63, 66 [44] Rahnema, F., Pomraning, G. C. Boundary perturbation theory for inhomogeneous transport equations. Nuclear Science and Engineering, 84 (4), 313–319, 1983. URL https://doi.org/10.13182/NSE83-A15451. 63, 68 [45] Gheorghiu, H. N., Rahnema, F. Generalized Rayleigh quotients for eigenvalue estimates of neutron balance equations. Nuclear Science and Engineering, 125 (3), 3 1997. URL https://www.osti.gov/biblio/449576. 63 [46] Favorite, J. A., Gonzalez, E. Revisiting boundary perturbation theory for inhomogeneous transport problems. Nuclear Science and Engineering, 185 (3), 445–459, 2017. URL https://doi.org/10.1080/00295639.2016.1277108. 63, 66 [47] Favorite, J. A. Variational estimates of internal interface perturbations and a new variational functional for inhomogeneous transport problems. Nuclear Science and Engineering, 152 (2), 180–196, 2006. URL https://doi.org/10.13182/NSE06-A2574. 63 [48] Cacuci, D. The Roussopoulos and Schwinger functionals for nuclear systems involving imprecisely known fluxes and parameters: Distinctions and equivalences. Nuclear Science and Engineering, 193 (7), 681–721, 2019. 63 [49] Rahnema, F., Pomraning, G. C. External boundary perturbations in neutron transport theory. Journal of Mathematical Physics, 24, 687–701, 1983. 66 [50] Favorite, J. A. Variational estimates of neutron-induced gamma line leakages and ratios for internal interface perturbations. Nuclear Science and Engineering, 155 (2), 321–329, 2007. URL https://doi.org/10.13182/NSE07-A2666. 68 [51] Yamamoto, T., Sakamoto, H. Monte Carlo perturbation calculation for geometry change in fixed source problems with the perturbation source method. Progress in Nuclear Energy, 132, 103611, 12 2020. 69 [52] Matsumoto, M., Nishimura, T. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. 8 (1), 3–30, ene. 1998. URL https://doi.org/10.1145/272991.272995. 71 [53] Kent Parsons, D., Lloyd Conlin, J. Release of continuous representation for S(α, β) ACE data. LA-UR-12-00800, MCNP Online Documentation, 2012. 75, 76, 77, 209 [54] Romano, P. K., Horelik, N. E., Herman, B. R., Nelson, A. G., Forget, B., Smith, K. OpenMC: A state-of-the-art Monte Carlo code for research and development. Annals of Nuclear Energy, 82, 90–97, 2015. URL https://www.sciencedirect. com/science/article/pii/S030645491400379X. 76 [55] Plompen, A., Cabellos, O., De Saint Jean, C., Fleming, M., Algora, A., Angelone, M., et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. The European Physical Journal A, 56, 07 2020. 76, 77, 209 [56] Brown, D. A., Chadwick, M., Capote, R., Kahler, A., Trkov, A., Herman, M., et al. ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nuclear Data Sheets, 148, 1–142, 2018. 76, 77 [57] Granada, R., Gillette, V., E. Pepe, M., M. Sbaffoni, M. Improved thermal neutron scattering kernels for liquid hydrogen and deuterium. Journal of Neutron Research, 11, 25–40, 01 2003. 77, 209 [58] Márquez Damián, J., Granada, J., Malaspina, D. CAB models for water: a new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format. Annals of Nuclear Energy, 65, 280–289, 2014. 77 [59] Willendrup, P., Farhi, E., et al. User and programmers guide to the neutron ray-tracing package McStas, version 3.0. Technical University of Denmark, págs. 19–20, 12 2020. 78 [60] Guy, B., Ilaria, F., Ilaria, L. Shape derivatives for minima of integral functionals. Mathematical Programming, 148, 01 2014. 107 [61] Martín Rodríguez, D., Kennedy, S., Klose, F. Upgrade of the neutron guide system at the OPAL neutron source. Journal of Physics: Conference Series, 251, 12 2010. 153 [62] Ehlers, G., Frost, M. J., Granroth, G. E., Huegle, T., Ibberson, R. M., Robertson, J. L. A replacement cold neutron guide system for HFIR (conceptual design report). URL https://www.osti.gov/biblio/1649119. 153 [63] Kopetka, P., Williams, R., Rowe, J. NIST liquid hydrogen cold source. NIST Internal Report NISTIR-7352, 131, 09 2006. 166 [64] Cook, J., Barker, J., Rowe, J., Williams, R., Gagnon, C., Lindstrom, R., et al. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 792, 15–27, 2015. URL https://www.sciencedirect.com/science/article/pii/S0168900215005252. 167 [65] Gaubatz, W., Gobrecht, K. The FRM-II cold neutron source. Physica B: Condensed Matter, 276-278, 104 – 105, 2000. 170 [66] Márquez, A. Diseño y cálculo neutrónico de facilidades experimentales del Reactor RA-10. Tesis de Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro, 2013. 180 [67] Ageron, P., De Beaucourt, P., Hardig, H., Lacaze, A., Livolant, M. Experimental and theoretical study of cold neutron sources of liquid hydrogen and liquid deuterium. Cryogenics, 02 1969. 196, 197, 198 [68] Atchison, F., Beaud, P., Bryś, T., Daum, M., Fierlinger, P., Henneck, R., et al. Ortho-para equilibrium in a liquid D2 neutron moderator under irradiation. Physical Review B, 68, 94114–, 09 2003. 208 [69] Granada, J. R., Damian, J. I. M., Cantargi, F. New evaluated thermal neutron scattering cross sections for liquid hydrogen and deuterium. presented at the International Conference on Neutron Scattering 2017 (ICNS 2017), Daejeon, Republic of Korea, 2017. 209 [70] Sköld, K. Small energy transfer scattering of cold neutrons from liquid argon. Physical Review Letters, 19 (18), 1023, 1967. 209 [71] Hamby, D. M. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32 (2), 135–154, sep 1994. 211 [72] Pavlou, T., Ho, M., Yeoh, G., Lu, W. Thermal-hydraulic modelling of the cold neutron source thermosiphon system. Annals of Nuclear Energy, 90, 135–147, 04 2016. 211
Materias:Ingeniería nuclear > Neutrónica
Divisiones:Energía nuclear > Ingeniería nuclear > Física de neutrones
Código ID:1073
Depositado Por:Tamara Cárcamo
Depositado En:12 Jul 2022 16:21
Última Modificación:12 Jul 2022 16:21

Personal del repositorio solamente: página de control del documento