Re-diseño de un componente satelital con requerimientos mecánicos aplicando metodologías de optimización topológica y manufactura aditivas / Re-design of a satellite component with mechanical requirements applying methodologies of topological optimization and additive manufacturing

Canella, Pedro S. (2022) Re-diseño de un componente satelital con requerimientos mecánicos aplicando metodologías de optimización topológica y manufactura aditivas / Re-design of a satellite component with mechanical requirements applying methodologies of topological optimization and additive manufacturing. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3106Kb

Resumen en español

El objetivo del presente trabajo es estudiar la posible reducción del peso de un soporte de Star Tracker, conservando su desempeño mecánico, a partir de la aplicación de técnicas de optimización topológica. Por ser componentes de satélites, la reducción del peso tiene un impacto económico directo por el ahorro de combustible durante el lanzamiento. Se buscó cumplir este objetivo aplicando técnicas de optimización topológica sobre el soporte original, y considerando su fabricación por medio de manufactura aditiva de metales. La optimización topológica permitió encontrar una distribución optimizada de la materia aplicando una reducción del volumen. Por la complejidad de la geometría obtenida, se considera la utilización de manufactura aditiva para la construcción del soporte. La verificación del desempeño de los soportes se realizó por medio de análisis de elementos finitos. Todos los análisis se realizaron bajo la hipótesis de comportamiento lineal elástico de los materiales involucrados. Por un lado, se realizó un análisis de las tensiones en el soporte para los 24 casos de carga establecidos. Por otro lado, se realizó un análisis modal de los soportes, y finalmente la falla por pandeo. Además, se verifica el cumplimiento de una serie de requerimientos geométricos, dimensionales y eléctricos. Se cumplió satisfactoriamente con los objetivos planteados, quedando como trabajo a futuro el análisis térmico del soporte optimizado.

Resumen en inglés

The objective of this work is to study the possible weight reduction of a Star Tracker support, preserving its mechanical performance. As they are satellite components, the reduction in weight has a double economic impact, due to material savings and fuel savings. This objective was sought to be achieved by applying topological optimization techniques on the original support, and considering its manufacture through additive manufacturing of metals. The topological optimization allowed to find an optimized distribution of the matter applying a volume reduction. Due to the complexity of the geometry obtained, the use of additive manufacturing for the construction of the support is considered. Verification of the performance of the supports was carried out by means of finite element analysis. All analyzes were performed under the hypothesis of linear elastic behavior of the materials involved. On the one hand, an analysis of the stresses in the support was carried out for the 24 load cases established. On the other hand, a modal analysis of the supports was carried out, and finally the buckling failure. In addition, compliance with a series of geometric, dimensional and electrical requirements is verified. The proposed objectives were satisfactorily fulfilled, leaving the thermal analysis of the optimized support as future work.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Mecánica)
Palabras Clave:[Topological optimization; Optimización topológica; Additive manufacturing; Manufactura aditiva; Satellite industry; Industria satelital ]
Referencias:[1] Gao Yongxin, Zhang Lihua, Liu Zhijia, Ge Yimin, Ma Lingxi. Optimization Design of Star Tracker Bracket of Small Satellite for 3D Printing, 2019 [2] Byron Blakey-Milner, Paul Gradl, Glen Snedden, Michael Brooks, Jean Pitot, Elena Lopez, Martin Leary, Filippo Berto, Anton du Plessi. Metal additive manufacturing in aerospace: A review. 2021 [3] Fan Jiang, Qingwen Wu, Zhongsu Wang, Jinguo Liu, Huaxia Deng. Thermal design and analysis of high-power star sensors. 2015 [4] nTopology. https://ntopology.com/webinars/webinar/advanced-design-automation-with-modefrontier-ntopology/?utm_source=ntop-live&utm_medium=website&utm_campaign=webinar-ntl-referral&utm_term=&utm_content=webinar-ntl-referral&source=website&comment=, Ingresado el 27/04/2022 [5] M.P. Bendsøe, o. Sigmund, Topology Optimization Theory, Methods, and Applications, Springer-Verlag Berlin Heidelberg New York, 2004 [6] Meza Carlos, Tamayo Fernando, Franco Ediguer, Optimización Topológica aplicada al diseño de componentes estructurales mecánicos de peso reducido, El Hombre y la Máquina Nro 46, 2015. [7] 3D Printing Parts for the Aviation and Aerospace Industries. Disponible online en: https://www.ge.com/additive/additive-manufacturing/industries/aviation-aerospace (accedido el 26 de abril 2022) [8] https://www.materialise.com/es/manufacturing/tecnologia-de-impresion-3d/impresion-3d-en-metal, ingresado 25/4/2022 [9] MOHSEN SEIFI, AYMAN SALEM, JACK BEUTH, OLA HARRYSSON, an, d JOHN J. LEWANDOWSKI1. Overview of Materials Qualification Needs for Metal Additive Manufacturing, The Minerals, Metals & Materials Society 2016 [10] Ian Gibson, David Rosen, Brent Stucker. Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Second edition, 2015. [11] Renishaw plc, Design for metal AM - a beginner’s guide, 2017 [12] Ben Redwood, How to design parts for Metal 3D printing, 2019, https://www.hubs.com/knowledge-base/how-design-parts-metal-3d-printing/, ingresado el 26/04/2022. [13] https://www.designworldonline.com/to-support-or-not-to-support-in-3d-printing/, ingresado en 12/05/2022. [14] Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS: The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016, 61:315-360, http://dx.doi.org/10.1080/09506608.2015.1116649. [15] MacDonald E, Wicker R: Multiprocess 3D printing for increasing component functionality. Science 2016, 353: aaf2093 http://dx. doi.org/10.1126/science.aaf2093. [16] Smith CJ, Tammas-Williams S, Mahoney PS, Todd I: 3D printing a jet engine: an undergraduate project to exploit additive manufacturing now and in the future. Mater Today Commun 2018, 16:22-25 http://dx.doi.org/10.1016/j.mtcomm.2018.03.006. [17] Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A: Additive manufacturing of biomaterials. Prog Mater Sci 2018, 93:45-111 http://dx.doi.org/10.1016/j.pmatsci.2017.08.003. [18] Harun WSW, Kamariah MSIN, Muhamad N, Ghani SAC, Ahmad F, Mohamed Z: A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol 2018, 327:128-151 http://dx.doi.org/10.1016/j.powtec.2017.12.058. [19] Zadpoor AA, Malda J: Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 2017, 45 http://dx.doi.org/ 10.1007/s10439-016-1719-y. [20] DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W: Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 2018, 92:112-224 http://dx.doi. org/10.1016/j.pmatsci.2017.10.001. [21] Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 2018, 21:22-37 http://dx.doi.org/ 10.1016/j.mattod.2017.07.001. [22] https://www.smartechanalysis.com/news/metal-powder-shipments-am/, ingresado el 12/5/2022. [23] https://www.eos.info/03_system-related-assets/material-related-contents/material_pdf/eos_materials_table_overview_m_en_web.pdf, Ingresado el 9/5/2022. [24] https://www.sculpteo.com/es/materiales/dmls-materiales/, Ingresado el 9/5/2022. [25] Francis Froes, Rodney Boyer: Additive Manufacturing for the Aerospace Industry, Elsevier, 2019. [26] Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review, 2017. [27] Chen Shena, Zengxi Panad, Donghong Dingab, Lei Yuana, Ning Niea, Ying Wangc, Dongzhi Luoa, Dominic Cuiuriad, Stephen van Duinad, Huijun Liad, The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process, 2018. [28] CC268_StarTarcker 3D Balseiro_Requerimientos_A_23_08_2021, 23/08/2021 [29] Introduction to Finite Elements in Engineering, T. R. Chandrupatla, A. D. Belegundu, Pearson, 2012 [30] EOS Aluminium AlSi10Mg Material Datasheet, EOS, 2022. [31] Fracture toughness potential of cast Al–7%Si–Mg alloys, Murat Tiryakioglu, Elsevier B.V, 2008. [32] El posprocesado, factor clave para el despegue definitivo de la fabricación aditiva, José Antonio Díez Silanes, Cidetec, Metal Madrid 2019. [33] Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes, J. Laser Appl. 32, 032016 (2020); https://doi.org/10.2351/7.0000115 [34] Investigating the Role of Geometric Dimensioning and Tolerancing in Additive Manufacturing, Gaurav Ameta, Robert Lipman, Shawn Moylan, Paul Witherell, Journal of Mechanical Design, 2015 [35] Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors, Cassidy Silbernagel, Ian Ashcroft, Phill Dickens, Michael Galea, 2018 [36] Industrializing AM: A simple cost equation, T. W. Simpson, Additive Manufacturing Media, 2020. [37] Cost and Cost Effectiveness of Additive Manufacturing, D.S Thomas, S. W. Gilbert, National Institute of Standars and Technology Spetial Publication, 2014. [38] EOS GmbH, Certified for Universal Success: Additive Manufacturing of Satellite Components. 2018. [Online]. Available: https://cdn.eos.info/ b63671baf552082c/88339183a70a/CS_M_Aerospace_RUAG_Citim_en_WEB.pdf.
Materias:Química > Materiales
Ingeniería mecánica > Diseño mecánico
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:1086
Depositado Por:Tamara Cárcamo
Depositado En:19 Jul 2022 15:28
Última Modificación:19 Jul 2022 15:28

Personal del repositorio solamente: página de control del documento