Películas magnéticas delgadas con anisotropía perpendicular: fabricación y estudio de paredes de dominios / Magnetic thin films with perpendicular anisotropy: fabrication and study of domain walls

Cortés Burgos, María J. (2022) Películas magnéticas delgadas con anisotropía perpendicular: fabricación y estudio de paredes de dominios / Magnetic thin films with perpendicular anisotropy: fabrication and study of domain walls. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

La anisotropía magnética perpendicular (PMA) dominante es una característica que se presenta en películas delgadas o sistemas multicapa magnéticos, y resulta de gran interés para una amplia variedad de aplicaciones en el área del almacenamiento de información debido a su amplio potencial para el diseño y fabricación de dispositivos espintrónicos de nueva generación. Hoy en día, éstos representan una promesa para el desarrollo de memorias magnéticas de alta velocidad de conmutación y baja energía de procesamiento. Las paredes de dominios (DWs) magnéticas, es decir, la zona de transición entre dos dominios magnéticos, y particularmente su dinámica, han sido de continuo estudio debido a su rol fundamental en la comprensión de los mecanismos de inversión de la magnetización. La comprensión y cuantificación de distintos parámetros asociados a la naturaleza de esta dinámica, como la velocidad de propagación y rugosidad de DWs, es crucial para definir el potencial de un material en el desarrollo de dispositivos espintrónicos. En este trabajo, se presenta un estudio detallado de la optimización de parámetros de fabricación de sistemas magnéticos a base de películas delgadas tanto de metales como de óxidos magnéticos mediante el método de sputtering DC, apuntando a inducir una PMA dominante en muestras de Pt/Co/Pt y La_0.75Sr_0.25MnO_3 (LSMO). Optimizando la fabricación de muestras, se logró tener un buen control en la reproducibilidad de películas de Pt/Co(< 1 nm)/Pt con PMA dominante. Por otro lado, si bien no se logró fabricar películas de LSMO con PMA dominante, controlando la anisotropía magnética inducida por tensiones en la interfaz película/substrato, se ha logrado obtener muestras que exhiben alguna componente de PMA. Se ha llevado a cabo un estudio sistemático de la dinámica de propagación y de la rugosidad de DWs magnéticas desplazadas con campo magnético en el régimen de creep a temperatura ambiente en películas de Pt/Co/Pt con PMA dominante mediante microscopia de Efecto Kerr Magneto-Óptico polar. Para realizar un análisis estadístico de las DWs observadas, se parametrizó cada interfaz con una función 𝑢(𝑥). La influencia del campo en la rugosidad de las DWs se estudió mediante la función de correlación de fluctuaciones 𝐵(𝑟)=〈[𝑢(𝑥+𝑟)−𝑢(𝑥)]"2〉 de un conjunto de interfaces 𝑢(𝑥), obtenidas bajo las mismas condiciones experimentales. Del comportamiento tipo ley de potencias de la función de correlación 𝐵(𝑟)=𝐵0𝑟"2𝜁, se obtuvieron para cada campo 𝐻, el exponente de rugosidad 𝜁 y la amplitud 𝐵_0. Se observó que el exponente de rugosidad es independiente de 𝐻, mientras que, por otro lado, la amplitud de rugosidad depende considerablemente del campo, tal que disminuye al aumentar la intensidad de 𝐻. A partir de los resultados experimentales, se propone una interpretación teórica de los mismos mediante la existencia de un crossover de regímenes, tal que el exponente de rugosidad se puede definir como un exponente efectivo, descrito por los exponentes de rugosidad de los regímenes de depinning y térmico, los cuales están asociados a distintas escalas de longitud.

Resumen en inglés

Perpendicular magnetic anisotropy (PMA) can be observed in magnetic thin films or magnetic multilayered systems. Materials presenting PMA are of great interest for a wide variety of applications in the area of information storage, due to its potential for design and fabrication of new generation spintronic devices. Nowadays, such devices are regarded as promising for the development of magnetic memories with high switching speed and low processing power consumption. Magnetic domain walls (DWs), that is, the transition region between two magnetic domains, have been continuously studied due to their fundamental role in magnetization inversion processes. Of particular interest is the dynamics of DWs driven by external stimuli. The understanding and quantification of different parameters associated with the nature of this dynamics, such as the propagation velocity and the roughness of DWs, is crucial to evaluate the potential of a material in the development of spintronics devices. In this work, we present a detailed study of the optimization of manufacturing parameters using the DC sputtering method of two type of thin magnetic systems based on magnetic metals and oxides. The goal was to induce a dominant PMA in Pt/Co/ Pt and La_0.75Sr_0.25MnO_3 (LSMO) systems. By optimizing the fabrication process, it was possible to have a good control in the reproducibility of Pt/Co(< 1 nm)/Pt films with dominant PMA. On the other hand, although we did not succeed in obtaining LSMO films with dominant PMA, by controlling the magnetic anisotropy induced by stresses at the film/substrate interface, it was possible to obtain samples that exhibit a PMA component. A systematic study of the propagation dynamics and the roughness of magnetic DWs, displaced by magnetic fields in the creep regime at room temperature was carried out using polar Magneto-Optical Kerr Effect microscopy. For this study, Pt/Co/Pt films with dominant PMA were used. To perform a statistical analysis of the observed DWs, each interface was parameterized with a function 𝑢(𝑥). The influence of the magnetic field on the roughness of the DWs was studied using the fluctuation correlation function 𝐵(𝑟)=〈[𝑢(𝑥+𝑟)−𝑢(𝑥)]"2〉 of a set of interfaces 𝑢(𝑥), obtained under the same experimental conditions. From the power-law behavior of the correlation function, 𝐵(𝑟)=𝐵0𝑟"2𝜁, the roughness exponent 𝜁 and the amplitude 𝐵_0 were obtained for each field 𝐻. It was observed that the roughness exponent is independent of 𝐻, while, on the other hand, the roughness amplitude considerably depends on the field, such that it decreases with increasing intensity of 𝐻. A theoretical interpretation of the experimental results is proposed by considering the existence of crossover length scales, such that the observed roughness exponent can be defined as an effective exponent, depending on the roughness exponents theoretically predicted for the depinning and thermal regimes.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Anisotrypy; Anisotropía; Thin films; Capas finas; [Magnetic thin films; Películas magnéticas delgadas; Perpendicular magnetic anisotropy; Anisotropía perpendicular ; Magnetic domain walls; Paredes de dominios magnéticas ; Dinamic of interfaces; Dinámica de interface]
Referencias:[1] J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, United Kingdom, 2010. [2] D. Jiles, Introduction to Magnetism and Magnetic Materials, 3rd Edition, CRC Press, United States, 2015. https://doi.org/10.1201/B18948. [3] A. Aharoni, Introduction to the theory of ferromagnetism, (2000) 319. https://books.google.com/books/about/Introduction_to_the_Theory_of_Ferromagne.html?hl=es&id=Ru-z9b3WcfMC (accessed March 18, 2022). [4] S. Blundell, D. Thouless, Magnetism in Condensed Matter, 2003. https://doi.org/10.1119/1.1522704. [5] R. Jackson, John Tyndall and the Early History of Diamagnetism, Http://Dx.Doi.Org/10.1080/00033790.2014.929743. 72 (2014) 435–489. https://doi.org/10.1080/00033790.2014.929743. [6] C. Kittel, D.F. Holcomb, Introduction to Solid State Physics, Am. J. Phys. 35 (2005) 547. https://doi.org/10.1119/1.1974177. [7] Science ABC, How Can A Magnet Be Demagnetized Quickly? , (n.d.). https://www.scienceabc.com/pure-sciences/can-magnet-demagnetized-quickly.html (accessed March 22, 2022). [8] D. Azuma, Magnetic materials, Wide Bandgap Power Semicond. Packag. Mater. Components, Reliab. (2018) 97–107. https://doi.org/10.1016/B978-0-08-102094-4.00005-0. [9] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, Second Edi, John Wiley & Sons, Inc., 2009. https://doi.org/10.1002/9780470386323. [10] M. Barturen, Anisotropía magnética y acople magneto-elástico en películas delgadas de Fe1-xGax crecidas epitaxialmente sobre ZnSe/GaAs (001), PhD Thesis, Instituto Balseiro - UNCuyo, Argentina, 2015. [11] M. Getzlaff, Fundamentals of magnetism, Fundam. Magn. (2008) 1–387. https://doi.org/10.1007/978-3-540-31152-2. [12] M. Wolloch, D. Suess, Strain-induced control of magnetocrystalline anisotropy energy in FeCo thin films, J. Magn. Magn. Mater. 522 (2021) 167542. https://doi.org/10.1016/J.JMMM.2020.167542. [13] Y. Tan, K. Liang, Z. Mei, P. Zhou, Y. Liu, Y. Qi, Z. Ma, T. Zhang, Strain induced magnetic anisotropy of high epitaxial Ni thin films grown on different oriented PMN-PT substrates, Ceram. Int. 44 (2018) 5564–5568. https://doi.org/10.1016/J.CERAMINT.2017.12.200. [14] J. Prokop, D.A. Valdaitsev, A. Kukunin, M. Pratzer, G. Schönhense, H.J. Elmers, Strain-induced magnetic anisotropies in Co films on Mo(110), Phys. Rev. B. 70 (2004) 184423. https://doi.org/10.1103/PhysRevB.70.184423. [15] L. Ranno, A. Llobet, R. Tiron, E. Favre-Nicolin, Strain-induced magnetic anisotropy in epitaxial manganite films, Appl. Surf. Sci. 188 (2002) 170–175. https://doi.org/10.1016/S0169-4332(01)00730-9. [16] R. Goyal, S. Lamba, S. Annapoorni, Modelling of strain induced magnetic anisotropy in Au additive FePt thin films, Prog. Nat. Sci. Mater. Int. 29 (2019) 517–524. https://doi.org/10.1016/J.PNSC.2019.09.001. [17] G.H. Jonker, J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica. 16 (1950) 337–349. https://doi.org/10.1016/0031-8914(50)90033-4. [18] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3, Phys. Rev. B. 51 (1995) 14103–14109. https://doi.org/10.1103/PHYSREVB.51.14103. [19] W. Xia, Z. Pei, K. Leng, X. Zhu, Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures, Nanoscale Res. Lett. 15 (2020) 1–55. https://doi.org/10.1186/S11671-019-3243-0. [20] E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep. 344 (2001) 1–153. https://doi.org/10.1016/S0370-1573(00)00121-6. [21] S. Valencia, Z. Konstantinovic, D. Schmitz, A. Gaupp, L. Balcells, B. Martínez, Interfacial effects in manganite thin films with different capping layers of interest for spintronic applications, Phys. Rev. B - Condens. Matter Mater. Phys. 84 (2011) 024413. https://doi.org/10.1103/PHYSREVB.84.024413. [22] Y. (Yoshinori) Tokura, Colossal magnetoresistive oxides, Gordon and Breach Science Publishers, New York, 2000. [23] J. Heremans, Solid state magnetic field sensors and applications, J. Phys. D. Appl. Phys. 26 (1993) 1149. https://doi.org/10.1088/0022-3727/26/8/001. [24] S. Jin, M. McCormack, T.H. Tiefel, R. Ramesh, Colossal magnetoresistance in La‐Ca‐Mn‐O ferromagnetic thin films (invited), J. Appl. Phys. 76 (1998) 6929. https://doi.org/10.1063/1.358119. [25] M. Egilmez, K.H. Chow, J.A. Jung, Anisotropic magnetoresistance in perovskite manganites, Mod. Phys. Lett. B. 25 (2011) 697–722. https://doi.org/10.1142/S0217984911026176. [26] S. Dong, J.M. Liu, Recent progress of multiferroic perovskite manganites, Mod. Phys. Lett. B. 26 (2012). https://doi.org/10.1142/S0217984912300049. [27] H. Liu, X. Yang, A brief review on perovskite multiferroics, Ferroelectrics. 507 (2017) 69–85. https://doi.org/10.1080/00150193.2017.1283171. [28] M. Angeloni, G. Balestrino, N.G. Boggio, P.G. Medaglia, P. Orgiani, A. Tebano, Suppression of the metal-insulator transition temperature in thin La0.7Sr0.3MnO3 films, J. Appl. Phys. 96 (2004) 6387. https://doi.org/10.1063/1.1812599. [29] F. Tsui, M.C. Smoak, T.K. Nath, C.B. Eom, Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films, Appl. Phys. Lett. 76 (2000) 2421. https://doi.org/10.1063/1.126363. [30] J. Dho, N.H. Hur, I.S. Kim, Y.K. Park, Oxygen pressure and thickness dependent lattice strain in La0.7Sr0.3MnO3 films, J. Appl. Phys. 94 (2003) 7670. https://doi.org/10.1063/1.1628831. [31] Y. Lu, J. Klein, F. Herbstritt, J.B. Philipp, A. Marx, R. Gross, Effect of strain and tetragonal lattice distortions in doped perovskite manganites, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006) 184406. https://doi.org/10.1103/PHYSREVB.73.184406. [32] G.A. Ovsyannikov, A.M. Petrzhik, I. V. Borisenko, A.A. Klimov, Y.A. Ignatov, V. V. Demidov, S.A. Nikitov, Magnetotransport characteristics of strained La0.7Sr0.3MnO3 epitaxial manganite films, J. Exp. Theor. Phys. 108 (2009) 48–55. https://doi.org/10.1134/S1063776109010075. [33] Y. Takamura, R. V. Chopdekar, E. Arenholz, Y. Suzuki, Control of the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films through epitaxial strain, Appl. Phys. Lett. 92 (2008) 162504. https://doi.org/10.1063/1.2908051. [34] Y.P. Lee, S.Y. Park, Y.H. Hyun, J.B. Kim, V.G. Prokhorov, V.A. Komashko, V.L. Svetchnikov, Microstructural and magnetotransport properties of La0.7Ca0.3MnO3/BaTiO3 and La0.7Sr0.3MnO3/BaTiO3 bilayered films, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006) 224413. https://doi.org/10.1103/PHYSREVB.73.224413. [35] P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3, Phys. Rev. Lett. 75 (1995) 3336–3339. https://doi.org/10.1103/PHYSREVLETT.75.3336. [36] Y. Suzuki, H.Y. Hwang, S.W. Cheong, R.B. Van Dover, The role of strain in magnetic anisotropy of manganite thin films, Appl. Phys. Lett. 71 (1998) 140. https://doi.org/10.1063/1.119454. [37] A.M. Haghiri-Gosnet, J. Wolfman, B. Mercey, C. Simon, P. Lecoeur, M. Korzenski, M. Hervieu, R. Desfeux, G. Baldinozzi, Microstructure and magnetic properties of strained La0.7Sr0.3MnO3 thin films, J. Appl. Phys. 88 (2000) 4257. https://doi.org/10.1063/1.1309040. [38] P. Dey, T.K. Nath, A. Taraphder, Effect of substrate-induced strain on transport and magnetic properties of epitaxial La0.66Sr0.33MnO3 thin films, Appl. Phys. Lett. 91 (2007) 012511. https://doi.org/10.1063/1.2750399. [39] A.K. Pradhan, D. Hunter, T. Williams, B. Lasley-Hunter, R. Bah, H. Mustafa, R. Rakhimov, J. Zhang, D.J. Sellmyer, E.E. Carpenter, D.R. Sahu, J.L. Huang, Magnetic properties of La0.6Sr0.4MnO3 thin films on SrTiO3 and buffered Si substrates with varying thickness, J. Appl. Phys. 103 (2008) 023914. https://doi.org/10.1063/1.2833388. [40] T. Nurgaliev, U. Topal, B. Blagoev, E. Mateev, Magnetic Properties of LCMO/LSMO Thin Films on LAO and ALO Substrates, J. Supercond. Nov. Magn. 25 (2012) 2495–2498. https://doi.org/10.1007/S10948-012-1676-0. [41] M. Španková, V. Štrbík, E. Dobročka, Chromik, M. Sojková, D.N. Zheng, J. Li, Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates, Vacuum. 126 (2016) 24–28. https://doi.org/10.1016/J.VACUUM.2016.01.009. [42] A.J. Millis, Lattice effects in magnetoresistive manganese perovskites, Nature. 392 (1998) 147–150. https://doi.org/10.1038/32348. [43] C. Adamo, X. Ke, H.Q. Wang, H.L. Xin, T. Heeg, M.E. Hawley, W. Zander, J. Schubert, P. Schiffer, D.A. Muller, L. Maritato, D.G. Schlom, Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films, Appl. Phys. Lett. 95 (2009) 112504. https://doi.org/10.1063/1.3213346. [44] J. Dho, N.H. Hur, Thickness dependence of perpendicular magnetic anisotropy in La0.7Sr0.3MnO3 films on LaAlO3, J. Magn. Magn. Mater. 318 (2007) 23–27. https://doi.org/10.1016/J.JMMM.2007.04.038. [45] M. Liebmann, A. Schwarz, U. Kaiser, R. Wiesendanger, D.W. Kim, T.W. Noh, Magnetization reversal of a structurally disordered manganite thin film with perpendicular anisotropy, Phys. Rev. B - Condens. Matter Mater. Phys. 71 (2005). https://doi.org/10.1103/PHYSREVB.71.104431. [46] Y. Wu, Y. Suzuki, U. Rüdiger, J. Yu, A.D. Kent, T.K. Nath, C.B. Eom, Magnetotransport and magnetic domain structure in compressively strained colossal magnetoresistance films, Appl. Phys. Lett. 75 (1999) 2295–2297. https://doi.org/10.1063/1.124995. [47] C. Kwon, M.C. Robson, K.C. Kim, J.Y. Gu, S.E. Lofland, S.M. Bhagat, Z. Trajanovic, M. Rajeswari, T. Venkatesan, A.R. Kratz, R.D. Gomez, R. Ramesh, Stress-induced effects in epitaxial (La0.7Sr0.3)MnO3 films, J. Magn. Magn. Mater. 172 (1997) 229–236. https://doi.org/10.1016/S0304-8853(97)00058-9. [48] S.R. Bakaul, W. Lin, T. Wu, Evolution of magnetic bubble domains in manganite films, Appl. Phys. Lett. 99 (2011) 042503. https://doi.org/10.1063/1.3615708. [49] R. Desfeux, S. Bailleul, A. Da Costa, W. Prellier, A.M. Haghiri-Gosnet, Substrate effect on the magnetic microstructure of La0.7Sr0.3MnO3 thin films studied by magnetic force microscopy, Appl. Phys. Lett. 78 (2001) 3681. https://doi.org/10.1063/1.1376662. [50] J.M. Vila-Fungueiriño, C.T. Bui, B. Rivas-Murias, E. Winkler, J. Milano, J. Santiso, F. Rivadulla, Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of La0.7Sr0.3MnO3, J. Phys. D. Appl. Phys. 49 (2016) 315001. https://doi.org/10.1088/0022-3727/49/31/315001. [51] S. Mangin, D. Ravelosona, J.A. Katine, M.J. Carey, B.D. Terris, E.E. Fullerton, Current-induced magnetization reversal in nanopillars with perpendicular anisotropy, Nat. Mater. 5 (2006) 210–215. https://doi.org/10.1038/nmat1595. [52] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction, Nat. Mater. 9 (2010) 721–724. https://doi.org/10.1038/nmat2804. [53] I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Fast current-induced domain-wall motion controlled by the Rashba effect, Nat. Mater. 10 (2011) 419–423. https://doi.org/10.1038/nmat3020. [54] S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S.D. Beach, Current-driven dynamics of chiral ferromagnetic domain walls, Nat. Mater. 12 (2013) 611–616. https://doi.org/10.1038/nmat3675. [55] K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Chiral spin torque at magnetic domain walls, Nat. Nanotechnol. 8 (2013) 527–533. https://doi.org/10.1038/nnano.2013.102. [56] K.L. Wang, J.G. Alzate, P. Khalili Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond, J. Phys. D. Appl. Phys. 46 (2013) 074003. https://doi.org/10.1088/0022-3727/46/7/074003. [57] S.W. Jung, W. Kim, T.D. Lee, K.J. Lee, H.W. Lee, Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy, Appl. Phys. Lett. 92 (2008) 202508. https://doi.org/10.1063/1.2926664. [58] P.M. Shepley, A.W. Rushforth, M. Wang, G. Burnell, T.A. Moore, Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain, Sci. Rep. 5 (2015) 1–5. https://doi.org/10.1038/srep07921. 59] K. Shahbazi, A. Hrabec, S. Moretti, M.B. Ward, T.A. Moore, V. Jeudy, E. Martinez, C.H. Marrows, Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt/Co/AuxPt1-x trilayers, Phys. Rev. B. 98 (2018) 214413. https://doi.org/10.1103/PHYSREVB.98.214413. [60] P. Géhanne, S. Rohart, A. Thiaville, V. Jeudy, Strength and length scale of the interaction between domain walls and pinning disorder in thin ferromagnetic films, Phys. Rev. Res. 2 (2020) 043134. https://doi.org/10.1103/PHYSREVRESEARCH.2.043134. [61] K. Yakushiji, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama, S. Yuasa, K. Ando, Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions, Appl. Phys. Lett. 97 (2010) 232508. https://doi.org/10.1063/1.3524230. [62] T.Y. Lee, D.S. Son, S.H. Lim, S.R. Lee, High post-annealing stability in [Pt/Co] multilayers, J. Appl. Phys. 113 (2013) 216102. https://doi.org/10.1063/1.4809130. [63] T.Y. Lee, Y.C. Won, D.S. Son, S.H. Lim, S.R. Lee, Effects of Co layer thickness and annealing temperature on the magnetic properties of inverted [Pt/Co] multilayers, J. Appl. Phys. 114 (2013) 173909. https://doi.org/10.1063/1.4829024. [64] K. Kyuno, J.G. Ha, R. Yamamoto, S. Asano, Theoretical study on the strain dependence of the magnetic anisotropy of X/Co(X=Pt, Cu, Ag, and Au) metallic multilayers, J. Appl. Phys. 79 (1998) 7084. https://doi.org/10.1063/1.361476. [65] S. Bandiera, R.C. Sousa, B. Rodmacq, B. Dieny, Enhancement of perpendicular magnetic anisotropy through reduction of Co-Pt interdiffusion in (Co/Pt) multilayers, Appl. Phys. Lett. 100 (2012) 142410. https://doi.org/10.1063/1.3701585. [66] F.J.A. den Broeder, W. Hoving, P.J.H. Bloemen, Magnetic anisotropy of multilayers, J. Magn. Magn. Mater. 93 (1991) 562–570. https://doi.org/10.1016/0304-8853(91)90404-X. [67] M.T. Johnson, P.J.H. Bloemen, F.J.A. Den Broeder, J.J. De Vries, Magnetic anisotropy in metallic multilayers, Reports Prog. Phys. 59 (1996) 1409. https://doi.org/10.1088/0034-4885/59/11/002. [68] T.Y. Lee, Y.C. Won, D.S. Son, S.H. Lim, S.R. Lee, Strength of Perpendicular Magnetic Anisotropy at Bottom and Top Interfaces in [Pt/Co/Pt] Trilayers, IEEE Magn. Lett. 5 (2014). https://doi.org/10.1109/LMAG.2014.2321350. [69] Y.C. Won, S.H. Lim, Interfacial properties of [Pt/Co/Pt] trilayers probed through magnetometry, Sci. Reports 2021 111. 11 (2021) 1–7. https://doi.org/10.1038/s41598-021-90239-x. [70] T. Ueno, J. Sinha, N. Inami, Y. Takeichi, S. Mitani, K. Ono, M. Hayashi, Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy, Sci. Rep. 5 (2015) 1–7. https://doi.org/10.1038/srep14858. [71] P.F. Carcia, Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin‐film layered structures, J. Appl. Phys. 63 (1998) 5066. https://doi.org/10.1063/1.340404. [72] D. Weller, R.F.C. Farrow, R.F. Marks, G.R. Harp, H. Notarys, G. Gorman, Interface and Volume Anisotropy of Mbe-Grown Co/Pt (111), (110) and (001) and Sputtered Co/Pt Multilayers, MRS Online Proc. Libr. 313 (1993) 791–797. https://doi.org/10.1557/PROC-313-791. [73] N.W.E. McGee, M.T. Johnson, J.J. De Vries, J. Aan De Stegge, Localized Kerr study of the magnetic properties of an ultrathin epitaxial Co wedge grown on Pt(111), J. Appl. Phys. 73 (1998) 3418. https://doi.org/10.1063/1.352943. [74] J.W. Lee, J.R. Jeong, S.C. Shin, J. Kim, S.K. Kim, Spin-reorientation transitions in ultrathin Co films on Pt(111) and Pd(111) single-crystal substrates, Phys. Rev. B. 66 (2002) 172409. https://doi.org/10.1103/PhysRevB.66.172409. [75] V.M. Parakkat, K.R. Ganesh, P.S. Anil Kumar, Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films, AIP Adv. 6 (2016) 056118. https://doi.org/10.1063/1.4944343. [76] K.W. Moon, J.C. Lee, S.G. Je, K.S. Lee, K.H. Shin, S.B. Choe, Long-range domain wall tension in Pt/Co/Pt films with perpendicular magnetic anisotropy, Appl. Phys. Express. 4 (2011) 043004. https://doi.org/10.1143/APEX.4.043004. [77] D.H. Kim, S.C. Yoo, D.Y. Kim, K.W. Moon, S.G. Je, C.G. Cho, B.C. Min, S.B. Choe, Maximizing domain-wall speed via magnetic anisotropy adjustment in Pt/Co/Pt films, Appl. Phys. Lett. 104 (2014) 142410. https://doi.org/10.1063/1.4871091. [78] M. Kisielewski, A. Maziewski, M. Tekielak, J. Ferré, S. Lemerle, V. Mathet, C. Chappert, Magnetic anisotropy and magnetization reversal processes in Pt/Co/Pt films, J. Magn. Magn. Mater. 260 (2003) 231–243. https://doi.org/10.1016/S0304-8853(02)01333-1. [79] V. Mathet, T. Devolder, C. Chappert, J. Ferré, S. Lemerle, L. Belliard, G. Guentherodt, Morphology and magnetic properties of Pt/Co/Pt sandwiches grown by argon sputter deposition, J. Magn. Magn. Mater. 260 (2003) 295–304. [80] A. Zarefy, L. Lechevallier, R. Lardé, H. Chiron, J.M. Le Breton, V. Baltz, B. Rodmacq, B. Dieny, Influence of Co layer thickness on the structural and magnetic properties of multilayers, J. Phys. D. Appl. Phys. 43 (2010) 215004. https://doi.org/10.1088/0022-3727/43/21/215004. [81] S. Bandiera, R.R. Sousa, B.B. Rodmacq, B. Dieny, Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers, IEEE Magn. Lett. 2 (2011). https://doi.org/10.1109/LMAG.2011.2174032. [82] D. Jordán Ringgold, Estudio de la rugosidad de paredes de dominio en GdFeCo, Master Thesis, Instituto Balseiro -UNCuyo, Argentina, 2018. [83] S.A. D’yachenko, V.F. Kovalenko, B.N. Tanygin, A. V. Tychko, Influence of the demagnetizing field on the structure of a Bloch wall in a (001) plate of a magnetically ordered cubic crystal, Phys. Solid State. 50 (2011) 32–42. https://doi.org/10.1134/S1063783408010083. [84] B.A. Lilley, LXXI. Energies and widths of domain boundaries in ferromagnetics, London, Edinburgh, Dublin Philos. Mag. J. Sci. 41 (2010) 792–813. https://doi.org/10.1080/14786445008561011. [85] A. Hubert, R. Schäfer, Domain Theory, Magn. Domains. (2008) 99–335. https://doi.org/10.1007/978-3-540-85054-0_3. [86] R. Lavrijsen, D.M.F. Hartmann, A. Van Den Brink, Y. Yin, B. Barcones, R.A. Duine, M.A. Verheijen, H.J.M. Swagten, B. Koopmans, Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: Effect of interface engineering, Phys. Rev. B - Condens. Matter Mater. Phys. 91 (2015) 104414. https://doi.org/10.1103/PhysRevB.91.104414. [87] A. Kobs, S. Heße, W. Kreuzpaintner, G. Winkler, D. Lott, P. Weinberger, A. Schreyer, H.P. Oepen, Anisotropic interface magnetoresistance in Pt/Co/Pt sandwiches, Phys. Rev. Lett. 106 (2011) 217207. https://doi.org/10.1103/PHYSREVLETT.106.217207. [88] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, P. Le Doussal, Domain Wall Creep in an Ising Ultrathin Magnetic Film, Phys. Rev. Lett. 80 (1998) 849–852. https://doi.org/10.1103/PhysRevLett.80.849. [89] L. San Emeterio Alvarez, K.Y. Wang, C.H. Marrows, Field-driven creep motion of a composite domain wall in a Pt/Co/Pt/Co/Pt multilayer wire, J. Magn. Magn. Mater. 322 (2010) 2529–2532. https://doi.org/10.1016/J.JMMM.2010.03.013. [90] J.H. Franken, M. Hoeijmakers, R. Lavrijsen, H.J.M. Swagten, Domain-wall pinning by local control of anisotropy in Pt/Co/Pt strips, J. Phys. Condens. Matter. 24 (2011) 024216. https://doi.org/10.1088/0953-8984/24/2/024216. [91] J.P. Tetienne, T. Hingant, L.J. Martínez, S. Rohart, A. Thiaville, L.H. Diez, K. Garcia, J.P. Adam, J. V. Kim, J.F. Roch, I.M. Miron, G. Gaudin, L. Vila, B. Ocker, D. Ravelosona, V. Jacques, The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry, Nat. Commun. 6 (2015) 1–6. https://doi.org/10.1038/ncomms7733. [92] G. Chen, S.P. Kang, C. Ophus, A.T. N’Diaye, H.Y. Kwon, R.T. Qiu, C. Won, K. Liu, Y. Wu, A.K. Schmid, Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets, Nat. Commun. 8 (2017). https://doi.org/10.1038/NCOMMS15302. [93] K.J.A. Franke, C. Ophus, A.K. Schmid, C.H. Marrows, Switching between Magnetic Bloch and Néel Domain Walls with Anisotropy Modulations, Phys. Rev. Lett. 127 (2021). https://doi.org/10.1103/PHYSREVLETT.127.127203. [94] A.W.J.J. Wells, P.M. Shepley, C.H. Marrows, T.A. Moore, Effect of interfacial intermixing on the Dzyaloshinskii-Moriya interaction in Pt/Co/Pt, Phys. Rev. B. 95 (2017) 054428. https://doi.org/10.1103/PhysRevB.95.054428. [95] A.P. Malozemoff, J.C. Slonczewski, Magnetic domain walls in bubble materials, Academic Press, 1979. [96] J.-C. Lee, K.-J. Kim, J. Ryu, K.-W. Moon, S.-J. Yun, G.-H. Gim, K.-S. Lee, K.-H. Shin, H.-W. Lee, S.-B. Choe, Universality Classes of Magnetic Domain Wall Motion, Phys. Rev. Lett. 107 (2011) 067201. https://doi.org/10.1103/PhysRevLett.107.067201. [97] A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511599798. [98] J.M. López, M.A. Rodríguez, R. Cuerno, Superroughening versus intrinsic anomalous scaling of surfaces, Phys. Rev. E. 56 (1997) 3993. https://doi.org/10.1103/PhysRevE.56.3993. [99] L.J. Albornoz, P.C. Guruciaga, V. Jeudy, J. Curiale, S. Bustingorry, Domain-wall roughness in GdFeCo thin films: Crossover length scales and roughness exponents, Phys. Rev. B. 104 (2021) 024203. https://doi.org/10.1103/PhysRevB.104.024203. [100] M.J. Cortés Burgos, P.C. Guruciaga, D. Jordán, C.P. Quinteros, E. Agoritsas, J. Curiale, M. Granada, S. Bustingorry, Field-dependent roughness of moving domain walls in a Pt/Co/Pt magnetic thin film, Phys. Rev. B. 104 (2021) 144202. https://doi.org/10.1103/PHYSREVB.104.144202. [101] J. Guyonnet, E. Agoritsas, P. Paruch, S. Bustingorry, Statistics of roughness for fluctuating interfaces: A survey of different scaling analyses, (2019). https://doi.org/10.48550/arxiv.1904.11726. [102] S. Bustingorry, J. Guyonnet, P. Paruch, E. Agoritsas, A numerical study of the statistics of roughness parameters for fluctuating interfaces, J. Phys. Condens. Matter. 33 (2021) 345001. https://doi.org/10.1088/1361-648X/ac0b20. [103] A.B. Kolton, A. Rosso, T. Giamarchi, W. Krauth, Creep dynamics of elastic manifolds via exact transition pathways, Phys. Rev. B. 79 (2009) 184207. https://doi.org/10.1103/PhysRevB.79.184207. [104] A.B. Kolton, A. Rosso, T. Giamarchi, W. Krauth, Dynamics below the Depinning Threshold in Disordered Elastic Systems, Phys. Rev. Lett. 97 (2006) 057001. https://doi.org/10.1103/PhysRevLett.97.057001. [105] E.E. Ferrero, S. Bustingorry, A.B. Kolton, A. Rosso, Numerical approaches on driven elastic interfaces in random media, Comptes Rendus Phys. 14 (2013) 641–650. https://doi.org/10.1016/J.CRHY.2013.08.002. [106] E.E. Ferrero, S. Bustingorry, A.B. Kolton, Nonsteady relaxation and critical exponents at the depinning transition, Phys. Rev. E. 87 (2013) 032122. https://doi.org/10.1103/PhysRevE.87.032122. [107] A. Rosso, W. Krauth, Origin of the Roughness Exponent in Elastic Strings at the Depinning Threshold, Phys. Rev. Lett. 87 (2001) 187002. https://doi.org/10.1103/PhysRevLett.87.187002. [108] A. Rosso, A.K. Hartmann, W. Krauth, Depinning of elastic manifolds, Phys. Rev. E. 67 (2003) 021602. https://doi.org/10.1103/PhysRevE.67.021602. [109] M. Kardar, G. Parisi, Y.C. Zhang, Dynamic Scaling of Growing Interfaces, Phys. Rev. Lett. 56 (1986) 889. https://doi.org/10.1103/PhysRevLett.56.889. [110] L.J. Albornoz, E.E. Ferrero, A.B. Kolton, V. Jeudy, S. Bustingorry, J. Curiale, Universal critical exponents of the magnetic domain wall depinning transition, Phys. Rev. B. 104 (2021) L060404. https://doi.org/10.1103/PHYSREVB.104.L060404. [111] E.E. Ferrero, L. Foini, T. Giamarchi, A.B. Kolton, A. Rosso, Creep Motion of Elastic Interfaces Driven in a Disordered Landscape, Annu. Rev. Condens. Matter Phys. 12 (2021) 111–134. https://doi.org/10.1146/ANNUREV-CONMATPHYS-031119-050725. [112] S. Bustingorry, A.B. Kolton, T. Giamarchi, Random-manifold to random-periodic depinning of an elastic interface, Phys. Rev. B. 82 (2010) 094202. https://doi.org/10.1103/PhysRevB.82.094202. [113] C.P. Quinteros, S. Bustingorry, J. Curiale, M. Granada, Correlation between domain wall creep parameters of thin ferromagnetic films, Appl. Phys. Lett. 112 (2018) 262402. https://doi.org/10.1063/1.5026702. [114] V. Jeudy, R. Díaz Pardo, W. Savero Torres, S. Bustingorry, A.B. Kolton, Pinning of domain walls in thin ferromagnetic films, Phys. Rev. B. 98 (2018) 054406. https://doi.org/10.1103/PhysRevB.98.054406. [115] M. Kardar, Roughening by impurities at finite temperatures, Phys. Rev. Lett. 55 (1985) 2923. https://doi.org/10.1103/PhysRevLett.55.2923. [116] P. Chauve, T. Giamarchi, P. Le Doussal, Creep and depinning in disordered media, Phys. Rev. B - Condens. Matter Mater. Phys. 62 (2000) 6241–6267. https://doi.org/10.1103/PhysRevB.62.6241. [117] V. Jeudy, A. Mougin, S. Bustingorry, W. Savero Torres, J. Gorchon, A.B. Kolton, A. Lemaître, J.P. Jamet, Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films, Phys. Rev. Lett. 117 (2016) 057201. https://doi.org/10.1103/PhysRevLett.117.057201. [118] T. Nattermann, Scaling approach to pinning: Charge density waves and giant flux creep in superconductors, Phys. Rev. Lett. 64 (1990) 2454–2457. https://doi.org/10.1103/PhysRevLett.64.2454. [119] M. Dawber, Sputtering techniques for epitaxial growth of complex oxides, Ep. Growth Complex Met. Oxides. (2015) 31–45. https://doi.org/10.1016/B978-1-78242-245-7.00002-6. [120] J.E. Greene, Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 (2017) 05C204. https://doi.org/10.1116/1.4998940. [121] J.T. Gudmundsson, Physics and technology of magnetron sputtering discharges, Plasma Sources Sci. Technol. 29 (2020) 113001. https://doi.org/10.1088/1361-6595/ABB7BD. [122] W.D. Gill, E. Kay, Efficient Low Pressure Sputtering in a Large Inverted Magnetron Suitable for Film Synthesis, Rev. Sci. Instrum. 36 (2004) 277. https://doi.org/10.1063/1.1719553. [123] K. Wasa, S. Hayakawa, Low Pressure Sputtering System of the Magnetron Type, Rev. Sci. Instrum. 40 (2003) 693. https://doi.org/10.1063/1.1684039. [124] O. Nakamura, E.E. Fullerton, J. Guimpel, I.K. Schuller, High Tc thin films with roughness smaller than one unit cell, Appl. Phys. Lett. 60 (1992) 120–122. https://doi.org/10.1063/1.107343. [125] H. Navarro, Fabricación y caracterización estructural y electrónica de interfaces basadas en óxidos multifuncionales, PhD Thesis, Instituto Balseiro - UNCuyo, Argentina, 2019. [126] S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 21 (2003) S74. https://doi.org/10.1116/1.1600450. [127] E.S. Ameh, A review of basic crystallography and x-ray diffraction applications, Int. J. Adv. Manuf. Technol. 105 (2019) 3289–3302. https://doi.org/10.1007/S00170-019-04508-1. [128] M. Kaliva, M. Vamvakaki, Nanomaterials characterization, Polym. Sci. Nanotechnol. Fundam. Appl. (2020) 401–433. https://doi.org/10.1016/B978-0-12-816806-6.00017-0. [129] P.H. Salame, V.B. Pawade, B.A. Bhanvase, Characterization Tools and Techniques for Nanomaterials, Nanomater. Green Energy. (2018) 83–111. https://doi.org/10.1016/B978-0-12-813731-4.00003-5. [130] D.N. Gurgew, D.M. Broadway, M. Gubarev, B.D. Ramsey, D.A. Gregory, X-ray reflectometer for single layer and multilayer coating characterization at 8 keV: An interlaboratory study, Rev. Sci. Instrum. 87 (2016) 104501. https://doi.org/10.1063/1.4965978. [131] W.C. Johnson, B. Relja, L. Koppel, B. Rebat, S. Gopinath’, Semiconductor material applications of rapid x-ray reflectometry (XRR), AIP Conf. Proc. 550 (2001) 461. https://doi.org/10.1063/1.1354442. [132] E. Chason, T.M. Mayer, Thin film and surface characterization by specular X-ray reflectivity, Crit. Rev. Solid State Mater. Sci. 22 (2006) 1–67. https://doi.org/10.1080/10408439708241258. [133] U. Pietsch, V. Holý, T. Baumbach, Determination of Layer Thicknesses of Single Layers and Multilayers, (2004) 143–178. https://doi.org/10.1007/978-1-4757-4050-9_8. [134] C.P. Quinteros, M.J. Cortés Burgos, M. Granada, J. Guimpel, Informe técnico INT-INN_03RM-001: Procedimiento para la medición de reflectometrías de rayos X empleando el difractómetro Empyrean, 2017. https://www.conicet.gov.ar/new_scp/detalle.php?keywords=mara%2Bgranada&id=23535&inf_tecnico=yes&detalles=yes&inf_tecnico_id=6889175. [135] A.C. Anderson, M.E. Malinowski, P. Rev, E.J. Cotts, D.M. Miliotis, G.A. Northrop, G.A. Kneezel, A. V Granato, P.B. Bev, G. Binning, H. Rohrer, C. Gerber, E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett. 49 (1982) 57. https://doi.org/10.1103/PhysRevLett.49.57. [136] N. Ashcroft, N. Mermim, Solid State Physics, Harcourt Asia, 2001. https://www.academia.edu/10556434/Solid_State_Physics_Ashcroft_Mermin. [137] B. Bushan, Springer Handbook of Nanotechnology, in: B. Bhushan (Ed.), Springer Handb. Nanotechnol., Springer Berlin Heidelberg, Berlin, Heidelberg, 2017: pp. 725–768. https://doi.org/10.1007/978-3-662-54357-3. [138] M.R. Ward, Electrical Engineering Science, McGraw-Hill BookmCo., New York, 1971. [139] H. Gunther Rudenberg, P.G. Rudenberg, Origin and Background of the Invention of the Electron Microscope: Commentary and Expanded Notes on Memoir of Reinhold Rüdenberg, Adv. Imaging Electron Phys. 160 (2010) 207–286. https://doi.org/10.1016/S1076-5670(10)60006-7. [140] R.F. Egerton, Physical principles of electron microscopy: An introduction to TEM, SEM, and AEM, 1st ed., Springer US, New York, 2005. https://doi.org/10.1007/B136495. [141] R.L. Fagaly, Superconducting quantum interference device instruments and applications, Rev. Sci. Instrum. 77 (2006) 101101. https://doi.org/10.1063/1.2354545. [142] M. Sawicki, W. Stefanowicz, A. Ney, Sensitive SQUID magnetometry for studying nanomagnetism, Semicond. Sci. Technol. 26 (2011) 064006. https://doi.org/10.1088/0268-1242/26/6/064006. [143] S. Foner, Versatile and Sensitive Vibrating‐Sample Magnetometer, Rev. Sci. Instrum. 30 (2004) 548. https://doi.org/10.1063/1.1716679. [144] V. Lopez-Dominguez, A. Quesada, J.C. Guzmán-Mínguez, L. Moreno, M. Lere, J. Spottorno, F. Giacomone, J.F. Fernández, A. Hernando, M.A. García, A simple vibrating sample magnetometer for macroscopic samples, Rev. Sci. Instrum. 89 (2018) 034707. https://doi.org/10.1063/1.5017708. [145] C. Kittel, On the Theory of Ferromagnetic Resonance Absorption, Phys. Rev. 73 (1948) 155. https://doi.org/10.1103/PhysRev.73.155. [146] S.M. Bhagat, S. Haraldson, O. Beckman, Ferromagnetic resonance in amorphous systems: Dependence of the relaxation parameter on temperature (magnetization), J. Phys. Chem. Solids. 38 (1977) 593–599. https://doi.org/10.1016/0022-3697(77)90225-6. [147] O. Yalcin, Ferromagnetic Resonance - Theory and Applications, IntechOpen , 2013. https://doi.org/10.5772/50583. [148] P. Weinberger, John Kerr and his effects found in 1877 and 1878, Philos. Mag. Lett. 88 (2008) 897–907. https://doi.org/10.1080/09500830802526604. [149] G.W. Fernando, Probing Layered Systems: A Brief Guide to Experimental Techniques, Handb. Met. Phys. 4 (2008) 111–130. https://doi.org/10.1016/S1570-002X(07)00005-5. [150] B. Zhang, Optical Properties of Nanomaterials, Phys. Fundam. Nanomater. (2018) 291–335. https://doi.org/10.1016/B978-0-12-410417-4.00008-3. [151] G.C. Hadjipanayis, G.A. Prinz, Science and Technology of Nanostructured Magnetic Materials, Springer US, Boston, MA, 1991. https://doi.org/10.1007/978-1-4899-2590-9. [152] J. Hamrle, J. Ferré, M. Nývlt, In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers, Phys. Rev. B. 66 (2002) 224423. https://doi.org/10.1103/PhysRevB.66.224423. [153] S. Pathak, M. Sharma, Polar magneto-optical Kerr effect instrument for 1-dimensional magnetic nanostructures, J. Appl. Phys. 115 (2014) 043906. https://doi.org/10.1063/1.4862908. [154] R. Wayne, Light and video microscopy, Academic Press, 2019. [155] P.J. Metaxas, J.P. Jamet, A. Mougin, M. Cormier, J. Ferré, V. Baltz, B. Rodmacq, B. Dieny, R.L. Stamps, Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett. 99 (2007) 217208. https://doi.org/10.1103/PhysRevLett.99.217208. [156] J. Gorchon, S. Bustingorry, J. Ferré, V. Jeudy, A.B. Kolton, T. Giamarchi, Pinning-dependent field-driven domain wall dynamics and thermal scaling in an ultrathin Pt/Co/Pt magnetic film, Phys. Rev. Lett. 113 (2014) 027205. https://doi.org/10.1103/PhysRevLett.113.027205.[157] V. Repain, M. Bauer, J.P. Jamet, J. Ferré, A. Mougin, C. Chappert, H. Bernas, Creep motion of a magnetic wall: Avalanche size divergence, Europhys. Lett. 68 (2004) 460–466. https://doi.org/10.1209/epl/i2004-10213-7. [158] F. Cayssol, D. Ravelosona, C. Chappert, J. Ferré, J.P. Jamet, Domain Wall Creep in Magnetic Wires, Phys. Rev. Lett. 92 (2004) 107202. https://doi.org/10.1103/PhysRevLett.92.107202. [159] M. Rudolph, A. Revel, D. Lundin, Physics and technology of magnetron sputtering discharges, Plasma Sources Sci. Technol. 29 (2020) 113001. https://doi.org/10.1088/1361-6595/abb7bd. [160] PANalytical, X’PERT REFLECTIVITY, Quick Start Guide, Third Edit (2007). https://web.stanford.edu/group/glam/xlab/PhilipsLit/Reflectivity QSG.pdf. [161] L. Tauxe, H.N. Bertram, C. Seberino, Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite, Geochemistry, Geophys. Geosystems. 3 (2002) 1–22. https://doi.org/10.1029/2001GC000241. [162] T. Chen, G.B. Charlan, High coercivity and high hysteresis loop squareness of sputtered Co‐Re thin film, J. Appl. Phys. 50 (2008) 4285. https://doi.org/10.1063/1.326463. [163] C.P. Quinteros, M.J. Cortés Burgos, L.J. Albornoz, J.E. G, P. Granell, F. Golmar, M. LujánLuján Ibarra, S. Bustingorry, J. Curiale, M. Granada, Impact of growth conditions on the domain nucleation and domain wall propagation in Pt/Co/Pt stacks, J. Phys. D Appl. Phys. J. Phys. D Appl. Phys. 54 (2020) 8. https://doi.org/10.1088/1361-6463/abb849. [164] M. Charilaou, C. Bordel, P.E. Berche, B.B. Maranville, P. Fischer, F. Hellman, Magnetic properties of ultrathin discontinuous Co/Pt multilayers: Comparison with short-range ordered and isotropic CoPt3 films, Phys. Rev. B. 93 (2016) 224408. https://doi.org/10.1103/PhysRevB.93.224408. [165] V. Holý, U. Pietsch, T. Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers, Springer Berlin Heidelberg, 1999. https://doi.org/10.1007/bfb0109385. [166] X. Su, T. Jin, Y. Wang, Y. Ren, L. Wang, J. Bai, J. Cao, Evolution of magnetic properties and domain structures in Co/Ni multilayers, Jpn. J. Appl. Phys. 55 (2016) 110306. https://doi.org/10.7567/JJAP.55.110306. [167] J. Kanak, M. Czapkiewicz, T. Stobiecki, M. Kachel, I. Sveklo, A. Maziewski, S. Van Dijken, Influence of buffer layers on the texture and magnetic properties of Co/Pt multilayers with perpendicular anisotropy, Phys. Status Solidi Appl. Mater. Sci. 204 (2007) 3950–3953. https://doi.org/10.1002/pssa.200777104. [168] S. Emori, G.S.D. Beach, Optimization of out-of-plane magnetized Co/Pt multilayers with resistive buffer layers, J. Appl. Phys. 110 (2011) 033919. https://doi.org/10.1063/1.3622613. [169] K.W. Park, Y.W. Oh, D.H. Kim, J.Y. Kim, B.G. Park, Effect of sputtering pressure on stacking fault density and perpendicular magnetic anisotropy of CoPt alloys, J. Phys. D. Appl. Phys. 49 (2016) 345002. https://doi.org/10.1088/0022-3727/49/34/345002. [170] P. Domenichini, C.P. Quinteros, M. Granada, S. Collin, J.-M. George, J. Curiale, S. Bustingorry, M.G. Capeluto, G. Pasquini, Transient magnetic-domain-wall ac dynamics by means of magneto-optical Kerr effect microscopy, Phys. Rev. B. 99 (2019) 214401. https://doi.org/10.1103/PhysRevB.99.214401. [171] P. Domenichini, F. Paris, M.G. Capeluto, M. Granada, J.M. George, G. Pasquini, A.B. Kolton, Curvature-driven ac-assisted creep dynamics of magnetic domain walls, Phys. Rev. B. 103 (2021) L220409. https://doi.org/10.1103/PHYSREVB.103.L22040. [172] D. Jordán, L.J. Albornoz, J. Gorchon, C.H. Lambert, S. Salahuddin, J. Bokor, J. Curiale, S. Bustingorry, Statistically meaningful measure of domain-wall roughness in magnetic thin films, Phys. Rev. B. 101 (2020) 184431. https://doi.org/10.1103/PhysRevB.101.184431. [173] T. Shibauchi, L. Krusin-Elbaum, V.M. Vinokur, B. Argyle, D. Weller, B.D. Terris, Deroughening of a 1D Domain Wall in an Ultrathin Magnetic Film by a Correlated Defect, Phys. Rev. Lett. 87 (2001) 267201. https://doi.org/10.1103/PhysRevLett.87.267201. [174] M. Huth, P. Haibach, H. Adrian, Scaling properties of magnetic domain walls in Pt/Co/Pt trilayers on MgO (1 1 1), J. Magn. Magn. Mater. 240 (2002) 311–313. https://doi.org/10.1016/S0304-8853(01)00788-0. [175] K.W. Moon, D.H. Kim, S.C. Yoo, C.G. Cho, S. Hwang, B. Kahng, B.C. Min, K.H. Shin, S.B. Choe, Distinct universality classes of domain wall roughness in two-dimensional Pt/Co/Pt films, Phys. Rev. Lett. 110 (2013) 107203. https://doi.org/10.1103/PHYSREVLETT.110.107203. [176] W. Savero Torres, R. Díaz Pardo, S. Bustingorry, A.B. Kolton, A. Lemaître, V. Jeudy, Universal dimensional crossover of domain wall dynamics in ferromagnetic films, Phys. Rev. B. 99 (2019) 201201. https://doi.org/10.1103/PhysRevB.99.201201. [177] K.S. Lee, C.W. Lee, Y.J. Cho, S. Seo, D.H. Kim, S.B. Choe, Roughness exponent of domain interface in CoFe/Pt multilayer films, IEEE Trans. Magn. 45 (2009) 2548–2550. https://doi.org/10.1109/TMAG.2009.2018877. [178] R. Díaz Pardo, N. Moisan, L.J. Albornoz, A. Lemaître, J. Curiale, V. Jeudy, Common universal behavior of magnetic domain walls driven by spin-polarized electrical current and magnetic field, Phys. Rev. B. 100 (2019) 184420. https://doi.org/10.1103/PhysRevB.100.184420. [179] E. Agoritsas, V. Lecomte, T. Giamarchi, Temperature-induced crossovers in the static roughness of a one-dimensional interface, Phys. Rev. B. 82 (2010) 184207. https://doi.org/10.1103/PhysRevB.82.184207. [180] E. Agoritsas, V. Lecomte, T. Giamarchi, Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation, Phys. Rev. E. 87 (2013) 042406. https://doi.org/10.1103/PhysRevE.87.042406. [181] N.K. Das, J. Chakrabartty, S.F.U. Farhad, A.K. Sen Gupta, E.M.K. Ikball Ahamed, K.S. Rahman, A. Wafi, A.A. Alkahtani, M.A. Matin, N. Amin, Effect of substrate temperature on the properties of RF sputtered CdS thin films for solar cell applications, Results Phys. 17 (2020) 103132. https://doi.org/10.1016/J.RINP.2020.103132. [182] S.I. Khartsev, P. Johnsson, A.M. Grishin, Colossal magnetoresistance in ultrathin epitaxial La0.75Sr0.25MnO3 films, J. Appl. Phys. 87 (2000) 2394. https://doi.org/10.1063/1.372191. [183] C. Wang, K.J. Jin, L. Gu, H. Bin Lu, S.M. Li, W.J. Zhou, R.Q. Zhao, H.Z. Guo, M. He, G.Z. Yang, Magnetoelectric transport and quantum interference effect in ultrathin manganite films, Appl. Phys. Lett. 104 (2014) 162405. https://doi.org/10.1063/1.4873337. [184] J.H. Liao, T.B. Wu, S. Te Ho, Y.T. Chen, S.U. Jen, Y. Der Yao, Near-interface magnetotransport in La0.75Sr0.25MnO3 epitaxial films on SrTiO3 substrate, J. Phys. D. Appl. Phys. 40 (2007) 4586. https://doi.org/10.1088/0022-3727/40/15/033. [185] H.L. Lu, L. Zhang, X.M. Ma, G.J. Lian, J.B. Yang, D.P. Yu, Z.M. Liao, Photoelectrical properties of insulating LaAlO3–SrTiO3 interfaces, Nanoscale. 6 (2013) 736–740. https://doi.org/10.1039/C3NR05162E. [186] J.L. Wang, F. Gaillard, A. Pancotti, B. Gautier, G. Niu, B. Vilquin, V. Pillard, G.L.M.P. Rodrigues, N. Barrett, Chemistry and atomic distortion at the surface of an epitaxial BaTiO3 thin film after dissociative adsorption of water, J. Phys. Chem. C. 116 (2012) 21802–21809. https://doi.org/10.1021/jp305826e. [187] K. Wang, M.H. Tang, Y. Xiong, G. Li, Y.G. Xiao, W.L. Zhang, Z.P. Wang, Z. Li, J. He, Epitaxial growth and magnetic/transport properties of La0.7Sr0.3MnO3 thin films grown on SrTiO3 with optimized growth conditions, RSC Adv. 7 (2017) 31327–31332. https://doi.org/10.1039/C7RA04356B. [188] B. Cui, C. Song, F. Li, G.Y. Wang, H.J. Mao, J.J. Peng, F. Zeng, F. Pan, Tuning the entanglement between orbital reconstruction and charge transfer at a film surface, Sci. Rep. 4 (2014) 1–8. https://doi.org/10.1038/srep04206. [189] S. Brivio, M. Cantoni, D. Petti, A. Cattoni, R. Bertacco, M. Finazzi, F. Ciccacci, A. Sidorenko, G. Allodi, M. Ghidini, R. de Renzi, Decrease of the Curie temperature in La0.67Sr0.33MnO3 thin films induced by Au capping, Mater. Sci. Eng. B. 144 (2007) 93–96. https://doi.org/10.1016/J.MSEB.2007.07.084. [190] R. Nori, S.N. Kale, U. Ganguly, N.R.C. Raju, D.S. Sutar, R. Pinto, V.R. Rao, Morphology and Curie temperature engineering in crystalline La0.7Sr0.3MnO3 films on Si by pulsed laser deposition, J. Appl. Phys. 115 (2014) 033518. https://doi.org/10.1063/1.4862909.
Materias:Ingeniería > Ciencia de los materiales
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:1095
Depositado Por:Tamara Cárcamo
Depositado En:17 Aug 2022 15:30
Última Modificación:17 Aug 2022 15:30

Personal del repositorio solamente: página de control del documento