Dinámica de polaritones en microcavidades ópticas / Dynamics of polaritons in optical microcavities

Mangussi, Franco (2022) Dinámica de polaritones en microcavidades ópticas / Dynamics of polaritons in optical microcavities. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
22Mb

Resumen en español

Los polaritones excitónicos de microcavidad son cuasipart´ıculas h´ıbridas parte luz - parte materia que emergen del acoplamiento fuerte entre excitones de pozos cuánticos y fotones que se encuentran confinados en una microcavidad semiconductora. La componente excitónica de los polaritones dota a los mismos de la capacidad de interactuar. Las no linealidades originadas producto de dicha interacción Coulombiana están ligadas a un gran número de efectos fascinantes, como por ejemplo la capacidad de manipular, direccionar o conmutar flujos de polaritones, biestabilidades, etc. A su vez la parte excitónica hace susceptibles a los polaritones a campos eléctricos y magnéticos. Por otro lado, su componente fotónica les confiere una masa efectiva que puede ser cuatro ordenes de magnitud menor que la del excitón desnudo. Esto ultimo, junto al hecho que los polaritones obedecen una estadística bosónica, les ha dado un especial protagonismo a la hora de estudiar condensados de Bose-Einstein (BEC) fuera de equilibrio, en uno o más estados cuánticos, a temperaturas criogénicas e incluso a temperatura ambiente. Sumado a esto, la posibilidad de analizar los fotones que se escapan de la cavidad permite a su vez una magnífica accesibilidad experimental, pudiendo medir de forma directa la relación de dispersión y la distribución espacial de los polaritones, así como también obtener información sobre la fase relativa entre distintos puntos de la distribución de polaritones mediante experimentos de interferencia. Las técnicas modernas de crecimiento epitaxial permiten actualmente confinar polaritones no solo en cavidades planas, sino también en trampas 1D y 0D, micropilares, microdiscos e incluso redes de diversas geometrías. Esta versatilidad a la hora de diseñar los potenciales de confinamiento posibilita usar los sistemas de polaritones también como plataformas altamente versátiles para emular física de Hamiltonianos 1D Y 2D. Esto permite trasladar al contexto de la fotónica algunas de las propiedades de sistemas electrónicos usuales de materia condensada e incluso diseñar nuevos Hamiltonianos con novedosas propiedades topológicas y de trasporte para los polaritones. Por ultimo, otro de los campos donde los polaritones han tenido una especial relevancia en el ultimo tiempo es el de la optomecánica en microcavidades. Estos sistemas cuánticos híbridos aprovechan el hecho de que las mismas cavidades que soportan fotones (o polaritones) pueden ser diseñadas de tal forma que confinen fonones y que estas vibraciones se acoplen fuertemente a los modos fotónicos y excitónicos presentes en las mismas. En esta tesis abordaremos algunos aspectos de las líneas de investigación en polaritones de microcavidad mencionadas anteriormente, el trabajo puede dividirse en dos partes, en función de la temática y del grupo experimental con el cual se realizaron las colaboraciones. En la primera parte presentaremos una versión modificada de los modelos usuales tipo Gross-Pitaevskii que nos permite describir con mucho detalle una serie de mediciones realizadas en arreglos de microtrampas de diferentes tamaños. En estos experimentos, puede verse como las energías de los niveles polaritónicos confinados experimentan un corrimiento hacia valores mayores, tendiendo a acercarse a las energías de los modos fotónicos puros. A su vez, en algún punto de este corrimiento el sistema experimenta una transición a un estado de emisión coherente. Nuestros resultados sugieren que, para reproducir correctamente esta renormalización de la energía y los potenciales efectivos asociados de los estados poliatómicos en función de la potencia de excitación, es importante incluir en el modelo tanto los efectos de las interacciones entre polaritones como de la saturación del acoplamiento fuerte debida una reducción del desdoblamiento Rabi. Usaremos estos modelos a su vez para describir resultados novedosos sobre la generación de estados coherentes de dos fonones en sistemas de fluidos cuánticos de luz confinados en arreglos de microtrampas. Mostraremos que por encima de la potencia umbral donde el sistema de polaritones transiciona a un estado coherente, aparecen comportamientos físicos muy interesantes cuando la diferencia de energía entre el estado fundamental de la trampa que es directamente bombeada por el láser externo y el de alguna de sus vecinas coincide con la energía combinada de un par de los fonones confinados en la microestructura. En particular describiremos la aparición de una resonancia paramétrica optomecánica, que se ve acompañada de un locking de las energías de los estados fundamentales de la trampa bombeada y vecina y un fortalecimiento del tunneling entre dichos estados fundamentales, mediado por transiciones a través del estado excitado inducidas optomecánicamente. En la segunda parte de la tesis presentamos un modelo tight-binding minimal en la cantidad de parámetros libres, que nos permite describir con gran precisión la estructura de bandas y los estados de borde de redes y cintas de grafeno polaritónico construidas en base a micropilares completamente grabados en la estructura semiconductora. El modelo incluye como elementos fundamentales, la presencia de orbitales tipo s y p no ortogonales. Analizaremos en particular la influencia que tiene la no ortogonalidad, la interacción ´ınter-orbital y el efecto espín-órbita fotónico tanto en la dispersión de bulk como en los estados de borde.

Resumen en inglés

Microcavity exciton-polaritons are part-light-part-matter hybrid quasiparticles that emerge from the strong coupling between quantum well excitons and photons confined in a semiconductor microcavity. The excitonic component of polaritons gives them the ability to interact. The nonlinearities originating from this Coulomb interaction are then linked to a large number of fascinating effects, such as the ability to manipulate, direct or switch polariton flows, bistabilities, etc. In turn, the excitonic part of te polaritons makes them susceptible to electric and magnetic fields. On the other hand, their photonic component gives them an effective mass that can be four orders of magnitude less than that of the bare exciton. The latter, together with the fact that polaritons obey bosonic statistics, has given them a special role in the fied of study of Bose-Einstein condensates (BEC) out of equilibrium, in one or more quantum states, at cryogenic temperatures and even at room temperature. In addition to this, the possibility of analyzing the photons that escape from the cavity also allows excellent experimental accessibility, being able to directly measure the dispersion and the spatial distribution of the polaritons, as well as obtain information on the phase between different points of the polariton distribution by means of interference experiments. Modern epitaxial growth techniques currently allow polaritons to be confined not only in plane cavities, but also in 1D and 0D traps, micropillars, microdisks, and even lattices of various geometries. This versatility when designing confinement potentials makes it possible to use polariton systems also as highly versatile platforms to emulate 1D and 2D Hamiltonian physics. This allows transferring to the context of photonics some of the properties of usual condensed matter electronic systems and even designing new Hamiltonians with novel topological and transport properties for polaritons. Finally, another of the fields where polaritons have had a special relevance in recent times is that of optomechanics in microcavities. These hybrid quantum systems take advantage of the fact that the same cavities that support photons (or polaritons) can be designed in such a way that they confine phonons and that these vibrations strongly couple to the photonic and exciton modes present in them. In this thesis we will address some aspects of the lines of research in microcavity polaritons mentioned above, the work can be divided into two parts, depending on the subject and the experimental group with which the collaborations were carried out. In the first part we will present a modified version of the usual Gross-Pitaevskii type models that allows us to describe in great detail a series of measurements made in arrays of microtraps of different sizes. In these experiments, it can be seen how the energies of the confined polariton levels experience a shift towards higher values, tending to approach the energies of the pure photon modes. In turn, at some point in this shift, the system undergoes a transition to a coherent emission state. Our results suggest that, in order to correctly reproduce this renormalization of the energy and the associated effective potentials of the polariton states as a function of the excitation power, it is important to include in the model both the effects of the interactions between polaritons and the saturation of the strong-coupling due to a reduction in Rabi splitting. We will use these models in turn to describe novel results on the generation of two-phonon coherent states in quantum fluid of light systems confined in arrays of microtraps. We will show that above the threshold power where the polariton system transitions to a coherent state, very interesting physical behaviors appear when the difference in energy between the ground state of the trap that is directly pumped by the external laser and that of one of its neighbors coincides with the combined energy of a pair of phonons confined in the microstructure. In particular, we will describe the emergence of an optomechanical parametric resonance, which is accompanied by a locking of the energies of the ground states of the pumped and neighboring trap and a strengthening of the tunneling between said ground states, mediated by by optomechanically induced transitions through the excited state. In the second part of the thesis we present a minimal tight-binding model in the number of free parameters, which allows us to describe with great precision the band structure and the edge states of polaritonic graphene lattices and ribbons built using micropillars completely etched into the semiconductor structure. The model includes as fundamental elements, the presence of non-orthogonal s and p type orbitals. We will analyze in particular the influence of non-orthogonality, inter-orbital interaction and the photonic spin-orbit effect on both bulk dispersion and edge states.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Nonlinear optics; Optica nolineal; [Semiconductor microcavities; Microcavidades semiconductoras; Exciton-polariton; Light-matter interaction; Interacción luz-materia; Polariton lattices; Redes de polaritones]
Referencias:[1] Shirley, E., Terminello, L., Santoni, A. & Himpsel, F. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B. 51, 13614-13622 (1995) 91 [2] Kartashov, Y. & Skryabin, D. Bistable Topological Insulator with Exciton-Polaritons. Phys. Rev. Lett.. 119, 253904 (2017), https://link.aps.org/doi/10.1103/PhysRevLett.119.253904 86 [3] Kusudo, K., Kim, N., Loffler, A., Hofling, S., Forchel, A. & Yamamoto, Y. Stochastic formation of polariton condensates in two degenerate orbital states. Phys. Rev. B. 87, 214503 (2013,6), http://link.aps.org/doi/10.1103/PhysRevB.87.214503 86 [4] Gerard, J., Barrier, D., Marzin, J., Kuszelewicz, R., Manin, L., Costard, E., Thierry-Mieg, V. & Rivera, T. Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. Appl. Phys. Lett.. 69, 449-451 (1996) 83 [5] Sala, V., Solnyshkov, D., Carusotto, I., Jacqmin, T., Lemaıtre, A., Terc¸as, H., Nalitov, A., Abbarchi, M., Galopin, E., Sagnes, I., Bloch, J., Malpuech, G. & Amo, A. Spin-Orbit Coupling for Photons and Polaritons in Microstructures. Phys. Rev. X. 5, 011034 (2015,3), http://link.aps.org/doi/10.1103/PhysRevX.5.011034 81, 82 [6] Nalitov, A., Malpuech, G., Terc¸as, H. & Solnyshkov, D. Spin-Orbit Coupling and the Optical Spin Hall Effect in Photonic Graphene. Phys. Rev. Lett.. 114, 026803 (2015,1) 81, 82, 86 [7] Ozawa, T., Amo, A., Bloch, J. & Carusotto, I. Klein tunneling in driven-dissipative photonic graphene. Phys. Rev. A. 96, 013813 (2017,7) 86 [8] Li, C., Ye, F., Chen, X., Kartashov, Y., Ferrando, A., Torner, L. & Skryabin, D. Lieb polariton topological insulators. Phys. Rev. B. 97, 081103(R) (2018,2) 81 [9] Bleu, O., Solnyshkov, D. & Malpuech, G. Interacting quantum fluid in a polariton Chern insulator. Phys. Rev. B. 93, 085438 (2016,2), http://dx.doi.org/10.1103/PhysRevB.93.085438 86 [10] Amo, A. & Bloch, J. Exciton-polaritons in lattices: A non-linear photonic simulator. Comptes Rendus Physique. 17, 934-945 (2016,10) 2, 7 [11] Bleu, O., Solnyshkov, D. & Malpuech, G. Photonic Versus Electronic Quantum Anomalous Hall Effect. (2017,1), http://xxx.lanl.gov/pdf/1701.03680 86 [12] Baboux, F., Ge, L., Jacqmin, T., Biondi, M., Galopin, E., Lemaıtre, A., Gratiet, L., Sagnes, I., Schmidt, S., Tureci, H., Amo, A. & Bloch, J. Bosonic Condensation and Disorder-Induced Localization in a Flat Band. Phys. Rev. Lett.. 116 (2016,2) 76, 77, 81 [13] Nalitov, A., Solnyshkov, D. & Malpuech, G. Polariton Z Topological Insulator. Phys. Rev. Lett.. 114, 116401 (2015,3) 86 [14] Milicevic, M., Ozawa, T., Andreakou, P., Carusotto, I., Jacqmin, T., Galopin, E., Lema Itre, A., Gratiet, L., Sagnes, I., Bloch, J. & Amo, A. Edge states in polariton honeycomb lattices. 2D Materials. 2, 034012 (2015), http://stacks.iop.org/2053-1583/2/i=3/a=034012 2, 81, 86 [15] Gulevich, D., Yudin, D., Skryabin, D., Iorsh, I. & Shelykh, I. Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice. Scientific Reports. 7 pp. 1780 (2017,5) [16] Milicevic, M., Ozawa, T., Montambaux, G., Carusotto, I., Galopin, E., Lemaıtre, A., Le Gratiet, L., Sagnes, I., Bloch, J. & Amo, A. Orbital Edge States in a Photonic Honeycomb Lattice. Phys. Rev. Lett.. 118, 107403 (2017,3) 2, 86, 90, 93 [17] Gulevich, D., Yudin, D., Iorsh, I. & Shelykh, I. Kagome lattice from an excitonpolariton perspective. Phys. Rev. B. 94, 115437 (2016,9) 81 [18] Solnyshkov, D., Nalitov, A., Teklu, B., Franck, L. & Malpuech, G. Spin-dependent Klein tunneling in polariton graphene with photonic spin-orbit interaction. Phys. Rev. B. 93, 085404 (2016,2), http://dx.doi.org/10.1103/PhysRevB.93.085404 86 [19] Milicevic, M., Bleu, O., Solnyshkov, D., Sagnes, I., Lemaıtre, A., Gratiet, L., Harouri, A., Bloch, J., Malpuech, G. & Amo, A. Lasing in optically induced gap states in photonic graphene. SciPost Phys.. 5, 64 (2018), https://scipost.org/10.21468/SciPostPhys.5.6.064 76 [20] Solnyshkov, D., Bleu, O. & Malpuech, G. Topological optical isolator based on polariton graphene. Applied Physics Letters. 112, 031106 (2018,1) 86 [21] Nolte, A. & Stefan Discrete optics in femtosecond-laser-written photonic structures. Journal Of Physics B: Atomic, Molecular And Optical Physics. 43, 163001 (2010), http://stacks.iop.org/0953-4075/43/i=16/a=163001 75 [22] Houck, A., T¨ureci, H. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Physics. 8, 292-299 (2012,4), http://dx.doi.org/10.1038/nphys2251 [23] Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Tight-binding couplings in microwave artificial graphene. Phys. Rev. B. 88, 115437 (2013), https://doi.org/10.1103/PhysRevB.88.115437 75 [24] Bahari, B., Ndao, A., Vallini, F., El Amili, A., Fainman, Y. & Kante, B. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science (New York, N.Y.). 358, 636-640 (2017), http://science.sciencemag.org/content/358/6363/636 76 [25] Bandres, M., Wittek, S., Harari, G., Parto, M., Ren, J., Segev, M., Christodoulides,D. & Khajavikhan, M. Topological insulator laser: Experiments. Science (New York, N.Y.). 359, aar4005 (2018,3), http://science.sciencemag.org/content/359/6381/eaar4005.abstract [26] Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M., Ren, J., Rechtsman, M., Segev, M., Christodoulides, D. & Khajavikhan, M. Edge-Mode Lasing in 1D Topological Active Arrays. Phys. Rev. Lett.. 120, 113901 (2018,3), https://link.aps.org/doi/10.1103/PhysRevLett.120.113901 [27] Zhao, H., Miao, P., Teimourpour, M., Malzard, S., El-Ganainy, R., Schomerus, H. & Feng, L. Topological hybrid silicon microlasers. Nature Communications. 9, 981 (2018), https://doi.org/10.1038/s41467-018-03434-2 76 [28] Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K., Segev, M., Rechtsman, M. & Szameit, A. Topologically protected bound states in photonic parity–time-symmetric crystals. Nature Materials. 16 pp. 433-438 (2017,12), http://www.nature.com/doifinder/10.1038/nmat4811 76 [29] Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nature Communications. 6 pp. 6710 (2015,4), http://www.nature.com/doifinder/10.1038/ncomms7710 76 [30] Fitzpatrick, M., Sundaresan, N., Li, A., Koch, J. & Houck, A. Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice. Phys. Rev. X. 7, 011016 (2017,2), http://link.aps.org/doi/10.1103/PhysRevX.7.011016 76 [31] Rodriguez, S., Casteels,W., Storme, F., Carlon Zambon, N., Sagnes, I., Le Gratiet, L., Galopin, E., Lemaıtre, A., Amo, A., Ciuti, C. & Bloch, J. Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis. Phys. Rev. Lett.. 118, 247402 (2017,6), http://link.aps.org/doi/10.1103/PhysRevLett.118.247402 76 [32] Schneider, C., Winkler, K., Fraser, M., Kamp, M., Yamamoto, Y., Ostrovskaya, E. & Hofling, S. Exciton-polariton trapping and potential landscape engineering. Reports On Progress In Physics. 80, 016503 (2017,1), http://stacks.iop.org/0034-4885/80/i=1/a=016503?key=crossref.794b8a1155ca03a9c87ce0d55e50a713 2, 7, 29, 32 [33] Baas, A., Karr, J., Romanelli, M., Bramati, A. & Giacobino, E. Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator. Phys. Rev. B. 70, 161307 (2004,10), https://link.aps.org/doi/10.1103/PhysRevB.70.161307 [34] Amo, A., Pigeon, S., Sanvitto, D., Sala, V., Hivet, R., Carusotto, I., Pisanello, F., Lemenager, G., Houdr´e, R., Giacobino, E., Ciuti, C. & Bramati, A. Polariton superfluids reveal quantum hydrodynamic solitons. Science (New York, N.Y.). 332, 1167-1170 (2011) [35] Sturm, C., Solnyshkov, D., Krebs, O., Lemaıtre, A., Sagnes, I., Galopin, E., Amo, A., Malpuech, G. & Bloch, J. Nonequilibrium polariton condensate in a magnetic field.Phys. Rev. B. 91, 155130 (2015,4), http://link.aps.org/doi/10.1103/PhysRevB.91.155130 [36] Klembt, S., Harder, T., Egorov, O., Winkler, K., Ge, R., Bandres, M., Emmerling, M.,Worschech, L., Liew, T., Segev, M., Schneider, C. & Hofling, S. Exciton-polariton topological insulator. Nature. 562 pp. 552-556 (2018), https://doi.org/10. 1038/s41586-018-0601-5 76, 77, 86 [37] Bayer, M., Gutbrod, T., Reithmaier, J., Forchel, A., Reinecke, T., Knipp, P.,Dremin, A. & Kulakovskii, V. Optical Modes in Photonic Molecules. Phys. Rev. Lett.. 81, 2582-2585 (1998,9), http://link.aps.org/doi/10.1103/PhysRevLett.81.2582 76, 85 [38] Bajoni, D., Senellart, P.,Wertz, E., Sagnes, I., Miard, A., Lemaitre, A. & Bloch, J. Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities. Phys. Rev. Lett.. 100 pp. 47401 (2008) 34, 35, 76, 85 [39] Besga, B., Vaneph, C., Reichel, J., Est`eve, J., Reinhard, A., Miguel-Sánchez, J., Imamoglu, A. & Volz, T. Polariton Boxes in a Tunable Fiber Cavity. Phys. Rev. Applied. 3, 014008 (2015,1), http://link.aps.org/doi/10.1103/PhysRevApplied.3.014008 76 [40] Zhang, B., Wang, Z., Brodbeck, S., Schneider, C., Kamp, M., Hofling, S. & Deng, H. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity. Light: Science Applications. 3, e135 (2014,1), http://dx.doi.org/10.1038/lsa.2014.16 76 [41] Kaitouni, R., El Daıf, O., Baas, A., Richard, M., Paraıso, T., Lugan, P., Guillet, T., Morier-Genoud, F., Ganiere, J., Staehli, J., Savona, V. & Deveaud, B. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B. 74, 155311 (2006) 76, 96 [42] Winkler, K., Fischer, J., Schade, A., Amthor, M., Dall, R., Geßler, J., Emmerling, M., Ostrovskaya, E., Kamp, M., Schneider, C. & Hofling, S. A polariton condensate in a photonic crystal potential landscape. New Journal Of Physics. 17, 023001 (2015,1), http://stacks.iop.org/1367-2630/17/i=2/a=023001?key=crossref.980887836ee9ae757ded10689a6f6d47 76, 96 [43] Klembt, S., Harder, T., Egorov, O., Winkler, K., Suchomel, H., Beierlein, J., Emmerling, M., Schneider, C. & Hofling, S. Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice. Applied Physics Letters. 111, 231102 (2017,12), https://doi.org/10.1063/1.4995385 76, 77, 96 [44] Dufferwiel, S., Fras, F., Trichet, A., Walker, P., Li, F., Giriunas, L., Makhonin, M., Wilson, L., Smith, J., Clarke, E., Skolnick, M. & Krizhanovskii, D. Strong excitonphoton coupling in open semiconductor microcavities. Applied Physics Letters. 104,192107 (2014,5), http://scitation.aip.org/content/aip/journal/apl/104/19/10.1063/1.4878504 76 [45] Galbiati, M., Ferrier, L., Solnyshkov, D., Tanese, D., Wertz, E., Amo, A., Abbarchi, M., Senellart, P., Sagnes, I., Lemaitre, A., Galopin, E., Malpuech, G. & Bloch, J. Polariton Condensation in Photonic Molecules. Phys. Rev. Lett.. 108, 126403 (2012), http://dx.doi.org/10.1103/PhysRevLett.108.126403 35 [46] Tanese, D., Flayac, H., Solnyshkov, D., Amo, A., Lemaˆıtre, A., Galopin, E., Braive, R., Senellart, P., Sagnes, I., Malpuech, G. & Bloch, J. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun.. 4 pp. 1749 (2013), http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2760.html 76 [47] Bayer, M., Gutbrod, T., Forchel, A., Reinecke, T., Knipp, P., Werner, R. & Reithmaier, J. Optical Demonstration of a Crystal Band Structure Formation. Phys. Rev. Lett.. 83, 5374-5377 (1999,12), http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.5374 [48] Winkler, K., Egorov, O., Savenko, I., Ma, X., Estrecho, E., Gao, T., Muller, S., Kamp, M., Liew, T., Ostrovskaya, E., Hofling, S. & Schneider, C. Collective state transitions of exciton-polaritons loaded into a periodic potential. Phys. Rev. B. 93, 121303 (2016,3), https://link.aps.org/doi/10.1103/PhysRevB.93.121303 76, 77 [49] Tanese, D., Gurevich, E., Baboux, F., Jacqmin, T., Lemaıtre, A., Galopin, E., Sagnes, I., Amo, A., Bloch, J. & Akkermans, E. Fractal Energy Spectrum of a Polariton Gas in a Fibonacci Quasiperiodic Potential. Phys. Rev. Lett.. 112, 146404 (2014,4), http: //link.aps.org/doi/10.1103/PhysRevLett.112.146404 76 [50] Salerno, G., Ozawa, T., Price, H. & Carusotto, I. How to directly observe Landau levels in driven-dissipative strained honeycomb lattices. 2D Materials. 2, 034015 (2015,9) 76 [51] Rechtsman, M., Zeuner, J., Tunnermann, A., Nolte, S., Segev, M. & Szameit, A. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Phot.. 7, 153-158 (2013), http://www.nature.com/nphoton/ journal/v7/n2/abs/nphoton.2012.302.html 76 [52] Schnyder, A., Ryu, S., Furusaki, A. & Ludwig, A. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B. 78, 195125 (2008,11), http://link.aps.org/doi/10.1103/PhysRevB.78. 195125 [53] McKinnon, B. & Choy, T. Significance of nonorthogonality in tight-binding models. Phys. Rev. B. 52, 14531-14538 (1995,11), https://link.aps.org/doi/10.1103/PhysRevB.52.14531 77, 78 [54] Jacqmin, T., Carusotto, I., Sagnes, I., Abbarchi, M., Solnyshkov, D., Malpuech, G., Galopin, E., Lemaıtre, A., Bloch, J. & Amo, A. Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons. Phys. Rev. Lett.. 112, 116402 (2014,3), http://dx.doi.org/10.1103/PhysRevLett.112.116402 2,29, 31, 75, 76, 77, 81, 86, 87, 88, 90, 91 [55] St-Jean, P., Goblot, V., Galopin, E., Lemaıtre, A., Ozawa, T., Gratiet, L., Sagnes, I., Bloch, J. & Amo, A. Lasing in topological edge states of a one-dimensional lattice. Nature Photonics. 11, 651-656 (2017,9), https://doi.org/10.1038/s41566-017-0006-2 76 [56] Whittaker, C., Cancellieri, E., Walker, P., Gulevich, D., Schomerus, H., Vaitiekus, D., Royall, B., Whittaker, D., Clarke, E., Iorsh, I., Shelykh, I., Skolnick, M. & Krizhanovskii, D. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling. Phys. Rev. Lett.. 120, 97401 (2018,3), https://link.aps.org/doi/10.1103/PhysRevLett.120.097401 76, 77, 81, 96 [57] Milicevic, M., Montambaux, G., Ozawa, T., Sagnes, I., Lemaıtre, A., Le Gratiet, L., Harouri, A., Bloch, J. & Amo, A. Tilted and type-III Dirac cones emerging from flat bands in photonic orbital graphene. ArXiv E-prints. (2018,7), http://arxiv. org/abs/1807.08650 86, 94 [58] Paxton, A. Introduction to the tight binding approximation - implementation by diagonalisation. Winter School: Multiscale Simulation Methods In Molecular Sciences, Juelich, Germany. pp. 145-176 (2009) 78 [59] Kamalakis, T., Theocharidis, A. & Sphicopoulos, T. Accuracy of the tight binding approximation for the description of the photonic crystal coupled cavities. Proc. SPIE, Photonic Crystal Materials And Devices IV. 6128 (2006), https://doi.org/10.1117/12.647779 78 [60] Yariv, A. & Yeh, P. Photonics: optical electronics in modern communications. (Oxford University Press,2007) 83, 84 [61] Kapany, N. & Burke, J. Optical Waveguides. (Academic Press Neew York,1972) 83 [62] Vasconcellos, S., Calvar, A., Dousse, A., Suffczynski, J., Dupuis, N., Lemaıtre, A., Sagnes, I., Bloch, J., Voisin, P. & Senellart, P. Spatial, spectral, and polarization properties of coupled micropillar cavities. Applied Physics Letters. 99, 101103 (2011), https://doi.org/10.1063/1.3632111 121, 122 [63] Wu, C., Bergman, D., Balents, L. & Das Sarma, S. Flat Bands andWigner Crystallization in the Honeycomb Optical Lattice. Physical Review Letters. 99, 070401 (2007,8), http://link.aps.org/doi/10.1103/PhysRevLett.99.070401 81 [64] Kavokin, A., Baumberg, J., Malpuech, G. & Laussy, F. Microcavities. (Oxford University Press,2017) 7, 10, 12, 79 [65] Sasaki, K., Murakami, S. & Saito, R. Stabilization mechanism of edge states in graphene. Appl. Phys. Lett.. 88, 113110 (2006), https://doi.org/10.1063/1.2181274 89 [66] Brichkin, A., Novikov, S., Larionov, A., Kulakovskii, V., Glazov, M., Schneider,C., Hofling, S., Kamp, M. & Forchel, A. Effect of Coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities. Phys. Rev. B. 84, 195301 (2011,11), https://link.aps.org/doi/10.1103/PhysRevB.84.195301 34, 35, 38 [67] Keeling, J., Marchetti, F., Szyma´nska, M. & Littlewood, P. Collective coherence in planar semiconductor microcavities. Semiconductor Science And Technology. 22, R1-R26 (2007,4), https://doi.org/10.1088/0268-1242/22/5/r01 7 [68] Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys.. 82, 1489-1537 (2010,5), https://link.aps.org/doi/10. 1103/RevModPhys.82.1489 1, 2, 10, 17, 18, 24, 34, 39 [69] Boulier, T., Jacquet, M., Maıtre, A., Lerario, G., Claude, F., Pigeon, S., Glorieux, Q., Bramati, A., Giacobino, E., Amo, A. & Bloch, J. Microcavity Polaritons for Quantum simulation. (2020) [70] Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys.. 85, 299-366 (2013,2), https://link.aps.org/doi/10.1103/RevModPhys.85.299 1, 2, 7, 27, 29 [71] Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proceedings Of The National Academy Of Sciences. 100, 15318-15323 (2003), https://www.pnas.org/content/100/26/15318 27, 34, 48 [72] Bajoni, D., Senellart, P., Lemaıtre, A. & Bloch, J. Photon lasing in GaAs microcavity: Similarities with a polariton condensate. Phys. Rev. B. 76, 201305 (2007,11), https://link.aps.org/doi/10.1103/PhysRevB.76.201305 27, 48 [73] Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of Semiconductor Microcavity Exciton Polaritons. Science. 298, 199-202 (2002), https://science.sciencemag.org/content/298/5591/199 34 [74] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J., Marchetti, F., Szymanska, M., Andre, R., Staehli, J., Savona, V., Littlewood, P., Deveaud, B. & Le Si, D. Bose–Einstein condensation of exciton polaritons. Nature. 443 pp. 409-14 (2006,10) 2, 7, 22, 24 [75] Byrnes, T., Kim, N. & Yamamoto, Y. Erratum: Exciton-polariton condensates. Nature Physics. 10 (2014,11) 2, 7, 21, 24, 25, 34, 49 [76] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. &West, K. Bose-Einstein Condensation of Microcavity Polaritons in a Trap. Science. 316, 1007-1010 (2007), https:// science.sciencemag.org/content/316/5827/1007 34 [77] Rossbach, G., Levrat, J., Feltin, E., Carlin, J., Butte, R. & Grandjean, N. Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Physical Review. B, Condensed Matter. pp. 165312 (2013,10) 34, 35 [78] Schmitt-Rink, S., Chemla, D. & Miller, D. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B. 32, 6601-6609 (1985,11), https://link.aps.org/doi/10.1103/PhysRevB.32.6601 35, 38, 39, 51 [79] Houdre, R., Gibernon, J., Pellandini, P., Stanley, R., Oesterle, U., Weisbuch, C., O’Gorman, J., Roycroft, B. & Ilegems, M. Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons. Phys. Rev. B. 52, 7810-7813 (1995,9), https://link.aps.org/doi/10.1103/ PhysRevB.52.7810 38 [80] Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B. 58, 7926-7933 (1998,9), https://link.aps.org/doi/10.1103/PhysRevB.58.7926 38, 39 [81] Haug, H. & Schmitt-Rink, S. Electron theory of the optical properties of laser-excited semiconductors. Progress In Quantum Electronics. 9, 3-100 (1984), https://www. sciencedirect.com/science/article/pii/0079672784900260 [82] Rochat, G., Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Excitonic Bloch equations for a two-dimensional system of interacting excitons. Phys. Rev. B. 61, 13856-13862 (2000,5), https://link.aps.org/doi/10.1103/PhysRevB.61.13856 39 [83] Rhee, J., Citrin, D., Norris, T., Arakawa, Y. & Nishioka, M. Femtosecond dynamics of semiconductor-microcavity polaritons in the nonlinear regime. Solid State Communications. 97, 941-946 (1996), https://www.sciencedirect.com/science/article/pii/0038109895007784 35, 38 [84] Kuznetsov, A., Helgers, P., Biermann, K. & Santos, P. Quantum confinement of exciton-polaritons in a structured (Al,Ga)As microcavity. Phys. Rev. B. 97,195309 (2018,5), https://link.aps.org/doi/10.1103/PhysRevB.97.195309 2, 35, 36, 41, 61, 110, 112 [85] Butte, R., Delalleau, G., Tartakovskii, A., Skolnick, M., Astratov, V., Baumberg, J., Malpuech, G., Di Carlo, A., Kavokin, A. & Roberts, J. Transition from strong to weak coupling and the onset of lasing in semiconductor microcavities. Phys. Rev. B. 65, 205310 (2002,4), https://link.aps.org/doi/10.1103/PhysRevB.65. 205310 35, 48 [86] Khitrova, G., Gibbs, H., Jahnke, F., Kira, M. & Koch, S. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys.. 71, 1591- 1639 (1999,10), https://link.aps.org/doi/10.1103/RevModPhys. 71.1591 [87] Tempel, J., Veit, F., Aßmann, M., Kreilkamp, L., Rahimi-Iman, A., Loffler, A., Hofling, S., Reitzenstein, S.,Worschech, L., Forchel, A. & Bayer, M. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B. 85, 075318 (2012,2), https://link.aps.org/doi/10.1103/PhysRevB.85. 075318 48, 49 [88] Lagoudakis, P., Martin, M., Baumberg, J., Malpuech, G. & Kavokin, A. Coexistence of low threshold lasing and strong coupling in microcavities. Journal Of Applied Physics. 95, 2487-2489 (2004), [89] Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. & Lagoudakis, P. Crossover from photon to exciton-polariton lasing. New Journal Of Physics. 14, 105003 (2012,10), https://doi.org/10.1088/1367-2630/14/10/105003 48, 49 [90] Belykh, V., Mylnikov, D. & Sibeldin, N. Dynamics of the transition from weak to strong exciton-photon coupling regime in a GaAs microcavity: Angle resolved measurements. Physica Status Solidi C Current Topics. 9 pp. 1230-1235 (2012,5) [91] Shapochkin, P., Lozhkin, M., Solovev, I., Efimov, Y., Eliseev, S., Lovtcius, V. & Kapitonov, Y. Light-induced transition between the strong and weak coupling regimes in planar waveguide with GaAs/AlGaAs quantum well. Applied Physics Letters. 116, 081102 (2020), [92] Ballarini, D., Amo, A., Vina, L., Sanvitto, D., Skolnick, M. & Roberts, J. Transition from the strong- to the weak-coupling regime in semiconductor microcavities: Polarization dependence. Applied Physics Letters. 90 pp. 201905-201905 (2007,5) [93] Ballarini, D., Amo, A., Viña, L., Sanvitto, D., Skolnick, M. & Roberts, J. Transition from the strong- to the weak-coupling regime in semiconductor microcavities: Polarization dependence. Applied Physics Letters. 90, 201905 (2007), [94] Brodbeck, S., Suchomel, H., Amthor, M., Steinl, T., Kamp, M., Schneider, C. & Hofling, S. Observation of the Transition from Lasing Driven by a Bosonic to a Fermionic Reservoir in a GaAs Quantum Well Microcavity. Phys. Rev. Lett.. 117, 127401 (2016,9), https://link.aps.org/doi/10.1103/PhysRevLett. 117.127401 35 [95] Czopak, U., Prilmuller, M., Schneider, C., Hofling, S. & Weihs, G. Polariton Lasing in MicropillarsWith One Micrometer Diameter and Position-Dependent Spectroscopy of Polaritonic Molecules. (2021) 34, 35 [96] Estrecho, E., Gao, T., Bobrovska, N., Comber-Todd, D., Fraser, M., Steger, M., West, K., Pfeiffer, L., Levinsen, J., Parish, M., Liew, T., Matuszewski, M., Snoke, D., Truscott, A. & Ostrovskaya, E. Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation. Phys. Rev. B. 100, 035306 (2019,7), https://link.aps.org/doi/10.1103/ PhysRevB.100.035306 36, 38 [97] Sun, Y., Yoon, Y., Steger, M., Liu, G., Pfeiffer, L., West, K., Snoke, D. & Nelson, K. Direct measurement of polariton-polariton interaction strength. Nature Physics. 13, 870-875 (2017,9) 36 [98] Levinsen, J., Li, G. & Parish, M. Microscopic description of exciton-polaritons in microcavities. Phys. Rev. Research. 1, 033120 (2019,11), https://link.aps.org/doi/10.1103/PhysRevResearch.1.033120 34, 35, 36, 37, 38, 39 [99] Glazov, M., Ouerdane, H., Pilozzi, L., Malpuech, G., Kavokin, A. & D’Andrea, A. Polariton-polariton scattering in microcavities: A microscopic theory. Phys. Rev. B. 80, 155306 (2009,10), https://link.aps.org/doi/10.1103/PhysRevB.80.155306 35 [100] Tassone, F. & Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B. 59, 10830-10842 (1999,4), https://link.aps.org/doi/10.1103/PhysRevB.59.108302, 21, 35, 38, 39 [101] Thilagam, A. Pauli blocking effects in quantum wells. Phys. Rev. B. 59, 3027-3032 (1999,1), https://link.aps.org/doi/10.1103/PhysRevB.59. 3027 38 [102] Xue, F., Wu, F., Xie, M., Su, J. & MacDonald, A. Microscopic theory of equilibrium polariton condensates. Phys. Rev. B. 94, 235302 (2016,12), https://link.aps.org/doi/10.1103/PhysRevB.94.235302 39 [103] Combescot, M., Dupertuis, M. & Betbeder-Matibet, O. Polariton-polariton scattering: Exact results through a novel approach. Europhysics Letters (EPL). 79, 17001 (2007,6), https://doi.org/10.1209/0295-5075/79/17001 39 [104] Tsotsis, P., Eldridge, P., Gao, T., Tsintzos, S., Hatzopoulos, Z. & Savvidis, P. Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity. New Journal Of Physics. 14, 023060 (2012,2), https://doi.org/10.1088/1367-2630/14/2/023060 35, 48 [105] Ferrier, L., Wertz, E., Johne, R., Solnyshkov, D., Senellart, P., Sagnes, I., Lemaıtre, A., Malpuech, G. & Bloch, J. Interactions in Confined Polariton Condensates. Phys. Rev. Lett.. 106, 126401 (2011,3), https://link.aps.org/doi/10.1103/PhysRevLett.106.126401 35 [106] Harder, T., Sun, M., Egorov, O., Vakulchyk, I., Beierlein, J., Gagel, P., Emmerling,M., Schneider, C., Peschel, U., Savenko, I. & Al. Coherent Topological Polariton Laser. ACS Photonics. 8, 1377-1384 (2021,4), http://dx.doi.org/10.1021/ acsphotonics.0c01958 35 [107] Miller, D., Chemla, D., Eilenberger, D., Smith, P., Gossard, A. & Tsang, W. Large room-temperature optical nonlinearity in GaAs/Ga1x AlxAs multiple quantum well structures. Applied Physics Letters. 41, 679-681 (1982), 35 [108] Bloch, J., Sermage, B., Jacquot, C., Senellart, P. & Thierry-Mieg, V. Time resolved stimulated emission in excitonic semiconductor microcavities. Physica E: Lowdimensional Systems And Nanostructures. 13, 390-393 (2002), https://www.sciencedirect.com/science/article/pii/S1386947702001479 35 [109] Nelsen, B., Balili, R., Snoke, D., Pfeiffer, L. & West, K. Lasing and polariton condensation: Two distinct transitions in GaAs microcavities with stress traps. Journal Of Applied Physics. 105, 122414 (2009), 48 [110] Hulin, D., Mysyrowicz, A., Antonetti, A., Migus, A., Masselink, W., Morkoc¸, H., Gibbs, H. & Peyghambarian, N. Well-size dependence of exciton blue shift in GaAs multiple-quantum-well structures. Phys. Rev. B. 33, 4389-4391 (1986,3), https://link.aps.org/doi/10.1103/PhysRevB.33.4389 51 [111] Peyghambarian, N., Gibbs, H., Jewell, J., Antonetti, A., Migus, A., Hulin, D. & Mysyrowicz, A. Blue Shift of the Exciton Resonance due to Exciton-Exciton Interactions in a Multiple-Quantum-Well Structure. Phys. Rev. Lett.. 53, 2433-2436 (1984,12), https://link.aps.org/doi/10.1103/PhysRevLett.53.2433 51 [112] Levy-Leblond, J. Position-dependent effective mass and Galilean invariance. Phys. Rev. A. 52, 1845-1849 (1995,9), https://link.aps.org/doi/10.1103/PhysRevA.52.1845 104 [113] Muslu, G. & Erbay, H. High-order split-step Fourier schemes for the generalized nonlinear Schrodinger equation. Mathematics And Computers In Simulation. 67 pp. 581- 595 (2005,1) 104 [114] Topfer, J., Sigurdsson, H., Alyatkin, S. & Lagoudakis, P. Lotka-Volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates. Phys. Rev. B. 102, 195428 (2020,11), https://link.aps.org/doi/10.1103/PhysRevB.102.195428 47 [115] Wouters, M. & Carusotto, I. Excitations in a Nonequilibrium Bose-Einstein Condensate of Exciton Polaritons. Phys. Rev. Lett.. 99, 140402 (2007,10), https://link.aps.org/doi/10.1103/PhysRevLett.99.140402 52 [116] Anton, C., Liew, T., Tosi, G., Martın, M., Gao, T., Hatzopoulos, Z., Eldridge, P., Savvidis, P. & Viña, L. Energy relaxation of exciton-polariton condensates in quasi-onedimensional microcavities. Phys. Rev. B. 88, 035313 (2013,7), https://link. aps.org/doi/10.1103/PhysRevB.88.035313 52 [117] Lagoudakis, K., Manni, F., Pietka, B.,Wouters, M., Liew, T., Savona, V., Kavokin, A., Andre, R. & Deveaud-Pl´edran, B. Probing the Dynamics of Spontaneous Quantum Vortices in Polariton Superfluids. Phys. Rev. Lett.. 106, 115301 (2011,3), https: //link.aps.org/doi/10.1103/PhysRevLett.106.115301 [118] Pieczarka, M., Syperek, M., Dusanowski, L., Opala, A., Langer, F., Schneider, C., Hofling, S. & Sk, G. Relaxation Oscillations and Ultrafast Emission Pulses in a Disordered Expanding Polariton Condensate. Scientific Reports. 7, 2045-2322 (2011), https://doi.org/10.1038/s41598-017-07470-8 [119] Veit, F., Aßmann, M., Bayer, M., Loffler, A., Hofling, S., Kamp, M. & Forchel, A. Spatial dynamics of stepwise homogeneously pumped polariton condensates. Phys. Rev. B. 86, 195313 (2012,11), https://link.aps.org/doi/10.1103/PhysRevB.86.195313 [120] Berger, B., Schmidt, D., Ma, X., Schumacher, S., Schneider, C., H¨ofling, S. & Aßmann, M. Formation dynamics of exciton-polariton vortices created by nonresonant annular pumping. Phys. Rev. B. 101, 245309 (2020,6), https://link.aps.org/doi/10.1103/PhysRevB.101.245309 [121] Ma, X., Berger, B., Aßmann, M., Meier, T., Schneider, C., Hofling, S. & Schumacher, S. Realization of all-optical vortex switching in exciton-polariton condensates. Nature Communications. 11, 2041-1723 (2020), https://doi.org/10.1038/s41467-020-14702-5 52 [122] Ishida, N., Byrnes, T., Horikiri, T., Nori, F. & Yamamoto, Y. Photoluminescence of high-density exciton-polariton condensates. Phys. Rev. B. 90, 241304 (2014,12), https://link.aps.org/doi/10.1103/PhysRevB.90.241304 48 [123] Kamide, K. & Ogawa, T. Ground-state properties of microcavity polariton condensates at arbitrary excitation density. Phys. Rev. B. 83, 165319 (2011,4), https://link.aps.org/doi/10.1103/PhysRevB.83.165319 [124] Horikiri, T., Byrnes, T., Kusudo, K., Ishida, N., Matsuo, Y., Shikano, Y., Loffler, A., Hofling, S., Forchel, A. & Yamamoto, Y. Highly excited exciton-polariton condensates. Phys. Rev. B. 95, 245122 (2017,6), https://link.aps.org/doi/10.1103/PhysRevB.95.245122 [125] Horikiri, T., Yamaguchi, M., Kamide, K., Matsuo, Y., Byrnes, T., Ishida, N., Loffler, A., Hofling, S., Shikano, Y., Ogawa, T., Forchel, A. & Yamamoto, Y. High-energy side-peak emission of exciton-polariton condensates in high density regime. Scientific Reports. 6 pp. 25655 (2016,5) 48 [126] Yamaguchi, M., Kamide, K., Nii, R., Ogawa, T. & Yamamoto, Y. Second Thresholds in BEC-BCS-Laser Crossover of Exciton-Polariton Systems. Phys. Rev. Lett.. 111, 026404 (2013,7), https://link.aps.org/doi/10.1103/PhysRevLett.111.026404 48 [127] Ninh, Q. & Phan, V. BCS-BEC crossovers of microcavity exciton-polariton condensates. Physica B: Condensed Matter. 573 pp. 72-76 (2019), https://www.sciencedirect.com/science/article/pii/S0921452619305356 [128] Hu, H. & Liu, X. Quantum fluctuations in a strongly interacting Bardeen-Cooper-Schrieffer polariton condensate at thermal equilibrium. Phys. Rev. A. 101, 011602 (2020,1), https://link.aps.org/doi/10.1103/PhysRevA.101. 011602 [129] Hu, J., Wang, Z., Kim, S., Deng, H., Brodbeck, S., Schneider, C., Hofling, S., Kwong, N. & Binder, R. Polariton Laser in the Bardeen-Cooper-Schrieffer Regime. Phys. Rev. X. 11, 011018 (2021,1), https://link.aps.org/doi/10.1103/PhysRevX.11.011018 [130] Hanai, R., Edelman, A., Ohashi, Y. & Littlewood, P. Non-Hermitian Phase Transition from a Polariton Bose-Einstein Condensate to a Photon Laser. Physical Review Letters. 122 (2019,5) [131] Byrnes, T., Horikiri, T., Ishida, N. & Yamamoto, Y. BCS Wave-Function Approach to the BEC-BCS Crossover of Exciton-Polariton Condensates. Phys. Rev. Lett.. 105, 186402 (2010,10), https://link.aps.org/doi/10.1103/PhysRevLett.105.186402 48 [132] Jamadi, O., Rozas, E., Salerno, G., Milicevic, M., Ozawa, T., Sagnes, I., Lemaıtre, A., Legratiet, L., Harouri, A., Carusotto, I., Bloch, J. & Amo, A. Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices. Light: Science Applications. 9 pp. 144 (2020,8) 2, 76, 86 [133] Yamaguchi, M., Kamide, K., Ogawa, T. & Yamamoto, Y. BEC–BCS-laser crossover in Coulomb-correlated electron–hole–photon systems. New Journal Of Physics - NEW J PHYS. 14 (2012,6) 48 [134] Boozarjmehr, M., Steger, M., West, K., Pfeiffer, L., Snoke, D., Truscott, A., Ostrovskaya, E. & Pieczarka, M. Spatial distribution of an optically induced excitonic reservoir below exciton-polariton condensation threshold. (2020) 53, 54 [135] Pieczarka, M., Boozarjmehr, M., Estrecho, E., Yoon, Y., Steger, M., West, K., Pfeiffer, L., Nelson, K., Snoke, D., Truscott, A. & Ostrovskaya, E. Effect of optically induced potential on the energy of trapped exciton polaritons below the condensation threshold. Phys. Rev. B. 100, 085301 (2019,8), https://link.aps.org/doi/10.1103/PhysRevB.100.085301 [136] Myers, D., Mukherjee, S., Beaumariage, J., Snoke, D., Steger, M., Pfeiffer, L. & West, K. Polariton-enhanced exciton transport. Phys. Rev. B. 98, 235302 (2018,12), https://link.aps.org/doi/10.1103/PhysRevB.98.235302 53 [137] Steger, M., Liu, G., Nelsen, B., Gautham, C., Snoke, D., Balili, R., Pfeiffer, L. & West, K. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B. 88, 235314 (2013,12), https://link.aps.org/doi/10.1103/ PhysRevB.88.235314 53 [138] Savona, V. Fifteen years of microcavity polaritons. (2008) 1 [139] Imamog, A., Ram, R., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A. 53, 4250-4253 (1996,6), https://link.aps.org/doi/10.1103/PhysRevA.53.4250 2 [140] Bajoni, D. Polariton lasers. Hybrid light–matter lasers without inversion. (IOP Publishing,2012,7), https://doi.org/10.1088/0022-3727/45/31/313001 2, 7, 24 [141] Amo, A., Sanvitto, D., Laussy, F., Ballarini, D., Valle, E., Martin, M., Lemaıtre, A., Bloch, J., Krizhanovskii, D., Skolnick, M., Tejedor, C. & Vina, L. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature. 457 pp. 291-5 (2009,2) 2 [142] Hivet, R., Flayac, H., Solnyshkov, D., Tanese, D., Boulier, T., Andreoli, D., Giacobino, E., Bloch, J., Malpuech, G. & Amo, A. Half-solitons in a polariton quantum fluid behave like magnetic monopoles. Nature Physics. 8 (2012,4) 2 [143] Kammann, E., Liew, T., Ohadi, H., Cilibrizzi, P., Tsotsis, P., Hatzopoulos, Z., Savvidis, P., Kavokin, A. & Lagoudakis, P. Nonlinear Optical Spin Hall Effect and Long-Range Spin Transport in Polariton Lasers. Phys. Rev. Lett.. 109, 036404 (2012,7), https: //link.aps.org/doi/10.1103/PhysRevLett.109.036404 2 [144] Kuwata-Gonokami, M., Inouye, S., Suzuura, H., Shirane, M., Shimano, R., Someya, T. & Sakaki, H. Parametric Scattering of Cavity Polaritons. Phys. Rev. Lett.. 79, 1341- 1344 (1997,8), https://link.aps.org/doi/10.1103/PhysRevLett. 79.1341 1 [145] Christopoulos, S., Hogersthal, G., Grundy, A., Lagoudakis, P., Kavokin, A., Baumberg, J., Christmann, G., Butte, R., Feltin, E., Carlin, J. & Grandjean, N. Room- Temperature Polariton Lasing in Semiconductor Microcavities. Phys. Rev. Lett.. 98, 126405 (2007,3), https://link.aps.org/doi/10.1103/PhysRevLett. 98.126405 2, 21 [146] Anton, C., Liew, T., Tosi, G., Martin, M., Gao, T., Hatzopoulos, Z., Eldridge, P., Savvidis, P. & Vina, L. Dynamics of a polariton condensate transistor switch. Applied Physics Letters. 101 (2012,11) 2 [147] Gao, T., Eldridge, P., Liew, T., Tsintzos, S., Stavrinidis, G., Deligeorgis, G., Hatzopoulos, Z. & Savvidis, P. Polariton condensate transistor switch. Phys. Rev. B. 85, 235102 (2012,6), https://link.aps.org/doi/10.1103/PhysRevB.85. 235102 1 [148] Ballarini, D., De Giorgi, M., Cancellieri, E., Houdre, R., Giacobino, E., Cingolani, R., Bramati, A., Gigli, G. & Sanvitto, D. All-optical polariton transistor. (2012,1) 2 [149] Liew, T., Kavokin, A., Ostatnicky, T., Kaliteevski, M., Shelykh, I. & Abram, R. Exciton-polariton integrated circuits. Phys. Rev. B. 82, 033302 (2010,7), https://link.aps.org/doi/10.1103/PhysRevB.82.033302 2, 29 [150] Liew, T., Kavokin, A. & Shelykh, I. Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities. Phys. Rev. Lett.. 101, 016402 (2008,7), https://link.aps.org/doi/10.1103/PhysRevLett.101.016402 2, 29 [151] Tosi, G., Christmann, G., Berloff, N., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P. & Baumberg, J. Sculpting oscillators with light within a nonlinear quantum fluid. Nature Physics. 8 (2011,11) 2 [152] Nardin, G., Grosso, G., Leger, Y., Pietka, B., Morier-Genoud, F. & Deveaud, B. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Physics. 7 (2011,4) 2 [153] Sanvitto, D., Pigeon, S., Amo, A., Ballarini, D., De Giorgi, M., Carusotto, I., Hivet, R., Pisanello, F., Sala, V., Guimaraes, P., Giacobino, E., Ciuti, C. & Gigli, G. Alloptical control of the quantum flow of a polariton condensate. Nature Photonics. 5 pp. 610-614 (2011,9) 2 [154] Wertz, E., Ferrier, L., Solnyshkov, D., Johne, R., Sanvitto, D., Lemaˆıtre, A., Sagnes, I., Grousson, R., Kavokin, A., Senellart, P., Malpuech, G. & Bloch, J. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Physics. 6 (2010,4) 2 [155] Wertz, E., Amo, A., Solnyshkov, D., Ferrier, L., Liew, T., Sanvitto, D., Senellart, P., Sagnes, I., Lemaıtre, A., Kavokin, A., Malpuech, G. & Bloch, J. Propagation and Amplification Dynamics of 1D Polariton Condensates. Physical Review Letters. 109 pp. 216404 (2012,11) 2 [156] Real, B., Jamadi, O., Milicc, M., Pernet, N., St-Jean, P., Ozawa, T., Montambaux, G., Sagnes, I., Lemaıtre, A., Le Gratiet, L., Harouri, A., Ravets, S., Bloch, J. & Amo, A. Semi-Dirac Transport and Anisotropic Localization in Polariton Honeycomb Lattices. Phys. Rev. Lett.. 125, 186601 (2020,10), https://link.aps.org/doi/10.1103/PhysRevLett.125.186601 2 [157] Milicc, M., Montambaux, G., Ozawa, T., Jamadi, O., Real, B., Sagnes, I., Lemaıtre, A., Le Gratiet, L., Harouri, A., Bloch, J. & Amo, A. Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene. Phys. Rev. X. 9, 031010 142 Bibliograf´ıa (2019,7), https://link.aps.org/doi/10.1103/PhysRevX.9.0310102 [158] Sturm, C., Tanese, D., Nguyen, H., Flayac, H., Galopin, E., Lemaıtre, A., Sagnes, I., Solnyshkov, D., Amo, A., Malpuech, G. & Bloch, J. All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer. Nature Communications. 5 pp. 3278(2014,2) 1 [159] Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys.. 86, 1391-1452 (2014,12), https://link.aps.org/doi/10.1103/RevModPhys.86.1391 2 [160] Rogers, B., Gullo, N., Chiara, G., Palma, G. & Paternostro, M. Hybrid optomechanics for Quantum Technologies. Quantum Measurements And Quantum Metrology. 2, 000010247820140002 (2014), https://doi.org/10.2478/qmetro-2014-0002 3 [161] Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Phys. Rev. Lett.. 95, 033901 (2005,7), https://link.aps.org/doi/10.1103/PhysRevLett.95.033901 3 [162] Grudinin, I., Lee, H., Painter, O. & Vahala, K. Phonon Laser Action in a Tunable Two-Level System. Phys. Rev. Lett.. 104, 083901 (2010,2), https://link.aps.org/doi/10.1103/PhysRevLett.104.083901 3 [163] O’Connell, A., Hofheinz, M., Ansmann, M., Bialczak, R., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J. & Cleland, A. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 464 pp. 697-703 (2010,3) 3 [164] Teufel, J., Donner, T., Li, D., Harlow, J., Allman, M., Cicak, K., Sirois, A., Whittaker, J., Lehnert, K. & Simmonds, R. Sideband Cooling of Micromechanical Motion to the Quantum Ground State. Nature. 475 pp. 359-63 (2011,7) [165] Chan, J., Alegre, T., Safavi-Naeini, A., Hill, J., Krause, A., Groeblacher, S., Aspelmeyer, M. & Painter, O. Laser Cooling of a Nanomechanical Oscillator into Its Quantum Ground State. Nature. 478 pp. 89-92 (2011,10) [166] Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cavity Mode. Nature. 482 pp. 63-7 (2012,2) 3 [167] Butte, R. & Grandjean, N. A novel class of coherent light emitters: Polariton lasers. Semiconductor Science And Technology. 26 pp. 014030 (2010,12) 7 [168] Kavokin, A., Liew, T., Schneider, C. & Hofling, S. Bosonic lasers: The state of the art (Review Article). Low Temperature Physics. 42 pp. 323-329 (2016,5) [169] Solnyshkov, D., Malpuech, G., St-Jean, P., Ravets, S., Bloch, J. & Amo, A. Microcavity polaritons for topological photonics. Optical Materials Express. 11 pp. 1119 (2021,4) 7 [170] Carlon Zambon, N. Chirality and nonlinear dynamics in polariton microresonators. (Universite Paris-Saclay,2020,3), https://tel.archives-ouvertes.fr/tel-03035028 7, 9, 14 [171] Pickup, L. Polariton condensates in optically imprinted potential landscapes. (2019,12) 14, 20 [172] Milicevic, M. Manipulation of Dirac Cones and Edge states in Polariton Honeycomb Lattices. (Sorbonne Universit´e,2018,6), https://tel.archives-ouvertes.fr/tel-03002452 [173] Tosi, G. Optical manipulation of quantum fluids in semiconductor microcavities. (2013) [174] Ballarini, D. Dynamics of microcavity polaritons at the non-linear regime crossover. (2008) [175] Sun, M. Exciton-polariton in Artificial Lattices and Electron Transport in Bose-Fermi Hybrid System. (2020) 25 [176] Kasprzak, J. Condensation of exciton polaritons. (2006) [177] Takemura, N. On the physics of polariton interactions. (2016) 7 [178] Sun, Y.,Wen, P., Yoon, Y., Liu, G., Steger, M., Pfeiffer, L.,West, K., Snoke, D. & Nelson, K. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium. Phys. Rev. Lett.. 118, 016602 (2017,1), https://link.aps.org/doi/10.1103/PhysRevLett.118.016602 11 [179] Gaponenko, S. Optical Properties of Semiconductor Nanocrystals. (Cambridge University Press,1998) 7, 12 [180] Bastard, G., Mendez, E., Chang, L. & Esaki, L. Exciton binding energy in quantum wells. Phys. Rev. B. 26, 1974-1979 (1982,8), https://link.aps.org/doi/10.1103/PhysRevB.26.1974 12 [181] Pethick, C. & Smith, H. Bose–Einstein Condensation in Dilute Gases. (Cambridge University Press,2008) 7, 25 [182] Liew, T., Kavokin, A. & Shelykh, I. Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities. Phys. Rev. Lett.. 101, 016402 (2008,7), https:// link.aps.org/doi/10.1103/PhysRevLett.101.016402 2, 29 [183] Liew, T., Kavokin, A., Ostatnicky, T., Kaliteevski, M., Shelykh, I. & Abram, R. Exciton-polariton integrated circuits. Phys. Rev. B. 82, 033302 (2010,7), https://link.aps.org/doi/10.1103/PhysRevB.82.033302 2, 29 [184] Kim, N., Kusudo, K., Wu, C., Masumoto, N., Andreas, H¨ofling, S., Kumada, N., Forchel, A. & Yamamoto, Y. Dynamicald-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nature Physics. 7 pp. 681-686 (2011,6) 29 [185] Masumoto, N., Kim, N., Byrnes, T., Kusudo, K., L¨offler, A., H¨ofling, S., Forchel, A. & Yamamoto, Y. Exciton–polariton condensates with flat bands in a two-dimensional kagome lattice. New Journal Of Physics. 14, 065002 (2012,6), https://doi.org/ 10.1088/1367-2630/14/6/065002 29 [186] Takemura, N., Trebaol, S.,Wouters, M., Portella-Oberli,M. & Deveaud, B. Heterodyne spectroscopy of polariton spinor interactions. Phys. Rev. B. 90, 195307 (2014,11), https://link.aps.org/doi/10.1103/PhysRevB.90.195307 29 [187] Takemura, N., Trebaol, S.,Wouters, M., Portella-Oberli, M.&Deveaud, B. Polaritonic Feshbach Resonance. Nature Physics. 10 pp. 500 (2014,6) 29 [188] Lai, C., Kim, N., Utsunomiya, S., Roumpos, G., Deng, H., Fraser, M., Byrnes, T., Recher, P., Kumada, N., Fujisawa, T. & Yamamoto, Y. Coherent zero-state and -state in an exciton–polariton condensate array. Nature. 450 pp. 529-32 (2007,12) 29, 31 [189] Byrnes, T., Recher, P. & Yamamoto, Y. Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Phys. Rev. B. 81, 205312 (2010,5), https://link.aps.org/doi/10.1103/PhysRevB.81.205312 29 [190] Kim, N., Kusudo, K., Loffler, A., Hofling, S., Forchel, A. & Yamamoto, Y. Exciton–polariton condensates near the Dirac point in a triangular lattice. New Journal Of Physics. 15, 035032 (2013,3), https://doi.org/10.1088/1367-2630/15/3/035032 29 [191] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein Condensation of Microcavity Polaritons in a Trap. Science (New York, N.Y.). 316 pp. 1007-10 (2007,6) 29 [192] Cerda-Mendez, E., Sarkar, D., Krizhanovskii, D., Gavrilov, S., Biermann, K., Skolnick, M. & Santos, P. Exciton-Polariton Gap Solitons in Two-Dimensional Lattices. Phys. Rev. Lett.. 111, 146401 (2013,10), https://link.aps.org/doi/10.1103/PhysRevLett.111.146401 29, 30 [193] Na, N. & Yamamoto, Y. Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition. New Journal Of Physics. 12, 123001 (2010,12), https://doi.org/10.1088/1367-2630/12/12/123001 30 [194] Askitopoulos, A., Ohadi, H., Kavokin, A., Hatzopoulos, Z., Savvidis, P. & Lagoudakis, P. Polariton condensation in an optically induced two-dimensional potential. Phys. Rev. B. 88, 041308 (2013,7), https://link.aps.org/doi/10.1103/PhysRevB.88.041308 30 [195] El Daif, O., Baas, A., Guillet, T., Brantut, J., Kaitouni, R., Staehli, J., Morier-Genoud, F. & Deveaud, B. Polariton quantum boxes in semiconductor microcavities. Applied Physics Letters. 88 pp. 061105-061105 (2006,2) 31 [196] Hopfield, J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev.. 112, 1555-1567 (1958,12), https://link.aps. org/doi/10.1103/PhysRev.112.1555 7 [197] Mangussi, F., Milicevic, M., Sagnes, I., Gratiet, L., Harouri, A., Lemaıtre, A., Bloch, J., Amo, A. & Usaj, G. Multi-orbital tight binding model for cavity-polariton lattices. Journal Of Physics: Condensed Matter. 32, 315402 (2020,5), https://doi.org/10.1088/1361-648x/ab8524 [198] Kavokin, K., Shelykh, I., Kavokin, A., Malpuech, G. & Bigenwald, P. Quantum Theory of Spin Dynamics of Exciton-Polaritons in Microcavities. Phys. Rev. Lett.. 92, 017401 (2004,1), https://link.aps.org/doi/10.1103/PhysRevLett.92.017401 [199] Maialle, M., Silva, E. & Sham, L. Exciton spin dynamics in quantum wells. Phys. Rev. B. 47, 15776-15788 (1993,6), https://link.aps.org/doi/10.1103/PhysRevB.47.15776 [200] Panzarini, G., Andreani, L., Armitage, A., Baxter, D., Skolnick, M., Astratov, V., Roberts, J., Kavokin, A., Vladimirova, M. & Kaliteevski, M. Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. Phys. Rev. B. 59, 5082-5089 (1999,2), https://link.aps.org/doi/10.1103/PhysRevB.59.5082 [201] Pieczarka, M., Bieganska, D., Schneider, C., H¨ofling, S., Klembt, S., Sek, G. & Syperek, M. Crossover from exciton-polariton condensation to photon lasing in an optical trap. (2021) 48, 49 [202] Aßmann, M., Tempel, J., Veit, F., Bayer, M., Rahimi-Iman, A., Loffler, A., Hofling, S., Reitzenstein, S. & Forchel, A. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proceedings Of The National Academy Of Sciences Of The United States Of America. 108 pp. 1804-9 (2011,2) 49 [203] Reynoso, A., Usaj, G., Chafatinos, D., Mangussi, F., Bruchhausen, A., Kuznetsov, A., Biermann, K., Santos, P. & Fainstein, A. Optomechanical parametric oscillation of a quantum light-fluid lattice. Phys. Rev. B. 105, 195310 (2022,5), https://link.aps.org/doi/10.1103/PhysRevB.105.195310 58 [204] Christopher Gerry and Peter Knight, in Introductory Quantum Optics, Cambridge, Cambridge University Press (2004). 58 [205] Horace P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A 13, 2226 (1976). 58 [206] H. P. Yuen and J. H. Shapiro, Generation and detection of two-photon coherent states in degenerate four-wave mixing. Optics Lett. 4 334 (1979). 58 [207] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity, Phys. Rev. Lett. 55 2409 (1985). 58 [208] L. A.Wu, H. Kimble, J. Hall, and H.Wu, Generation of squeezed states by parametric down conversion, Phys. Rev. Lett. 57, 2520 (1986). 58 [209] S. T. Yang, R. C. Eckardt, and R. L. Byer, Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition, J. Opt. Soc. Am. B 10, 1684 (1993), 58 [210] X. Zeng, and M. A. Popovic, Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity, Optics Express 22, 15837 (2014). 58 [211] H. J. Kimble, The quantum internet, Nature 453 1023 (2014). 58 [212] R. S. Bondurant and J. H. Shapiro, Squeezed states in phase-sensing interferometers, Phys. Rev. D 30, 2548 (1984). 58 [213] E. Polzik, J. Carri, and H. Kimble, Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020 (1992). [214] B. J. Lawrie, P. D. Lett, A. M Marino, and R. C. Pooser, Quantum sensing with squeezed light., ACS Photonics 61307 (2019). 58 [215] Craig S. Hamilton, Regina Kruse, Linda Sansoni, Sonja Barkhofen, Christine Silberhorn, and Igor Jex, Gaussian Boson Sampling, Phys. Rev. Lett. 119, 170501 (2017). 58 [216] Han-Sen Zhong, HuiWang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, DianWu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang,Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li1, Nai-Le Liu, Chao-Yang Lu, Jian-Wei Pan, Quantum computational advantage using photons, Science 370, 1460 (2020). 58 [217] C. C. Ruppel, Acoustic wave filter technology: a review, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 64, 1390 (2017). 58 [218] Per Delsing, Andrew N. Cleland, Martin J. A. Schuetz, Johannes Knarzer, Geza Giedke, J. Ignacio Cirac, Kartik Srinivasan, Marcelo Wu, Krishna Coimbatore Balram, Christopher Bauerle, Tristan Meunier, Christopher J. B. Ford, Paulo V. Santos, Edgar Cerda-Méndez, Hailin Wang, Hubert J. Krenner, Emeline D. S. Nysten, Matthias Weiss, Geoff R. Nash, Laura Thevenard, Catherine Gourdon, Pauline Rovillain, Max Marangolo, Jean-Yves Duquesne, Gerhard Fischerauer, Werner Ruile, Alexander Reiner, Ben Paschke, Dmytro Denysenko, Dirk Volkmer, Achim Wixforth, Henrik Bruus, Martin Wiklund, Julien Reboud, Jonathan M Cooper, Yong Qing Fu, Manuel S. Brugger, Florian Rehfeldt, Christoph Westerhausen, The 2019 surface acoustic waves roadmap, Journal of Physics D: Applied Physics 52, 353001 (2019). 58 [219] G. A. Garrett, A. G. Rojo, A. K. Sood, J. F. Whitaker, and R. Merlin, R., Vacuum squeezing of solids: macroscopic quantum states driven by light pulses, Science 275, 1638 (1997). 59 [220] X. Hu, and F. Nori, Phonon squeezed states: quantum noise reduction in solids, Physica B: Condensed Matter 263, 16 (1999). 59 [221] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity Optomechanics, Rev. Mod. Phys. 86, 1391 (2014). 59, 63, 64, 72, 113 [222] Taofiq K. Paraıso, Mahmoud Kalaee, Leyun Zang, Hannes Pfeifer, Florian Marquardt, and Oskar Painter, Position-Squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity, Phys. Rev. X 5, 041024 (2015). 59 [223] J. D. Thompson, B.M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong Dispersive Coupling of a High-Finesse Cavity to a Micromechanical Membrane, Nature 452, 72 (2008). 59 [224] T. P. Purdy, D.W. C. Brooks, T. Botter, N. Brahms, Z. Y. Ma, and D. M. Stamper-Kurn, Tunable cavity optomechanics with ultracold atoms, Phys. Rev. Lett. 105, 133602 (2010). 59 [225] N. P. Bullier, and P. F. Pontin, Quadratic optomechanical cooling of a cavity-levitated nanosphere, arXiv preprint arXiv:2006.16103 (2020). 59 [226] H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, Standard Quantum Limit for Probing Mechanical Energy Quantization, Phys. Rev. Lett. 103, 100402 (2009). 59 [227] L. Dellantonio, O. Kyriienko, F. Marquardt, and A. S. Sorensen, Quantum nondemolition measurement of mechanical motion quanta, Nat. Commun. 9, 3621 (2018). 59 [228] A. A. Clerk, F. Marquardt, and J. G. E. Harris, Quantum Measurement of Phonon Shot Noise, Phys. Rev. Lett. 104, 213603 (2010). 59 [229] M. Bhattacharya, H. Uys, and P. Meystre, Optomechanical Trapping and Cooling of Partially Reflective Mirrors, Phys. Rev. A 77, 033819 (2008). 59 [230] A. Nunnenkamp, K. Borkje, J. G. E. Harris, and S. M. Girvin, Cooling and Squeezing via Quadratic Optomechanical Coupling, Phys. Rev. A 82, 021806 (2010). [231] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, K. C. Schwab, Quantum squeezing of motion in a mechanical resonator, Science 349, 952 (2015). [232] X. Ma, J. J. Viennot, S. Kotler, J. D. Teufel, and K. W. Lehnert, Nonclassical energy squeezing of a macroscopic mechanical oscillator, Nature Physics 17, 322 (2021). 59 [233] I. Carusotto, and C. Ciuti, Quantum fluids of light, Reviews of Modern Physics 85, 299 (2013). 111 [234] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M. J.Keeling,F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Bose-Einstein Condensation of Exciton Polaritons, Nature (London) 443, 409 (2006). 2, 7, 22, 24 [235] E. A. Cerda-Mendez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, Polariton Condensation in Dynamic Acoustic Lattices, Phys. Rev. Lett. 105, 116402 (2010). 59 [236] G. Rozas, A. E. Bruchhausen, A. Fainstein, B. Jusserand, and A. Lemaıtre, Polariton Path to Fully Resonant Dispersive Coupling in Optomechanical Resonators, Phys. Rev. B 90, 201302(R) (2014). [237] B. Jusserand, A. N. Poddubny, A. V. Poshakinskiy, A. Fainstein, and A. Lemaıtre, Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs-AlAs Multiple Quantum Wells, Phys. Rev. Lett. 115, 267402 (2015). [238] A. S. Kuznetsov, D. H. O. Machado,K. Biermann, and P. V. Santos, Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20 GHz, Physical Review X 11, 021020 (2021). 59, 64, 113 [239] D. L. Chafatinos, A. S. Kuznetsov, S. Anguiano, A. E. Bruchhausen, A. A. Reynoso, K. Biermann, P. V. Santos, and A. Fainstein, Polariton-driven phonon laser, Nature Communications 11, 4552 (2020). 59, 62 [240] A. S. Kuznetsov, P. L. J. Helgers, K. Biermann, and P. V. Santos, Quantum Confinement of Exciton-Polaritons in Structured (Al,Ga)As Microcavity, Phys. Rev. B 97, 195309 (2018). 2, 35, 36, 41, 61, 110, 112 [241] A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, B. Perrin, Strong opticalmechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light, Physical Review Letters 110, 037403 (2013). 60, 64 [242] S. Anguiano, A. E. Bruchhausen, B. Jusserand, I. Favero, F. R. Lamberti, L. Lanco, I. Sagnes, A. Lemaıtre, N. D. Lanzillotti-Kimura, P. Senellart, and A. Fainstein, Micropillar Resonators for Optomechanics in the Extremely High 19-95 GHz Frequency Range, Phys. Rev. Lett. 118, 263901 (2017). 60 [243] F. Mangussi et al, in preparation 34, 111, 112, 113 [244] F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dynamical Multistability Induced by Radiation Pressure in High-Finesse Micromechanical Optical Cavities, Phys. Rev. Lett. 96, 103901 (2006). 67 [245] Villafañe, V., P. Sesin, P. Soubelet, S. Anguiano, A. E. Bruchhausen, G. Rozas, C. Gomez Carbonell, A. Lemaıtre, and A. Fainstein, Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities, Physical Review B 97, 195306 (2018). 64, 113 [246] Synchronization, A Universal Concept in Nonlinear Sciences, A. Pikovsky, M. Rosenblum, and J. Kurths (Cambridge University Press, 2001). 68 [247] M. Wouters, Synchronized and desynchronized phases of coupled nonequilibrium exciton-polariton condensates. Physical Review B 77, 121302 (2008). 68 [248] H. Ohadi, Y. D. V. I. Redondo, A. J. Ramsay, Z. Hatzopoulos, T. C. H. Liew, P. R. Eastham, P. G. Savvidis, and J. J. Baumberg, Synchronization crossover of polariton condensates in weakly disordered lattices, Physical Review B 97195109 (2018). 68 [249] I. Kovacic, R. Rand, and S. Mohamed Sah, Mathieu’s equation and its generalizations: overview of stability charts and their features, Applied Mechanics Reviews 70, 020802 (2018). 70, 117 [250] L D Landau , E.M. Lifshitz, Mechanics. 71, 117 [251] A. Jenkins, Self-oscillation, Physics Reports 525, 167 (2013). 72 [252] D. Navarro-Urrios, N. E. Capuj, Mart´ın F. Colombano, P. David Garc´ıa, Marianna Sledzinska, Francesc Alzina, Amadeu Griol, Alejandro Martınez, and Clivia M. Sotomayor-Torres, Nonlinear dynamics and chaos in an optomechanical beam, Nature Communications 5, 15733 (2017). 73 [253] Jiagui Wu, Shu-Wei Huang, Yongjun Huang, Hao Zhou, Jinghui Yang, Jia-Ming Liu, Mingbin Yu, Guoqiang Lo, Dim-Lee Kwong, Shukai Duan, and Chee Wei Wong, Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators, Nature Communications 8, 15570 (2017). [254] Thales Figueiredo Roque, Florian Marquardt, and Oleg M Yevtushenko, Nonlinear dynamics of weakly dissipative optomechanical systems, New J. Phys. 22 013049 (2020). 73 [255] L. Zhang, F. Ji, X. Zhang, and W. Zhang, Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator, Journal of Physics B: Atomic, Molecular and Optical Physics, 50 145501 (2017). 73 [256] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunnelling between two trapped Bose-Einstein condensates, Physical Review Letters 79 4950 (1997). 73 [257] M. Albiez, R. Gati, J. F¨oling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Physical Review Letters 95, 010402 (2005). [258] S. Zollner, H. D. Meyer, and P. Schmelcher, Few-Boson dynamics in double wells: from single-atom to correlated pair tunneling, Physical Review Letters 100 040401 (2008). [259] A. U. Lode, A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum, How an interacting many-body system tunnels through a potential barrier to open space, Proceedings of the National Academy of Sciences 109, 13521 (2012). [260] K. G. Lagoudakis, B. Pietka, M. Wouters, R. Andre, and B. Deveaud-Plodran, Coherent oscillations in an exciton-polariton Josephson junction, Physical Review Letters 105 120403 (2010). [261] M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaıtre, G. Malpuech, and J. Bloch, Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons, Nature Physics 9 275 (2013). 73 [262] M. J. Hartmann, F. G. Brandao, and M. B. Plenio, Strongly interacting polaritons in coupled arrays of cavities, Nature Physics 2, 849 (2006). 73 [263] K. P. Kalinin, and N. G. Berloff, Toward Arbitrary Control of Lattice Interactions in Nonequilibrium Condensates, Advanced Quantum Technologies 3 1900065 (2020). [264] S. Alyatkin, H. Sigurdsson, A. Askitopoulos, J. D. Topfer, and P. G. Lagoudakis, Interaction induced point scatterer lattices and flat band condensation of exciton-polaritons, arXiv:2007.02807 (2020). [265] S. Ghosh, and T. C. Liew, Quantum computing with exciton-polariton condensates, Quantum Information 61 (2020). 73
Materias:Física > Óptica cuántica
Física > Teoría de sólidos
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1118
Depositado Por:Tamara Cárcamo
Depositado En:19 Sep 2022 12:09
Última Modificación:19 Sep 2022 12:09

Personal del repositorio solamente: página de control del documento