Procesamiento de señales adaptivo espacio-temporal (STAP) para radar: análisis e implementación de procesadores / Space-time adaptive processing (STAP) for radar: analysis and implementation of processors

Bieczynski, Leonardo (2022) Procesamiento de señales adaptivo espacio-temporal (STAP) para radar: análisis e implementación de procesadores / Space-time adaptive processing (STAP) for radar: analysis and implementation of processors. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
9Mb

Resumen en español

En este trabajo se aborda la problemática de detección de blancos móviles en radares aerotransportados, que resultan sensibles a la interferencia por parte de las reflexiones del terreno (denominadas Clutter). Se describe la técnica de STAP (Space-Time Adaptive Processing) que utilizan radares con arreglos de sensores para llevar a cabo la cancelación de la misma. Para ello se presenta un modelo estadístico de detalle de las señales de Clutter, incorporando algunos de los fenómenos que determinan su particular correlación espaciotemporal. En cuanto a las técnicas de procesamiento, se presenta el procesador denominado Full Optimo STAP introduciendo algunas de sus problemáticas. Luego, se describen un conjunto de procesadores subóptimos clásicos que operan en dominios reducidos temporales y de elementos o sus transformados Doppler y de Haces. En cada caso se presenta el detalle de implementación del procesador y el desempeño esperado en escenarios modelados. Adicionalmente se incluyen resultados de la aplicación de STAP sobre datos experimentales del radar banda X del proyecto GOTCHA de la fuerza aérea de EEUU.

Resumen en inglés

This thesis addresses the problem of detection of moving targets in airborne radars that happen to be sensitive to interference from ground reflections (Clutter). The STAP (Space-Time Adaptive Processing) technique used by radars with sensor array to carry out its cancellation is described here. For this, a detailed statistical model of the Clutter signals is presented, incorporating some of the phenomena that determine their particular space-time correlation. Regarding the processing techniques, the processor called Full Optimum STAP is presented also introducing some of its implementation issues. Then, a set of classical suboptimal processors operating in reduced time and element or their Doppler and Beam transform domains are described. In each case, the processor implementation and the expected performance in modeled scenarios are shown. Also, results of applying STAP technique on experimental data from the X Band radar of the GOTCHA project of the US Air Force are included.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Detection, Detección; [Space time adaptive processing; Procesamiento adaptativo del espacio-tiempo; Air moving target indicator; Ground moving target indicator; Doppler; Airbone radar; Radar aerotrasportado]
Referencias:[1] Nathanson, F. E., Reilly, P., Cohen, M. N. Radar design principles: Signal processing and the environment. 2a ed. McGraw-Hill, 1999. vii, 6, 7 [2] Ward, J. Space-time adaptive processing for airborne radar, 1994. ix, ix, ix, ix, x, 5, 6, 16, 17, 19, 20, 24, 30, 31, 34, 37, 42, 52, 63, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 86, 87 [3] Richards, M. A. Fundamentals of radar signal processing. 1a ed. McGraw-Hill, 2005. 5, 6, 15 [4] Richards, M. A., Scheer, J. A., Holm, W. A. Principles of modern radar, Vol. I: Basic Principles. SciTech Publishing - An Imprint of the IET, 2010. 6, 19, 62 [5] Klemm, R. Principles of space-time adaptive processing. 3a ed. The Institution of Engineering and Technology, 2006. 8, 9, 11, 16, 17, 24, 25, 26, 28, 31, 32, 37, 41, 46, 48, 49, 50, 52, 60, 66 [6] Skolnik, M. Radar handbook. 3a ed. McGraw-Hill, 2008. 12, 13, 48, 91 [7] Melvin, W. L. Lectures from fundamentals of synthetic aperture radar signal processing: Ground moving target indication (GMTI) using single-channel synthetic aperture radar (sar), 2012. 14 [8] D. J. Rabideau, A. O. S. Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training. Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, pags. 75–79, 1996. 19 [9] Guerci, J. R. Space-time adaptive processing for radar. 1a ed. Artech House, 2003. 24, 37, 41, 46, 50, 53, 54, 57, 62, 64, 65, 67 [10] J. R. Guerci, J. S. B. Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Transactions on Aerospace and Electronic Systems, 38, 152–162, 2002. 26 [11] Compton, R. T. Adaptive antennas: Concepts and performance. 1a ed. Prentice Hall, 1988. 54 [12] Trees, H. L. V. Optimum array processing: Part IV of detection, estimation, and modulation theory. 1a ed. John Wiley and Sons, Inc, 2002. 60 [13] Vega, L. R. Notas de curso de STAP realizado en INVAP SE. en 2017, 2017. 60 [14] Rao, B. D. Lectures from MVDR, MPDR and LMMSE beamformers, 2018. 62 [15] Barkat, M. Signal detection and estimation. 2a ed. Artech House, 2005. 62 [16] Scarborough, S. M., Jr., C. H. C., Gorham, L., Minardi, M. J., Majumder, U. K., Judge, M. G., et al. A challenge problem for SAR-based GMTI in urban environments. SPIE - Algorithms for Synthetic Aperture Radar, 7337, 2009. 89, 91, 92, 101 [17] Gorham, L. A., Moore, L. J. Sar image formation toolbox for MATLAB. SPIE - Algorithms for Synthetic Aperture Radar, 7699, 2010. 89 [18] Soumekh, M. Synthetic aperture radar signal processing with MATLAB algorithms. 1a ed. John Wiley and Sons, Inc, 1999. 92 [19] Oriot, H. Moving target detection on SAR images. STO Educational Notes: STOEN- SET-191-2014, 2014. 98 [20] Lombardo, P. Multichannel SAR. STO Educational Notes: STO-EN-SET-191, 2013. 98 [21] Page, D., Owirka, G., Nichols, H., Scarborough, S., Minardi, M., Gorham, L. Detection and tracking of moving vehicles with GOTCHA radar systems. IEEE Aerospace and Electronic Systems Magazine, 29, 50–60, 2014. 98 [22] D’Addio, E., Farina, A., Studer, F. Performance compparison of optimum and conventional MTI and doppler processors. IEEE Transactions on Aerospace and Electronic Systems, AES-20, 707–715, 1984. 99 [23] Ghojogh, B., Karray, F., Crowley, M. Eigenvalue and generalized eigenvalue problems: Tutorial, 2019. 99
Materias:Ingeniería en telecomunicaciones > Procesamiento de señales
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:1120
Depositado Por:Tamara Cárcamo
Depositado En:27 Dic 2022 10:34
Última Modificación:27 Dic 2022 10:34

Personal del repositorio solamente: página de control del documento