Modelos de higgs compuesto para física de sabor y anomalías de mesones B / Composite higgs models for flavor physics and B-meson anomalies

Lamagna, Federico (2022) Modelos de higgs compuesto para física de sabor y anomalías de mesones B / Composite higgs models for flavor physics and B-meson anomalies. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3448Kb

Resumen en español

Los modelos de Higgs Compuesto, donde una teoría de campos fuertemente interactuante genera al Higgs como un pseudo bosón de Nambu-Goldstone, son capaces de resolver el Problema de la Jerarquía de la escala electrodébil, así como proveer una explicación para el problema de la pequeña jerarquía, naturalmente ubicando la escala de nueva físico en unos pocos TeV. En estos modelos la estructura de sabor emerge a bajas energías, teniendo potencialmente un impacto grande en la física de sabor. En la presente tesis exploramos la habilidad de los modelos de Higgs Compuesto para explicar un conjunto de desviaciones en decaimientos de mesones B medidas recientemente en diversos experimentos, así como nuevos escenarios compatibles con resonancias a la escala TeV. Consideramos la descripción efectiva de estas teorías, determinada por el patrón de ruptura de simetrías y trabajamos con los primeros niveles de resonancias. Las llamadas anomalías de la física del B son un conjunto de mediciones experimentales expresadas en términos de cocientes de decaimientos de mesones B que, estando en tensión con la predicción del Modelo Estándar, podrían indicar la existencia de nueva física a la escala del TeV. Asimismo, como requieren nueva física mayormente acoplada a la tercera generación de fermiones, resulta natural buscar una explicación común de las anomalías-B junto con el Problema de la Jerarquía con modelos de Higgs compuesto. Proponemos y exploramos diversos modelos que contienen leptoquarks compuestos que pueden proveer los operadores apropiados para explicar las anomalías. Eligiendo el patrón de ruptura de simetría global obtenemos: un modelo con un leptoquark escalar S_3, un modelo con dos leptoquarks escalares, S_1 y S_3, y un modelo con un leptoquark vectorial U_1. Si bien el modelo con S_3 no es capaz de explicar simultáneamente todas las anomalías-B, los otros dos modelos sí lo son. Mostramos como esto es naturalmente posible gracias a la estructura obtenida con acoplamientos anárquicos en el sector compuesto. Además obtenemos estados adicionales en el espectro de escalares: un cuadruplete de SU(2)_L que puede dar contribuciones a parámetros de precisión electrodébil, o un singlete del grupo de gauge del Modelo Estándar que puede ser un candidato a materia oscura. Calculamos el potencial que es generado dinámicamente, obteniendo las masas de los escalares, incluido el bosón de Higgs. Estudiamos los principales límites en cada modelo, donde encontramos cierta tensión, por ejemplo desviaciones en acoplamientos del bosón Z a quarks b o a neutrinos, así como en acoplamientos al bosón W, o desviaciones en decaimientos del τ . En una dirección diferente, construimos un modelo de sabor que combina Froggatt- Nielsen con composición parcial. Estudiamos los diferentes límites dados por física de sabor, donde encontramos supresión con respecto a composición parcial anárquica para algunos de los más rigurosos: en la contribución de quiralidad mixta a la mezcla K"0− ¯K "0 y en operadores dipolares de quarks encontramos una supresión de una y dos potencias del ángulo de Cabibbo, λC, respectivamente.

Resumen en inglés

Composite Higgs models, where a strongly coupled field theory develops the Higgs as a pseudo Nambu-Goldstone boson, are able to solve the Hierarchy Problem of the electroweak scale, as well as to provide an explanation for the little hierarchy problem, naturally pushing the scale of new physics to a few TeV. In these models the structure of flavor emerges at low energies, with a large potential impact on flavor physics. In the present thesis we explore the ability of Composite Higgs models to explain a set of deviations in B-meson decays recently measured in several experiments, as well as new scenarios compatible with resonances at the TeV scale. We consider the effective description of these theories, determined by the pattern of symmetry breaking and working with the first levels of resonances. The so called B-physics anomalies are a set of experimental measurements expressed in terms of ratios of decays of B-mesons that, being in tension with the Standard Model prediction, could signal the existence of new physics at the TeV scale. Moreover, since they require new physics mostly coupled to the third generation of fermions, it is natural to look for a common explanation of the B anomalies as well as the Hierarchy Problem in Composite Higgs models. We propose and explore different models containing composite leptoquarks which can provide the right operators for accommodating the anomalies. By choosing the pattern of global symmetry breaking we obtain: a model with a scalar leptoquark S_3, a model with two scalar leptoquarks, S_1 and S_3, and a model with a vector leptoquark U_1. While the model with S_3 is not able to simultaneously explain all the B-anomalies, the other two models are. We show how the structure of couplings given by anarchic partial compositeness is naturally able to do so. We also obtain additional states in the scalar spectrum: a SU(2)_L-fourplet which can give contributions to electroweak precision tests parameters, or a Standard Model gauge singlet which can be a candidate for dark matter. We compute the potential that is generated dynamically, obtaining the masses of the scalar states, including the Higgs boson. We study the main constraints in each model, finding certain tension, like deviations with Z couplings to b-quarks or neutrinos, as well as W-violating couplings, or deviations in tau decays. In a different direction, we build a flavor model which combines Froggatt-Nielsen with partial compositeness. We study the different flavor constraints, finding suppression with respect to anarchic partial compositeness for some of the most stringent ones: in the mixed-chirality contribution to K"0− ¯K"0 mixing and in the quark dipole operators we find a suppression of one and two powers of the Cabibbo angle, λC, respectively.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Leptoquarks; Leptoquarks; Higgs models; Modelos de Higgs; [B anomalies; Anomalías B; Composite higgs; Higgs compuesto; Flavor physics; Física de sabor]
Referencias:[1] A. Biswas, D. Kumar Ghosh, N. Ghosh, A. Shaw and A. K. Swain, Collider signature of U1 Leptoquark and constraints from b → c observables, J. Phys. G 47 (2020) 045005, [1808.04169]. xii, 101 [2] A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519 (1968) 367–377. 1 [3] S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys. 10 (1959) 107–117. [4] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266. [5] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508–509. [6] S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press, 2005. [7] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. 1996. 1, 8, 13 [8] Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter. Cambridge University Press, 2009, 10.1017/CBO9780511575549. 1 [9] G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279–390, [hep-ph/0404175]. 1 [10] E. J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753–1936, [hep-th/0603057]. 1 [11] Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562–1567, [hep-ex/9807003]. 1 [12] R. Peccei and H. Quinn, Cp conservation in the presence of pseudoparticles, Physical Review Letters - PHYS REV LETT 38 (06, 1977) 1440–1443. 1 [13] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (Jan, 1989) 1–23. 2 [14] ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29, [1207.7214]. 2 [15] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, [1207.7235]. 2 [16] W. A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics, 8, 1995. 2 [17] Particle Data Group collaboration, P. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) 083C01. 3, 5, 121 [18] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, vol. 913. Springer, 2016, 10.1007/978-3-319-22617-0. 3, 4, 13, 31, 34, 35, 38, 45, 61, 62, 154, 156, 157 [19] D. Bailin and A. Love, Supersymmetric Gauge Field Theory and String Theory. Graduate Student Series in Physics. CRC Press, 1994. 4 [20] M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61–64. 5 [21] S. King and N. Nimai Singh, Inverted hierarchy models of neutrino masses, Nuclear Physics B 596 (2001) 81–98. 5 [22] G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355, [1002.0900]. 5, 38, 154 [23] BaBar collaboration, J. Lees et al., Measurement of an Excess of¯B→ D(∗)τ−¯ντ Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012, [1303.0571]. 7, 46 [24] Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D∗) in the decay ¯B → D∗τ−¯ντ , Phys. Rev. Lett. 118 (2017) 211801, [1612.00529]. 46 [25] Belle collaboration, A. Abdesselam et al., Measurement of R(D) and R(D∗) with a semileptonic tagging method, 1904.08794. 46 [26] LHCb collaboration, R. Aaij et al., Measurement of the ratio of branching fractions B(¯B0 → D∗+τ−¯ντ )/B(¯B0 → D∗+μ−¯νμ), Phys. Rev. Lett. 115 (2015) 111803, [1506.08614]. 46 [27] LHCb collaboration, R. Aaij et al., Test of Lepton Flavor Universality by the measurement of the B0 → D∗−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013, [1711.02505]. 7, 46 [28] HFLAV, Average for R(D) and R(D∗) for Spring 2019. https://hflaveos. web.cern.ch/hflav-eos/semi/spring19/html/RDsDsstar/RDRDs.html. 7, 46 [29] Belle collaboration, A. Abdesselam et al., Test of lepton flavor universality in B → K∗ℓ+ℓ− decays at Belle, 1904.02440. 7, 47 [30] LHCb collaboration, R. Aaij et al., Test of lepton universality using B+ → K+ℓ+ℓ− decays, Phys. Rev. Lett. 113 (2014) 151601, [1406.6482]. 47 [31] LHCb collaboration, R. Aaij et al., Test of lepton universality with B0 → K∗0ℓ+ℓ− decays, JHEP 08 (2017) 055, [1705.05802]. 47 [32] LHCb collaboration, R. Aaij et al., Search for lepton-universality violation in B+ → K+ℓ+ℓ− decays, Phys. Rev. Lett. 122 (2019) 191801, [1903.09252]. 47 [33] LHCb collaboration, R. Aaij et al., Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277–282, [2103.11769]. 7, 47 [34] A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata and E. Venturini, Anatomy of b → cτν anomalies, JHEP 11 (2018) 187, [1805.03209]. 7 [35] B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous Explanation of the RK and R(D(∗)) Puzzles, Phys. Lett. B 742 (2015) 370–374, [1412.7164]. [36] R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184, [1505.05164]. [37] A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142, [1506.01705]. [38] L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to b → sℓℓ(′), B → K(∗)νν and B → D(∗)τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801, [1506.02661]. [39] M. Bordone, G. Isidori and S. Trifinopoulos, Semileptonic B-physics anomalies: A general EFT analysis within U(2)n flavor symmetry, Phys. Rev. D 96 (2017) 015038, [1702.07238]. 7 [40] V. Gherardi, D. Marzocca and E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop, JHEP 07 (2020) 225, [2003.12525]. [41] V. Gherardi, D. Marzocca and E. Venturini, Low-energy phenomenology of scalar leptoquarks at one-loop accuracy, 2008.09548. 109 [42] M. Bordone, O. Cat`a, T. Feldmann and R. Mandal, Constraining flavour patterns of scalar leptoquarks in the effective field theory, 2010.03297. 109 [43] M. Bordone, O. Cat`a and T. Feldmann, Effective Theory Approach to New Physics with Flavour: General Framework and a Leptoquark Example, JHEP 01 (2020) 067, [1910.02641]. [44] A. Angelescu, D. Beˇcirevi´c, D. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP 10 (2018) 183, [1808.08179]. 7, 46, 56, 109 [45] D. Beˇcirevi´c, S. Fajfer, N. Kosnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, RK and RD, Phys. Rev. D 94 (2016) 115021, [1608.08501]. [46] D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of RD(∗) , RK and (g − 2)μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034, [1605.06313]. [47] R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67, [1512.01560]. [48] S. Fajfer and N. Koˇsnik, Vector leptoquark resolution of RK and RD(∗) puzzles, Phys. Lett. B 755 (2016) 270–274, [1511.06024]. [49] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the RD(∗) , RK , and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802, [1511.01900]. 109 [50] S. M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059, [1608.01349]. 7 [51] G. Hiller, D. Loose and K. Sch¨onwald, Leptoquark Flavor Patterns \& B Decay Anomalies, JHEP 12 (2016) 027, [1609.08895]. [52] B. Bhattacharya, A. Datta, J.-P. Gu´evin, D. London and R. Watanabe, Simultaneous Explanation of the RK and RD(∗) Puzzles: a Model Analysis, JHEP 01 (2017) 015, [1609.09078]. 123 [53] A. Crivellin, C. Greub, D. M¨uller and F. Saturnino, Scalar Leptoquarks in Leptonic Processes, 2010.06593. 109 [54] R. Barbieri, C. W. Murphy and F. Senia, B-decay Anomalies in a Composite Leptoquark Model, Eur. Phys. J. C 77 (2017) 8, [1611.04930]. [55] Y. Cai, J. Gargalionis, M. A. Schmidt and R. R. Volkas, Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass, JHEP 10 (2017) 047, [1704.05849]. [56] E. Megias, M. Quiros and L. Salas, Lepton-flavor universality violation in RK and RD(∗) from warped space, JHEP 07 (2017) 102, [1703.06019]. [57] O. Popov, M. A. Schmidt and G. White, R2 as a single leptoquark solution to RD(∗) and RK(∗) , Phys. Rev. D 100 (2019) 035028, [1905.06339]. [58] C. Cornella, J. Fuentes-Martin and G. Isidori, Revisiting the vector leptoquark explanation of the B-physics anomalies, JHEP 07 (2019) 168, [1903.11517]. [59] J. Fuentes-Martin and P. Stangl, Third-family quark-lepton unification with a fundamental composite Higgs, Phys. Lett. B 811 (2020) 135953, [2004.11376]. 7 [60] D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044, [1706.07808]. 7, 46, 56, 78, 79, 80, 82, 90, 91, 109, 118, 119, 120, 121, 128, 134 [61] A. Crivellin, D. M¨uller and T. Ota, Simultaneous explanation of R(D(∗)) and b → sμ+μ−: the last scalar leptoquarks standing, JHEP 09 (2017) 040, [1703.09226]. 7, 82, 109 [62] I. Dorˇsner, S. Fajfer, A. Greljo, J. Kamenik and N. Koˇsnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1–68, [1603.04993]. 7, 59, 80 [63] D. B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183–186. 8 [64] H. Georgi and D. B. Kaplan, Composite Higgs and custodial SU(2), Physics Letters B 145 (1984) 216–220. [65] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165–187, [hep-ph/0412089]. 8, 14, 17, 27, 116 [66] S. Pokorski, Gauge Field Theories. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2 ed., 2000, 10.1017/CBO9780511612343. 8 [67] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619–2625. 8 [68] S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (Feb, 1976) 974–996. 8 [69] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031, [0807.0004]. 9 [70] B. Gripaios, Composite Leptoquarks at the LHC, JHEP 02 (2010) 045, [0910.1789]. 10 [71] B. Gripaios, M. Nardecchia and S. A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006, [1412.1791]. 61, 63, 115 [72] D. Marzocca, Addressing the B-physics anomalies in a fundamental Composite Higgs Model, JHEP 07 (2018) 121, [1803.10972]. 10, 82, 109 [73] Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117 (1960) 648–663. 13 [74] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19 (1961) 154–164. 13 [75] J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B853 (2011) 1–48, [1105.5403]. 14, 17 [76] C. G. Callan, Jr., S. R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247–2250. 15 [77] S. R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239–2247. 15 [78] H. E. Logan, TASI 2013 lectures on Higgs physics within and beyond the Standard Model, 1406.1786. 16 [79] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (Jul, 1992) 381–409. 16 [80] G. Altarelli, R. Barbieri and F. Caravaglios, Electroweak precision tests: A Concise review, Int. J. Mod. Phys. A 13 (1998) 1031–1058, [hep-ph/9712368]. [81] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127–146, [hep-ph/0405040]. 16 [82] K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (Oct, 2005) 171804. 17 [83] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014, [hep-ph/0612048]. 27, 104 [84] G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051, [1210.7114]. 27, 28, 68, 72, 118 [85] K. Kawarabayashi and M. Suzuki, Partially conserved axial-vector current and the decays of vector mesons, Phys. Rev. Lett. 16 (Feb, 1966) 255–257. 27 [86] M. Carena, L. Da Rold and E. Pont´on, Minimal Composite Higgs Models at the LHC, JHEP 06 (2014) 159, [1402.2987]. 28, 53, 104, 116, 176 [87] S. De Curtis, M. Redi and A. Tesi, The 4D Composite Higgs, JHEP 04 (2012) 042, [1110.1613]. 28, 49, 53, 176 [88] C. Csaki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008, [0804.1954]. 28, 34, 61, 115 [89] C. Csaki, A. Falkowski and A. Weiler, A Simple Flavor Protection for RS, Phys. Rev. D 80 (2009) 016001, [0806.3757]. 32, 45, 91, 142 [90] K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002, [hep-ph/0408134]. 34, 45, 48, 77, 142 [91] K. Agashe, A. Azatov and L. Zhu, Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach, Phys. Rev. D 79 (2009) 056006, [0810.1016]. 34, 156 [92] K. Agashe, T. Okui and R. Sundrum, A Common Origin for Neutrino Anarchy and Charged Hierarchies, Phys. Rev. Lett. 102 (2009) 101801, [0810.1277]. 35, 62 [93] L. Da Rold, Anarchy with linear and bilinear interactions, JHEP 10 (2017) 120, [1708.08515]. 35, 46, 62, 91, 92, 115, 128, 142 [94] G. Isidori, Flavor physics and CP violation, in 2012 European School of High-Energy Physics, pp. 69–105, 2014. 1302.0661. DOI. 37, 124 [95] UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [0707.0636]. 37 [96] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045, [hep-ph/0703164]. 39, 48 [97] M. K¨onig, M. Neubert and D. M. Straub, Dipole operator constraints on composite Higgs models, Eur. Phys. J. C 74 (2014) 2945, [1403.2756]. 40, 41, 45, 153, 156, 157 [98] W. Altmannshofer, P. Paradisi and D. M. Straub, Model-Independent Constraints on New Physics in b → s Transitions, JHEP 04 (2012) 008, [1111.1257]. 42 [99] W. Altmannshofer and D. M. Straub, Cornering New Physics in b → s Transitions, JHEP 08 (2012) 121, [1206.0273]. 42 [100] A. J. Buras, C. Grojean, S. Pokorski and R. Ziegler, FCNC Effects in a Minimal Theory of Fermion Masses, JHEP 08 (2011) 028, [1105.3725]. 43 [101] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zb¯b, Phys. Lett. B 641 (2006) 62–66, [hep-ph/0605341]. 43, 63, 74, 91, 155, 156 [102] R. Barbieri, D. Buttazzo, F. Sala, D. M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069, [1211.5085]. 44, 45 [103] N. Vignaroli, Δ F=1 constraints on composite Higgs models with LR parity, Phys. Rev. D 86 (2012) 115011, [1204.0478]. 44 [104] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B474 (2000) 361–371, [hep-ph/9912408]. 45 [105] S. J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B498 (2001) 256–262, [hep-ph/0010195]. [106] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B586 (2000) 141–162, [hep-ph/0003129]. 142 [107] B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B867 (2013) 394–428, [1205.5803]. 45 [108] G. Cacciapaglia, C. Csaki, J. Galloway, G. Marandella, J. Terning and A. Weiler, A GIM Mechanism from Extra Dimensions, JHEP 04 (2008) 006, [0709.1714]. 45 [109] J. Santiago, Minimal Flavor Protection: A New Flavor Paradigm in Warped Models, JHEP 12 (2008) 046, [0806.1230]. 142 [110] M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011) 108, [1106.6357]. 91, 115, 142 [111] R. Barbieri, D. Buttazzo, F. Sala and D. M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181, [1203.4218]. [112] M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The Bearable Compositeness of Leptons, JHEP 10 (2018) 017, [1807.04279]. 45, 92, 115, 149 [113] G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, JHEP 07 (2016) 097, [1603.06609]. 46, 91, 115, 128, 141, 142, 149 [114] M. Bauer, R. Malm and M. Neubert, A Solution to the Flavor Problem of Warped Extra-Dimension Models, Phys. Rev. Lett. 108 (2012) 081603, [1110.0471]. 46 [115] L. Da Rold and I. A. Davidovich, A symmetry for ϵK, JHEP 10 (2017) 135, [1704.08704]. 46 [116] D. Bigi and P. Gambino, Revisiting B → Dℓν, Phys. Rev. D 94 (2016) 094008, [1606.08030]. 46 [117] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Combined analysis of semileptonic B decays to D and D∗: R(D(∗)), |Vcb|, and new physics, Phys. Rev. D 95 (2017) 115008, [1703.05330]. [118] S. Jaiswal, S. Nandi and S. K. Patra, Extraction of |Vcb| from B → D(∗)ℓνℓ and the Standard Model predictions of R(D(∗)), JHEP 12 (2017) 060, [1707.09977]. [119] D. Bigi, P. Gambino and S. Schacht, R(D∗), |Vcb|, and the Heavy Quark Symmetry relations between form factors, JHEP 11 (2017) 061, [1707.09509]. 46 [120] G. Hiller and F. Kruger, More model-independent analysis of b → s processes, Phys. Rev. D 69 (2004) 074020, [hep-ph/0310219]. 47 [121] M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for RK and RK∗ , Eur. Phys. J. C 76 (2016) 440, [1605.07633]. 47 [122] J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D. M. Straub, B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80 (2020) 252, [1903.10434]. 48, 90 [123] A. K. Alok, A. Dighe, S. Gangal and D. Kumar, Continuing search for new physics in b → sμμ decays: two operators at a time, JHEP 06 (2019) 089, [1903.09617]. 48, 90 [124] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in b → sℓ+ℓ− transitions in the light of recent data, JHEP 01 (2018) 093, [1704.05340]. 48, 120 [125] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370–3373, [hep-ph/9905221]. 48 [126] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232–240, [hep-ph/0105239]. 48 [127] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, The Littlest Higgs, JHEP 07 (2002) 034, [hep-ph/0206021]. [128] R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074, [hep-ph/0612180]. 48, 144, 176 [129] G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135, [1106.2719]. 49, 53 [130] K. S. Babu, S. Nandi and Z. Tavartkiladze, New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Bosons at the LHC, Phys. Rev. D80 (2009) 071702, [0905.2710]. 62, 68, 81 [131] D. G. Phillips, II et al., Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects, Phys. Rept. 612 (2016) 1–45, [1410.1100]. 63, 115 [132] S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115, [1306.6879]. 71, 141 [133] CMS collaboration, A. M. Sirunyan et al., Running of the top quark mass from proton-proton collisions at √s = 13TeV, Phys. Lett. B 803 (2020) 135263, [1909.09193]. 71 [134] R. Barbieri and G. F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B306 (1988) 63–76. 72 [135] G. W. Anderson and D. J. Castano, Measures of fine tuning, Phys. Lett. B347 (1995) 300–308, [hep-ph/9409419]. 72 [136] F. Feruglio, P. Paradisi and A. Pattori, Revisiting Lepton Flavor Universality in B Decays, Phys. Rev. Lett. 118 (2017) 011801, [1606.00524]. 79, 91 [137] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C40 (2016) 100001. 80 [138] I. Dorˇsner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126, [1801.07641]. 80 [139] CMS collaboration, A. M. Sirunyan et al., Search for third-generation scalar leptoquarks decaying to a top quark and a τ lepton at √s = 13 TeV, Eur. Phys. J. C78 (2018) 707, [1803.02864]. [140] E. Alvarez, L. Da Rold, A. Juste, M. Szewc and T. Vazquez Schroeder, A composite pNGB leptoquark at the LHC, 1808.02063. 80, 134 [141] E. Alvarez and M. Szewc, Non-resonant Leptoquark with multigeneration couplings to μμjj and μνjj at LHC, 1811.05944. 80 [142] D. Beˇcirevi´c, I. Dorˇsner, S. Fajfer, N. Koˇsnik, D. A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D98 (2018) 055003, [1806.05689]. 82, 109 [143] A. Carmona and F. Goertz, Custodial Leptons and Higgs Decays, JHEP 04 (2013) 163, [1301.5856]. 84, 104 [144] M. Frigerio, J. Serra and A. Varagnolo, Composite GUTs: models and expectations at the LHC, JHEP 06 (2011) 029, [1103.2997]. 85, 88, 89 [145] M. Alguer´o, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias et al., Emerging patterns of New Physics with and without Lepton Flavour Universal contributions, Eur. Phys. J. C 79 (2019) 714, [1903.09578]. 90 [146] HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895, [1612.07233]. 91 [147] E. C. Andr´es, L. Da Rold and I. A. Davidovich, Beautiful mirrors for a pNGB Higgs, JHEP 03 (2016) 152, [1509.04726]. 91, 176 [148] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257–454, [hep-ex/0509008]. 91, 101, 125 [149] A. Azatov, D. Barducci, D. Ghosh, D. Marzocca and L. Ubaldi, Combined explanations of B-physics anomalies: the sterile neutrino solution, JHEP 10 (2018) 092, [1807.10745]. 92 [150] C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160, [1306.4655]. 92 [151] CMS collaboration, A. M. Sirunyan et al., Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at √s = 13 TeV, JHEP 11 (2019) 082, [1906.02805]. 101 [152] ATLAS collaboration, M. Aaboud et al., Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √ s = 13 TeV with the ATLAS detector, JHEP 01 (2018) 055, [1709.07242]. 101 [153] ATLAS collaboration, M. Aaboud et al., Search for WW/WZ resonance production in ℓνqq final states in pp collisions at √ s = 13 TeV with the ATLAS detector, JHEP 03 (2018) 042, [1710.07235]. [154] ATLAS collaboration, M. Aaboud et al., Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at √ s = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016, [1805.09299]. [155] CMS collaboration, A. M. Sirunyan et al., Search for resonant tt production in proton-proton collisions at √s = 13 TeV, JHEP 04 (2019) 031, [1810.05905]. [156] CMS collaboration, A. M. Sirunyan et al., Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons, Phys. Lett. B 798 (2019) 134952, [1906.00057]. [157] CMS collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb−1 of data at √s = 13 TeV, . 101 [158] J. M. Cline, B decay anomalies and dark matter from vectorlike confinement, Phys. Rev. D 97 (2018) 015013, [1710.02140]. 104 [159] A. Crivellin, D. M¨uller and F. Saturnino, Flavor Phenomenology of the Leptoquark Singlet-Triplet Model, JHEP 06 (2020) 020, [1912.04224]. 109, 119, 121, 122, 124, 125, 126 [160] Belle collaboration, J. Grygier et al., Search for B →hν¯ν decays with semileptonic tagging at Belle, Phys. Rev. D 96 (2017) 091101, [1702.03224]. 121 [161] A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski and J. Rosiek, Lepton-flavour violating B decays in generic Z′ models, Phys. Rev. D 92 (2015) 054013, [1504.07928]. 121 [162] M. Blanke, A. Crivellin, S. de Boer, T. Kitahara, M. Moscati, U. Nierste et al., Impact of polarization observables and Bc → τν on new physics explanations of the b → cτν anomaly, Phys. Rev. D 99 (2019) 075006, [1811.09603]. 123 [163] S. Iguro, T. Kitahara, Y. Omura, R. Watanabe and K. Yamamoto, D∗ polarization vs. RD(∗) anomalies in the leptoquark models, JHEP 02 (2019) 194, [1811.08899]. 123 [164] M. Gonz´alez-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777–785, [1706.00410]. 123 [165] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold et al., Anatomy of New Physics in B − ¯B mixing, Phys. Rev. D 83 (2011) 036004, [1008.1593]. 124 [166] P. Arnan, D. Becirevic, F. Mescia and O. Sumensari, Probing low energy scalar leptoquarks by the leptonic W and Z couplings, JHEP 02 (2019) 109, [1901.06315]. 125 [167] P. Janot and S. Jadach, Improved Bhabha cross section at LEP and the number of light neutrino species, Phys. Lett. B 803 (2020) 135319, [1912.02067]. 126 [168] BaBar collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays tau+- —> e+- gamma and tau+- —> mu+- gamma, Phys. Rev. Lett. 104 (2010) 021802, [0908.2381]. 127 [169] MEG collaboration, A. M. Baldini et al., Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434, [1605.05081]. 127 [170] O. Matsedonskyi, On Flavour and Naturalness of Composite Higgs Models, JHEP 02 (2015) 154, [1411.4638]. 128 [171] F. Feruglio, P. Paradisi and A. Pattori, On the Importance of Electroweak Corrections for B Anomalies, JHEP 09 (2017) 061, [1705.00929]. 128 [172] Belle-II collaboration, W. Altmannshofer et al., The Belle II Physics Book, PTEP 2019 (2019) 123C01, [1808.10567]. 128, 133 [173] U. Bellgardt, G. Otter, R. Eichler, L. Felawka, C. Niebuhr, H. Walter et al., Search for the decay μ+ → e + e + e−, Nuclear Physics B 299 (1988) 1–6. 128 [174] A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75 (2014) 41–85, [1310.7922]. 128 [175] ATLAS collaboration, G. Aad et al., Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ -lepton in pp collisions at√s = 13 TeV with the ATLAS detector, 2101.11582. 134 [176] ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with b-jets and missing transverse momentum in √s = 13 TeV pp collisions with the ATLAS detector, 2101.12527. 134 [177] CMS collaboration, A. M. Sirunyan et al., Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at √s = 13 TeV, Phys. Lett. B 819 (2021) 136446, [2012.04178]. 134 [178] D. B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259–278. 142 [179] S. J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269–288, [hep-ph/0303183]. 142 [180] O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev. D 85 (2012) 074030, [1201.6510]. 142 [181] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277–298. 142 [182] A. Davidson, M. Koca and K. C. Wali, U(1) as the Minimal Horizontal Gauge Symmetry, Phys. Rev. Lett. 43 (1979) 92. 142 [183] F. Bazzocchi, S. Bertolini, M. Fabbrichesi and M. Piai, The Little flavons, Phys. Rev. D 68 (2003) 096007, [hep-ph/0306184]. 143 [184] F. Bazzocchi, S. Bertolini, M. Fabbrichesi and M. Piai, Fermion masses and mixings in the little flavon model, Phys. Rev. D 69 (2004) 036002, [hep-ph/0309182]. 143 [185] F. Bazzocchi and M. Fabbrichesi, A Heavy Higgs boson from flavor and electroweak symmetry breaking unification, Phys. Rev. D 70 (2004) 115008, [hep-ph/0407358]. [186] F. Bazzocchi and M. Fabbrichesi, Flavor and electroweak symmetry breaking at the TeV scale, Nucl. Phys. B 715 (2005) 372–412, [hep-ph/0410107]. 143 [187] M. Bauer, M. Carena and K. Gemmler, Flavor from the Electroweak Scale, JHEP 11 (2015) 016, [1506.01719]. 143 [188] M. Bauer, M. Carena and K. Gemmler, Creating the fermion mass hierarchies with multiple Higgs bosons, Phys. Rev. D 94 (2016) 115030, [1512.03458]. 143 [189] T. Alanne, S. Blasi and F. Goertz, Common source for scalars: Flavored axion-Higgs unification, Phys. Rev. D 99 (2019) 015028, [1807.10156]. 143, 160 [190] Y. Chung, Composite flavon-Higgs models, Phys. Rev. D 104 (2021) 095011, [2104.11719]. 143 [191] CMS collaboration, A. M. Sirunyan et al., Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at √s = 8 TeV, JHEP 07 (2017) 003, [1702.01404]. 156 [192] ATLAS collaboration, M. Aaboud et al., Search for flavour-changing neutral current top-quark decays t → qZ in proton-proton collisions at √s = 13 TeV with the ATLAS detector, JHEP 07 (2018) 176, [1803.09923]. 156 [193] A. Azatov, G. Panico, G. Perez and Y. Soreq, On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation, JHEP 12 (2014) 082, [1408.4525]. 157 [194] CMS collaboration, S. Chatrchyan et al., Measurement of the B0 s → μ+μ− Branching Fraction and Search for B0 → μ+μ− with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804, [1307.5025]. 157 [195] LHCb collaboration, R. Aaij et al., Measurement of the B0 s → μ+μ− branching fraction and search for B0 → μ+μ− decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805, [1307.5024]. [196] G. Buchalla, G. Hiller and G. Isidori, Phenomenology of nonstandard Z couplings in exclusive semileptonic b → s transitions, Phys. Rev. D 63 (2000) 014015, [hep-ph/0006136]. 157 [197] CMS collaboration, S. Chatrchyan et al., Measurements of Differential Jet Cross Sections in Proton-Proton Collisions at √s = 7 TeV with the CMS Detector, Phys. Rev. D 87 (2013) 112002, [1212.6660]. 159 [198] ATLAS collaboration, G. Aad et al., Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059, [1312.3524]. [199] ATLAS collaboration, G. Aad et al., Measurement of the inclusive jet cross-section in proton-proton collisions at √s = 7 TeV using 4.5 fb−1 of data with the ATLAS detector, JHEP 02 (2015) 153, [1410.8857]. [200] ATLAS collaboration, M. Aaboud et al., Search for new phenomena in dijet events using 37 fb−1 of pp collision data collected at √s =13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004, [1703.09127]. [201] CMS collaboration, A. M. Sirunyan et al., Search for new physics with dijet angular distributions in proton-proton collisions at √s = 13 TeV, JHEP 07 (2017) 013, [1703.09986]. [202] CMS collaboration, A. M. Sirunyan et al., Search for narrow and broad dijet resonances in proton-proton collisions at √ s = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130, [1806.00843]. [203] CMS collaboration, A. M. Sirunyan et al., Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at √s = 13 TeV, JHEP 05 (2020) 033, [1911.03947]. 159 [204] S. Alioli, M. Farina, D. Pappadopulo and J. T. Ruderman, Precision Probes of QCD at High Energies, JHEP 07 (2017) 097, [1706.03068]. 159 [205] B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP 11 (2017) 020, [1706.03070]. 159 [206] ATLAS, CMS collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV, JHEP 08 (2016) 045, [1606.02266]. 159 [207] S. Dawson and C. W. Murphy, Standard Model EFT and Extended Scalar Sectors, Phys. Rev. D 96 (2017) 015041, [1704.07851]. 159 [208] P. Cox, T. Gherghetta and M. D. Nguyen, A Holographic Perspective on the Axion Quality Problem, JHEP 01 (2020) 188, [1911.09385]. 160 [209] T. Gherghetta and M. D. Nguyen, A Composite Higgs with a Heavy Composite Axion, JHEP 12 (2020) 094, [2007.10875]. [210] Q. Bonnefoy, P. Cox, E. Dudas, T. Gherghetta and M. D. Nguyen, Flavoured Warped Axion, JHEP 04 (2021) 084, [2012.09728]. 160 [211] Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096, [1612.05492]. 160 [212] L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan, Minimal axion model from flavor, Phys. Rev. D 95 (2017) 095009, [1612.08040]. 160 [213] T. Gherghetta, V. V. Khoze, A. Pomarol and Y. Shirman, The Axion Mass from 5D Small Instantons, JHEP 03 (2020) 063, [2001.05610]. 160 [214] A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260. 160 [215] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199–202. 160 [216] S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs, vol. 939. Springer, 2017, 10.1007/978-3-319-55255-2. 186
Materias:Física > Física de partículas
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:1129
Depositado Por:Tamara Cárcamo
Depositado En:08 Mar 2023 14:06
Última Modificación:08 Mar 2023 14:06

Personal del repositorio solamente: página de control del documento