Estudio de integridad estructural de boquillas con defectos tipo fisuras en el reactor CAREM-25 / Structural integrity assessment of crack-like defects on the CAREM-25 reactors nozzles

Selva García, Anahí D. (2022) Estudio de integridad estructural de boquillas con defectos tipo fisuras en el reactor CAREM-25 / Structural integrity assessment of crack-like defects on the CAREM-25 reactors nozzles. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
8Mb

Resumen en español

En la industria nuclear es de gran importancia la evaluación de defectos que puedan estar presente en las distintas soldaduras que se efectúan en los componentes sometidos a presión interna. Esta evaluación se realiza mediante técnicas de ensayos no destructivos con la finalidad de determinar la integridad estructural empleando distintos criterios de aceptación de defectos. En el caso del reactor CAREM-25, las diferencias existentes en los materiales y estados de carga frente a los casos considerados en los reactores tradicionales, hacen que los criterios desarrollados no puedan ser aplicados de forma directa. El objetivo de este trabajo es efectuar el análisis de geometrías aceptables de defectos tipo fisura circunferenciales en la soldadura del plenum del reactor CAREM-25. Para llevar el mismo a cabo, se utiliza la metodología FAD (Diagrama de Evaluación de Fallas), que se vale de parámetros empleados en análisis de fractura lineal elástica para considerar tanto este caso de falla como colapso plástico y fractura elastoplástica. Se calculan los parámetros utilizados en el diagrama a partir de las soluciones provistas por la practica recomendada API-579/ASME-FFS-1 para un cilindro infinito, considerando las tensiones generadas durante los distintos estados de carga planteados a lo largo de la vida del reactor. Estos valores son extraídos a partir de las simulaciones por elementos finitos provistas por el departamento de Mecánica del CAREM que se encuentran disponibles. Tras la identificación del estado de carga y las geometrías fisuras mas severas, se procede a realizar la simulación por elementos finitos de distintas fisuras para validar los resultados analíticos obtenidos y la aplicabilidad de las distintas hipótesis efectuadas durante el análisis por API-579/ASME-FFS-1. Finalmente, se realiza un estudio de propagación por fatiga de distintas fisuras se- mielíticas con geometrías iniciales definidas. Se analizan las dimensiones finales y la evolución del factor de forma. Debido a la naturaleza aleatoria de los eventos postulados, se emplea el método de Monte Carlo para generar resultados relevantes a nivel estadístico.

Resumen en inglés

Evaluation of the defects that could be present on welded seams of pressurized components is of great importance in the nuclear industry. Non destructive tests are used for this, and structural integrity is determined according with different defect tolerance criteria. In this sense, the more usually applied criteria can not be used directly for the CAREM-25 reactor, given the significant differences concerning the materials and the load states between this reactor and the more traditional ones. In this master thesis, acceptability of circumferential crack-like defects in the CAREM- 25 reactor’s plenum is analysed. In order to carry out this task, the FAD (Failure As- sessment Diagram) approach is used. This methodology applies linear elastic fracture mechanic parameters and incorporates adequate correction factors in order to consider this cause of failure, alongside elastoplastic fracture and plastic collapse. The param- eters are calculated according to API-579/ASME-FFS-1 recommended practices, by applying an infinite cylinder simplifying hypothesis. A set of loading cases expected to happen during the reactor’s life cycle is considered. Currently available finite element method simulations provided by the CAREM Mechanics Department are used as an input for relevant stress values. After identifying the load cases and the geometries of the more severe cracks, finite element method simulations are carried out with different crack shapes in order to validate the analytical results and the used hypotheses. Finally, a fatigue crack growth study is performed, in which different semielliptical cracks with predefined initial geometries are used. Both the final geometries and the evolution of the crack’s shape factor are studied. Due to the random nature of the postulated load cases, the Monte Carlo method is applied in order to generate statistically relevant results.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:CAREM-25 reactor; Reactor CAREM-25; Fractures; Fracturas; Finite element method; Métodos de elementos finitos; [ASME; Fitness for service; Aptitud de servicio]
Referencias:[1] D. Delmastro, M. Giménez, P. Florido et al. CAREM concept: A competitive SMR. tomo 1. Proceedings of the International Conference on Nuclear Engineering (ICONE12), 2004. 1, 2 [2] Mecánica, P. C. C. I. Technical Specification for contracting RPV supply group. ET-CAREM25M-32-B0100 r1. 2, 3, 25 [3] K. Suzuki, L. M. P., The Japan Steel Works. Reactor pressure vessel materials. 4 [4] Zerbst, U., Ainsworth, R. e. a. Review on fracture and crack propagation in weldments - a fracture mechanics perspective. Engineering Fracture Mechanics, 132, 06 2014. 5, 6, 7, 8, 31 [5] Zerbst, U., Sch¨odel, M., Webster, S., Ainsworth, R. Fitness-for-service fracture assessment of structures containing cracks: a workbook based on the European SINTAP/FITNET procedure. Elsevier, 2007. [6] Masubuchi, K. Analysis of welded structures: residual stresses, distortion, and their consequences. Pergamon Press, 1980. 5 [7] William D. Callister, D. G. R., Jr. Materials Science and Engineering An Intro- duction. 10a ed. Wiley, 2018. 6 [8] Ravi, S., Balasubramanian, V., Nasser, S. N. Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weld- ments. Journal of Materials Engineering and Performance, 13 (6), 758–765, Dec 2004. 6 [9] Josefson, B. L. Stress redistribution during annealing of a multi-pass butt-welded pipe. Journal of Pressure Vessel Technology, 105 (2), 165–170, Jan 1983. 6 [10] Leggatt, R. Residual stresses in welded structures. International Journal of Pres- sure Vessels and Piping, 85 (3), 144–151, 2008. Special Issue: The Impact of Secondary and Residual Stresses on Structural Integrity. 6, 7 [11] Bate, G. D., S K, Buttle, D. A review of residual stress distributions in welded joints for the defect assessment of offshore structures, Mar 1998. 7 [12] Panontin, T., Hill, M. The effect of residual stresses on brittle and ductile fracture initiation predicted by micromechanical models. International Journal of Fracture, 82 (4), 317–333, 1996. 8 [13] Metallic Materials –method for the determination of quasistatic fracture of welds. Standard, International Organization for Standardization (ISO), Geneva, CH, 2010. 8 [14] Roberts, D., Ryder, R., Viswanathan, R. Performance of dissimilar welds in ser- vice. Journal of Pressure Vessel Technology, 107 (3), 247, 1985. 8, 9 [15] Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels. No NP-T- 3.11 en Nuclear Energy Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2009. 8, 33 [16] Allen, T., Busby, J., Meyer, M., Petti, D. Materials challenges for nuclear systems. Materials Today, 13 (12), 14–23, 2010. 8 [17] Lundin, C. Dissimilar metal welds-transition joints literature review. Welding Journal, 61 (2), 58–63, 1982. 8, 9, 10 [18] ASME International. ASME Boiler and Pressure Vessel Code Seccion IX.Welding and Brazing qualifications, 2007. 9 [19] H. Hanninen, P. Aaltonen, A. Brederholm, et al. Dissimilar weld joints and their performance in nuclear power plant and oil refinery conditions. VTT research notes 2347, VTT technical research, 2006. 9, 10 [20] Bergant, M. A., Yawny, A. A., Perez Ipinnnn˜a, J. E. Damage tolerant analysis of corner cracks in small nozzle process penetration of the CAREM-25 reactor pressure vessel. International Journal of Pressure Vessels and Piping, 180, 104036, 2020. 10, 11, 32 [21] American Petroleum Institute, ASME. API 579-1/ASME FFS-1 Fitness for service, 2007. 11, 24, 36, 37, 38, 39, 40, 41 [22] ASME International. ASME Boiler and Pressure Vessel Code Seccion XI. Rules of Inservice Inspection of Nuclear Power Plant Components, 2010. 11, 25, 33 [23] Lu, J., Antalffy, L. P., Millet, B., Smythe, D. Considerations for baseline nde of pressure vessels. En: Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 24th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Electric Power Research Institute (EPRI) Creep Fatigue Workshop. American Society of Mechanical Engineers, 2016. 11 [24] Dowling, A., Townley, C. The effect of defects on structural failure. International Journal of Pressure Vessels and Piping, 3 (2), 77–107, abr. 1975. 15 [25] Perez Ipin˜a, J. Mec´anica de Fractura. Buenos Aires: Libreria y Editorial Alsina, 2013. 16, 18 [26] Anderson, T. Fracture Mechanics: Fundamentals and Applications, Third Edition. Taylor & Francis, 2005. 16, 17, 19, 20, 21, 23, 29, 30, 31, 38, 41, 42, 43, 44, 58, 68, 102 [27] Zehnder, A. T. Fracture mechanics. Lecture Notes in Applied and Computational Mechanics, 2012. 21 [28] Musicco, G. G., Rossow, M. P., Szabo, B. A. Application of the tearing-mode crack-growth instability theory to a cracked pressure vessel nozzle. Journal of Pressure Vessel Technology, 103 (1), 59–65, 1981. 22 [29] Hutchinson, J. W., Paris, P. C. Stability analysis of J-Controlled Crack Growth. ASTM special technical publications, pags. 37–64, 1979. 22 [30] Schijve, J. Fatigue of Structures and Materials. Springer Netherlands, 2001. 23 [31] Cipolla, R. Section XI flaw acceptance criteria and evaluation using code procedures. En: Companion Guide to the ASME Boiler & Pressure Vessel Code. ASME. 24 [32] Hadley, I. Fracture assessment methods for welded structures. Fracture and Fatigue of Welded Joints and Structures, Mar 2014. 25, 28 [33] Aldaz, E. Requisitos básicos sobre diseño, construcción, inspección en servicio y estudios de envejecimiento en componentes mecánicos de centrales nucleares. Apuntes de curso. Universidad Tecnológica Nacional. Facultad Regional Haedo. 2010. 25 [34] Milne, I. and Ritchie, R.O. and Karihaloo, B.L. Comprehensive Structural Integrity. Elsevier Science, 2003. 26 [35] Hadley, I. 3 - fracture assessment methods for welded structures. En: K. A. Macdonald (ed.) Fracture and Fatigue of Welded Joints and Structures, Wood- head Publishing Series in Welding and Other Joining Technologies, p´ags. 60–90. Woodhead Publishing, 2011. 26 [36] Dowling, A., Townley, C. The effect of defects on structural failure: A two-criteria approach. International Journal of Pressure Vessels and Piping, 3 (2), 77–107, 1975. 26, 29 [37] Harrison, L. K., R P, Milne, I. Assessment of the integrity of structures containing defects, Apr 1977. 26 [38] Milne, I., Ainsworth, R., Dowling, A., Stewart, A. Assessment of the integrity of structures containing defects. International Journal of Pressure Vessels and Piping, 32 (1-4), 3–104, 1988. 27, 28 [39] Dugdale, D. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8 (2), 100–104, 1960. 27 [40] Wang, Y., Wang, G., Tu, S., Xuan, F. Unified constraint-based fad assessments for ductile fracture in cracked pipes. International Journal of Pressure Vessels and Piping, 185, 104132, 2020. 28 [41] Harrison, R. P., Milne, I., Gray, T. G. F. Assessment of defects: The c.e.g.b. ap- proach [and discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 299 (1446), 145–153, 1981. 29 [42] Cheaitani, M. J. Approaches for determining limit load and reference stress for circumferential embedded flaws in pipe girth welds. En: Proceedings of Pipeline Technology Conference (2009). Ostend, Belgium, 2009. 29 [43] Anderson, T. L. Development of stress intensity factor solutions for surface and embedded cracks in API 579. Welding Research Council, 2002. 35 [44] Anderson, T. L., Osage, D. A. Api 579: a comprehensive fitness-for-service guide. International Journal of Pressure Vessels and Piping, 77 (14-15), 953–963, 2000. 35 [45] ASME International. ASME Boiler and Pressure Vessel Code Seccion VIII Div 2.Rules for Construction of Pressure Vessels. Alternative Rules, 2013. 36, 37 [46] Ainsworth, R. A., Sharples, J. K., Smith, S. D. Effects of residual stresses on fracture behaviour—experimental results and assessment methods. The Journal of Strain Analysis for Engineering Design, 35 (4), 307–316, 2000. 41 [47] Milne, I., Ainsworth, R., Dowling, A., Stewart, A. R6 developments in the treatment of secondary stresses. ASME PVP, 304, 503–509, 1995. 41 [48] Hutton, D. Fundamentals of Finite Element Analysis. McGraw-Hill series in mechanical engineering. McGraw-Hill, 2004. 42, 43 [49] Chan, S., Tuba, I., Wilson, W. On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics, 2 (1), 1–17, jul. 1970. 43 [50] W. Brocks, I. S. Numerical aspects of the path-dependence of the J-integration in incremental plasticity, 2001. 43 [51] Smith, M. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systemes Simulia Corp, 2009. 44, 51, 73, 76, 77 [52] Brocks, W., Cornec, A., Scheider, I. Computational aspects of nonlinear fracture mechanics. Numer. and Computational Meth., 3, 12 2003. 45 [53] deLorenzi, H. G. Energy release rate calculations by the finite element method. Engineering Fracture Mechanics, 21 (1), 129–143, 1985. 45 [54] Siegele, D. 3D-crack propagation using ADINA. Computers and Structures, 32 (3- 4), 639–645, 1989. 45 [55] Muscati, A., Lee, D. J. Elastic-plastic finite element analysis of thermally loaded cracked structures. International Journal of Fracture, 25 (4), 227–246, 1984. 45 [56] Barsoum, R. S. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering, 11 (1), 85–98, 1977. 46 [57] W.Brocks, I. S., A. Correc. Computational aspects of nonlinear fracture mechanics, 2002. 46 [58] Proyecto CAREM. Coordinaci´´´´on Ingenier´ıa Mec´´´´anica. C25-0101-05000-FEA-NB- 03-TMD-25-Mec.odb. 51 [59] Dassault Systemes. SIMULIA. Substructures and Submodeling with Abaqus. En: Introduction to Abaqus/Standard and Abaqus/Explicit. Apuntes de curso. 2007. 73, 75 [60] Jun Seong Yang, C. Y. P. Y. S. P., Bum Nyeon Kim, Yoon, K. S. A simple method for estimating effective j-integral in lbb application to nuclear power plant piping system. En: Transactions of the 15th International Conference on Structural Me- chanics in Reactor Technology, G08-Fracture Mechanics. Seoul, Korea: IASMiRT, 1999. 83 [61] Ataollahi Oshkour, A., Sahari, B., Alid, A. Variation of stress intensity factor through the thickness of plate. Materials Science and Engineering Conference Series, 17, 2004–, 02 2011. 83 [62] Iranpour, M., Taheri, F. A study on crack front shape and the correlation between the stress intensity factors of a pipe subject to bending and a plate subject to tension. Marine Structures, 19 (4), 193–216, 2006. 85 [63] Ravichandran, K. Effect of Crack Shape on Fatigue Crack Growth. En: Fatigue and Fracture. ASM International, 1996. 92, 93
Materias:Ingeniería mecánica > CAREM-25
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Física de metales
Código ID:1132
Depositado Por:Tamara Cárcamo
Depositado En:07 Mar 2023 12:34
Última Modificación:07 Mar 2023 12:34

Personal del repositorio solamente: página de control del documento