Generación óptica impulsiva de pulsos de THz en dispositivos fotoconductivos semiconductores / Impulsive optical generation of THz pulses in photoconductive semiconductor

Mónaco, Francisco (2022) Generación óptica impulsiva de pulsos de THz en dispositivos fotoconductivos semiconductores / Impulsive optical generation of THz pulses in photoconductive semiconductor. Proyecto Integrador Ingeniería en Telecomunicaciones, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
14Mb

Resumen en español

Se estudian las bases para el cálculo, fabricación y uso de antenas fotoconductivas, PCA, en el rango THz. Se implementó una cadena de cálculo de emisión y recepción de las PCA, que fue satisfactoriamente validada. A partir de esta herramienta se evaluaron los parámetros fundamentales de las antenas. También se realizó una prospección de posibles formas geométricas de electrodos a fabricar a futuro. Se propusieron antenas de tipo dipolo corto y largo, para distintos escenarios de materiales semiconductores. En cuanto a la fabricación de las PCA, se inició la investigación del arseniuro de galio crecido a bajas temperaturas en el MBE de la División de Dispositivos y Sensores. Un total de 3 semiconductores fueron crecidos y se caracterizaron por reflectividad óptica. Se encontraron diferencias relativas entre ellos, compatibles con las con las diferencias en su crecimiento. Finalmente, respecto al uso, se trabajó un sistema de medición de pulsos ultra cortos para medir las señales de las PCA. Los desarrollos en el área incluyeron un software de control y adquisición de datos, mejoras a los sistemas de sincronismo, la estimación del desempeño del sistema utilizando la generación de segundo armónico, y la elaboración de manuales de operación.

Resumen en inglés

The fundamentals for the design, manufacture and use of photoconductive antennas , PCA, in the THz range are studied. A PCA emission and reception calculous chain was implemented, and satisfactorily validated. Trought this tool the fundamental parameters of the antennas were evaluated. A survey of possible geometric shapes of electrodes to be manufactured in the future was also carried out. Short and long Dipole type antennas were proposed for different semiconductor materials scenarios. Regarding the manufacture of PCA, research on Gallium Arsenide grown at low temperatures began at the Devices and Sensors Division. A total of 3 semiconductors were grown and characterized by optical reflectivity. Relative differences were found between them, compatible with the differences in their growth conditions. Finally, regarding antena operation, an ultra-short pulse measurement system for PCA signals was implemented. Developments in the area included control and data acquisition software, improvements to synchronism, estimation of system performance using second harmonic generation, and the confection of operating manuals.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería en Telecomunicaciones)
Palabras Clave:Spectroscopy; Espectroscopía; Antennas; Antenas; [Photoconductive antenna; Antena fotoconductiva]
Referencias:[1] Optics toolbox - material dispersion - http://toolbox.lightcon.com/tools/dispersionparameters/. Last accessed 18 november 2022. [2] Syed Abdullah Aljunid. Optical autocorrelation using non-linearity in a simple photodiode. 2007. [3] Benjamín Alonso, Javier Vázquez de Aldana, and Luis Roso. Simulating beam-shape effects in non-collinear second harmonic generation. Óptica Pura y Aplicada, 42:71–81, 01 2009. [4] Titto Anujan. Photoconductive antenna for terahertz generation. INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH TECHNOLOGY (IJERT), 2015. [5] Constantine A. Balanis. Antenna Theory: Analysis and Design, 4th Edition. General Introductory Electrical Electronics Engineering. Wiley, 2016. [6] M. Bashirpour, S. Ghorbani, M. Kolahdouz, M. Neshat, M. Masnadi-Shirazi, and H. Aghababa. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv., 7:53010–53017, 2017. [7] Matthew Beard, Gordon Turner, and Charles Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown gaas as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics - J APPL PHYS, 90, 12 2001. [8] Salman Behboudi Amlashi, Ali Araghi, and Gholamreza Dadashzadeh. Design of a photoconductive antenna for pulsed-terahertz spectroscopy with polarization diversity. 11 2018. [9] S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith. Ultrafast dynamics of nonlinear absorption in low-temperature-grown gaas. Applied Physics Letters, 68(18):2544–2546, 1996. [10] BLOGRAFI. Gallium arsenide (gaas) wafer: Structure, properties, uses. Last accessed 18 november 2022. [11] Vinay Boini. Modeling of photoconductive antenna, 04 2015. [12] H. Buesener, A. Renn, Michael Brieger, F. Moers, and A. Hese. Frequency doubling of cw ringdye-laser radiation in lithium iodate crystals. Applied Physics B, 39:77–81, 02 1986. [13] Nathan M. Burford and Magda O. El-Shenawee. Review of terahertz photoconductive antenna technology. Optical Engineering, 56(1):010901, 2017. [14] A.M. Buryakov, M.S. Ivanov, S.A. Nomoev, D.I. Khusyainov, E.D. Mishina, V.A. Khomchenko, I.S. Vasil’evskii, A.N. Vinichenko, K.I. Kozlovskii, A.A. Chistyakov, and J.A. Paix˜ao. An advanced approach to control the electro-optical properties of lt-gaas-based terahertz photoconductive antenna. Materials Research Bulletin, 122:110688, 2020. [15] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici. Design and performance of singular electric field terahertz photoconducting antennas. Applied Physics Letters, 71(15):2076– 2078, 1997. [16] Chen-X. Tao L. et al. Chen, Z. Graphene controlled brewster angle device for ultra broadband terahertz modulation. Nat Commun 9, 4909, 2018. [17] Margherita Colleoni. Dielectric-based Components and Methods for Terahertz Sensing. PhD thesis, Universitat Polit`ecnica de Valencia. Departamento de Comunicaciones - Departament de Comunicacions, 2020. [18] Dassault Systemes Simulia Corp. Cst studio suite - www.cst.com. Last accessed 19 november 2022. [19] Marc Currie. 5 - low-temperature grown gallium arsenide (lt-gaas) high-speed detectors. In Bahram Nabet, editor, Photodetectors, pages 121–155. Woodhead Publishing, 2016. [20] Amira Dhiflaoui, Ali Yahyaoui, Jawad Yousaf, Shahid Bashir, Bandar Hakim, Toufik Aguili, Hatem Rmili, and Raj Mittra. Numerical analysis of wideband and high directive bowtie thz photoconductive antenna. Applied Computational Electromagnetics Society Journal, 35:662–672, 06 2020. [21] Lionel Duvillaret, Frederic Garet, Jean-Franc¸ois Roux, and Jean-Louis Coutaz. Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas. IEEE Journal of Selected Topics in Quantum Electronics, 7:615–623, 2001. [22] EKSMA. Ultrathin nonlinear crystals. Last accessed 18 november 2022. [23] Ramin Emadi, Reza Safian, and Abolghasem Zeidaabadi Nezhad. Theoretical modeling of terahertz pulsed photoconductive antennas based on hot-carriers effect. IEEE Journal of Selected Topics in Quantum Electronics, 23(4):1–9, 2017. [24] Michael Fitch and Robert Osiander. Terahertz waves for communications and sensing. Johns Hopkins APL Tech Dig, 25, 10 2004. [25] Ursula Keller Lukas Gallmann. Ultrafast laser physics. Last accessed 18 november 2022. [26] Alessandro Garufo, Giorgio Carluccio, Nuria Llombart, and Andrea Neto. Norton equivalent circuit for pulsed photoconductive antennas–part i: Theoretical model. IEEE Transactions on Antennas and Propagation, 66(4):1635–1645, 2018. [27] I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous. High resistivity annealed low-temperature gaas with 100 fs lifetimes. Applied Physics Letters, 83(20):4199–4201, 2003. [28] ITU-R. Tendencias tecnológicas de los servicios activos en la gama de frecuencias 275-3 000 ghz - sm.2352-0 (06/2015). [29] P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B, 13(11):2424–2436, Nov 1996. [30] P.U. Jepsen, D.G. Cooke, and M. Koch. Terahertz spectroscopy and imaging – modern techniques and applications. Laser & Photonics Reviews, 5(1):124–166, 2011. [31] N Kakenov, M S Ergoktas, O Balci, and C Kocabas. Graphene based terahertz phase modulators. 2D Materials, 5(3):035018, may 2018. [32] Keysight. Uxr0134a infiniium uxr-series oscilloscope: 13 ghz, 4 channels. Last accessed 18 november 2022. [33] N Khiabani. Modelling, design and characterisation of terahertz photoconductive antennas. PhD thesis, University of Liverpool, 2013. [34] Gabriel C. Loata. Investigation of low-temperature-grown GaAs photoconductive antennae for continuous-wave and pulsed terahertz generation. doctoralthesis, Universit¨atsbibliothek Johann Christian Senckenberg, 2007. [35] MenloSystems. T8-h2 alignment package and tera8-1 module - user manual. [36] Fumiaki Miyamaru, Yu Saito, Kohji Yamamoto, Takashi Furuya, Seizi NISHIZAWA, and Masahiko TANI. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas. Applied Physics Letters, 96, 05 2010. [37] H. Nemec, Alexej Pashkin, P. Kuzel, M. Khazan, S. Schnull, and IngridWilke. Carrier dynamics in low temperature grown gaas studied by thz emission spectroscopy. Journal of Applied Physics - J APPL PHYS, 90:1303–1306, 08 2001. [38] Newport. XPS-Q8 User’s Manual, Software Tools and Tutorial V1.4.x. [39] Newville. newportxps - https://github.com/pyepics/newportxps. Last accessed 18 november 2022. [40] John F. O’Hara, Sabit Ekin, Wooyeol Choi, and Ickhyun Song. A perspective on terahertz nextgeneration wireless communications. Technologies, 7(2), 2019. [41] Z. S. Piao, Masahiko Tani, and Kiyomi Sakai. Carrier dynamics and thz radiation in biased semiconductor structures. In Photonics West, 1999. [42] S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon. Carrier dynamics of low-temperaturegrown gaas observed via thz spectroscopy. Applied Physics Letters, 70(18):2419–2421, 1997. [43] Gregor Segschneider, Frank Jacob, Torsten Loffler, Hartmut G. Roskos, S¨onke Tautz, Peter Kiesel, and Gottfried D¨ohler. Free-carrier dynamics in low-temperature-grown gaas at high excitation densities investigated by time-domain terahertz spectroscopy. Phys. Rev. B, 65:125205, Mar 2002. [44] Rohit Singh, William Lehr, Douglas Sicker, and Kazi Huq. Beyond 5g: The role of thz spectrum. SSRN Electronic Journal, 01 2019. [45] P.R. Smith, D.H. Auston, and M.C. Nuss. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 24(2):255–260, 1988. [46] Lucas A. Sobehart. Dinámica de excitaciones elementales en lt-gaas. Laboratorio Avanzado - Instituto Balseiro - CNEA - UNCuyo, 2022. [47] M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou. Dependence of the carrier lifetime on acceptor concentration in gaas grown at low-temperature under different growth and annealing conditions. Journal of Applied Physics, 88(10):6026–6031, 2000. [48] Michael Stone, M. Naftaly, Robert Miles, John Fletcher, and D.P. Steenson. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. Microwave Theory and Techniques, IEEE Transactions on, 52:2420 – 2429, 11 2004. [49] Masahiko Tani, Shuji Matsuura, Kiyomi Sakai, and Shin ichi Nakashima. Emission characteristics of photoconductive antennas based on low-temperature-grown gaas and semi-insulating gaas. Appl. Opt., 36(30):7853–7859, Oct 1997. [50] Masahiko Tani, Kiyomi Sakai, and Hidenori Mimura. Ultrafast photoconductive detectors based on semi-insulating gaas and inp. Japanese Journal of Applied Physics, 36, 1997. [51] Bown University. 14. measuring ultrashort laser pulses i: Autocorrelation. Last accessed 18 november 2022. [52] Dook van Mechelen. A thz network a juvenile technology promising grand future. Last accessed 18 november 2022. [53] Nikita Vashistha, Mahesh Kumar, Rajiv K. Singh, Debiprasad Panda, Lavi Tyagi, and Subhananda Chakrabarti. A comprehensive study of ultrafast carrier dynamics of lt-gaas: Above and below bandgap regions. Physica B: Condensed Matter, 602:412441, 2021. [54] R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori. Terahertz wave detection performance of photoconductive antennas: Role of antenna structure and gate pulse intensity. Journal of Applied Physics, 97(10):103103, 2005. [55] Hongxin Zeng, Sen Gong, Lan Wang, Tianchi Zhou, Yaxin Zhang, Feng Lan, Xuan Cong, Luyang Wang, Tianyang Song, YunCheng Zhao, Ziqiang Yang, and Daniel M. Mittleman. A review of terahertz phase modulation from free space to guided wave integrated devices. Nanophotonics, 11(3):415–437, 2022.
Materias:Ingeniería en telecomunicaciones > Antenas
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Departamento Ingeniería en Telecomunicaciones > Grupo de Comunicaciones Ópticas
Código ID:1140
Depositado Por:Tamara Cárcamo
Depositado En:13 Abr 2023 15:08
Última Modificación:13 Abr 2023 15:08

Personal del repositorio solamente: página de control del documento