Qubit protegido contra errores y compuertas cuánticas rápidas basadas en la transición Landau-Zener-Stuckelberg / Error-protected qubits and fast quantum gates based on the Landau-Zener-Stuckelberg

Cáceres Ramírez, Joan J. (2022) Qubit protegido contra errores y compuertas cuánticas rápidas basadas en la transición Landau-Zener-Stuckelberg / Error-protected qubits and fast quantum gates based on the Landau-Zener-Stuckelberg. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

En los últimos años se han desarrollado grandes avances en el campo de la computación cuántica, permitiendo la realización de algoritmos cuánticos con un número cada vez mayor de qubits y tiempos de operación más largos. Esto se ha logrado gracias a mejoras en la coherencia de los qubits y de las puertas cuánticas que se utilizan para manipularlos. En esta tesis se proponen y estudian alternativas orientadas a optimizar la coherencia tanto de los qubits como de las puertas cuánticas. En la primera parte de esta tesis se propone un nuevo tipo de qubit superconductor, llamado qubit fermiónico-bosónico, que presenta una protección simultánea contra los dos canales de ruido de los qubits gracias a su diseño de parámetros. Nuestra simulación indica que este qubit puede alcanzar un tiempo de coherencia de aproximadamente 10 ms, lo que es un orden de magnitud más alto que los valores actuales de los qubits superconductores. A partir de una reciente propuesta de puerta rápida de un qubit basada en las transiciones Landau-Zener-Stuckelberg (LZS) se estudiaron los efectos de la disipación, lo que permitió determinar el punto ´optimo en términos de coherencia de la puerta. Finalmente, se propone una puerta rápida de dos qubits basada en las transiciones LZS y se estudian los efectos de disipación para determinar el punto de optimización de la coherencia de la puerta.

Resumen en inglés

In recent years, great advances have been made in the area of quantum computing, allowing quantum algorithms to be carried out with an increasing number of qubits and longer operating times. This has been possible due to, among many things, advances in improving the coherence of qubits and the quantum gates with which they are manipulated. In this thesis, alternatives aimed at optimizing the coherence of both qubits and quantum gates are proposed and studied. In the first part of this thesis we propose a new superconducting qubit, called fermionic-bosonic qubit, which due to the design of its parameters presents a simultaneous protection against the two noise channels of the qubits. Our simulation indicates that this qubit can achieve a coherence time T∗2 ≈ 10 ms, which is an order of magnitude above the values of state-of-the-art superconducting qubits. Subsequently, to a recent proposal for a fast one-qubit gate based on Landau-Zener-Stuckelberg (LZS) transitions, the dissipation effects were studied, with which we found the point at which the coherence of the gate is optimized. Finally, a fast gate of two qubits based on the LZS transitions is proposed and the dissipation effects are also studied with which we determine the point where the coherence of the gate is optimized.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Quantum computers; Ordenadores cuánticos; Qubits; [Quantum gates; Compuertas cuánticas; Landau-Zener-Stuckelberg; Floquet]
Referencias:[1] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., et al. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779), 505–510, 2019. 1 [2] Canabarro, A., Mendon¸ca, T. M., Nery, R., Moreno, G., Albino, A. S., de Jesus, G. F., et al. Quantum finance: um tutorial de computa¸cao quantica aplicada ao mercado financeiro. Revista Brasileira de Ensino de Física, 44, 2022. 1 [3] Orus, R., Mugel, S., Lizaso, E. Quantum computing for finance: Overview and prospects. Reviews in Physics, 4, 100028, 2019. 1 [4] Deutsch, D., Jozsa, R. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439 (1907), 553–558, 1992. 1 [5] Knill, E., Laflamme, R., Zurek, W. H. Resilient quantum computation. Science, 279 (5349), 342–345, 1998. [6] Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J. L. Quantum computers. nature, 464 (7285), 45–53, 2010. 1 [7] Preskill, J. Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813, 2012. 2 [8] Nielsen, M. A., Chuang, I. Quantum computation and quantum information, 2002. 2, 5 [9] Wendin, G., Shumeiko, V. Superconducting quantum circuits, qubits and computing. arXiv preprint cond-mat/0508729, 2005. 2, 24 [10] Griffiths, D. J., Schroeter, D. F. Introduction to quantum mechanics. Cambridge University Press, 2018. 2 [11] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., et al. Hartree-fock on a superconducting qubit quantum computer. Science, 369 (6507), 1084–1089, 2020. 2 [12] Ma, H., Govoni, M., Galli, G. Quantum simulations of materials on near-term quantum computers. npj Computational Materials, 6 (1), 1–8, 2020. 2 [13] Fedorov, D. A., Otten, M. J., Gray, S. K., Alexeev, Y. Ab initio molecular dynamics on quantum computers. The Journal of Chemical Physics, 154 (16), 164103, 2021. 2 [14] Beverland, M. E., Murali, P., Troyer, M., Svore, K. M., Hoeffler, T., Kliuchnikov, V., et al. Assessing requirements to scale to practical quantum advantage. arXiv preprint arXiv:2211.07629, 2022. 5 [15] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., et al. Elementary gates for quantum computation. Physical review A, 52 (5), 3457, 1995. 5 [16] DiVincenzo, D. P. Two-bit gates are universal for quantum computation. Physical Review A, 51 (2), 1015, 1995. 5 [17] Kitaev, A. Y. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52 (6), 1191, 1997. 5 [18] Childs, A. M. Lecture notes on quantum algorithms. Lecture notes at University of Maryland, 2017. 5 [19] Blais, A., Grimsmo, A. L., Girvin, S. M., Wallraff, A. Circuit quantum electrodynamics. Reviews of Modern Physics, 93 (2), 025005, 2021. 6 [20] Kwon, S., Tomonaga, A., Lakshmi Bhai, G., Devitt, S. J., Tsai, J.-S. Gatebased superconducting quantum computing. Journal of Applied Physics, 129 (4), 041102, 2021. 6, 9, 19, 38, 57, 61 [21] Koch, J., Terri, M. Y., Gambetta, J., Houck, A. A., Schuster, D. I., Majer, J., et al. Charge-insensitive qubit design derived from the cooper pair box. Physical Review A, 76 (4), 042319, 2007. 6, 11 [22] Manucharyan, V. E., Koch, J., Glazman, L. I., Devoret, M. H. Fluxonium: Single cooper-pair circuit free of charge offsets. Science, 326 (5949), 113–116, 2009. 7, 11 [23] Gyenis, A., Di Paolo, A., Koch, J., Blais, A., Houck, A. A., Schuster, D. I. Moving beyond the transmon: Noise-protected superconducting quantum circuits. PRX Quantum, 2 (3), 030101, 2021. 9, 10 [24] You, X., Sauls, J. A., Koch, J. Circuit quantization in the presence of timedependent external flux. Physical Review B, 99 (17), 174512, 2019. 11 [25] Bryon, J., Weiss, D., You, X., Sussman, S., Croot, X., Huang, Z., et al. Experimental verification of the treatment of time-dependent flux in circuit quantization. arXiv preprint arXiv:2208.03738, 2022. 11 [26] Pechenezhskiy, I. V., Mencia, R. A., Nguyen, L. B., Lin, Y.-H., Manucharyan, V. E. The superconducting quasicharge qubit. Nature, 585 (7825), 368–371, 2020. 11 [27] Smith, W. C., Villiers, M., Marquet, A., Palomo, J., Delbecq, M., Kontos, T., et al. Magnifying quantum phase fluctuations with cooper-pair pairing. Physical Review X, 12 (2), 021002, 2022. 11 [28] Groszkowski, P., Di Paolo, A., Grimsmo, A., Blais, A., Schuster, D., Houck, A., et al. Coherence properties of the 0-π qubit. New Journal of Physics, 20 (4), 043053, 2018. 12, 19 [29] Gyenis, A., Mundada, P. S., Di Paolo, A., Hazard, T. M., You, X., Schuster, D. I., et al. Experimental realization of a protected superconducting circuit derived from the 0–π qubit. PRX Quantum, 2 (1), 010339, 2021. 13 [30] Zazunov, A., Shumeiko, V.,Wendin, G., Bratus, E. Dynamics and phonon-induced decoherence of andreev level qubit. Physical Review B, 71 (21), 214505, 2005. 13 [31] Ithier, G., Collin, E., Joyez, P., Meeson, P., Vion, D., Esteve, D., et al. Decoherence in a superconducting quantum bit circuit. Physical Review B, 72 (13), 134519, 2005. 18, 19 [32] Smith, W., Kou, A., Xiao, X., Vool, U., Devoret, M. Superconducting circuit protected by two-cooper-pair tunneling. npj Quantum Information, 6 (1), 1–9, 2020. 18 [33] Nguyen, L. B., Lin, Y.-H., Somoroff, A., Mencia, R., Grabon, N., Manucharyan, V. E. High-coherence fluxonium qubit. Physical Review X, 9 (4), 041041, 2019. 18, 19, 20, 21, 50 [34] Pop, I. M., Geerlings, K., Catelani, G., Schoelkopf, R. J., Glazman, L. I., Devoret, M. H. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature, 508 (7496), 369–372, 2014. 18 [35] Zhang, H., Chakram, S., Roy, T., Earnest, N., Lu, Y., Huang, Z., et al. Universal fast-flux control of a coherent, low-frequency qubit. Physical Review X, 11 (1), 011010, 2021. 19 [36] Schoelkopf, R., Clerk, A., Girvin, S., Lehnert, K., Devoret, M. Qubits as spectrometers of quantum noise. En: Quantum noise in mesoscopic physics, págs. 175–203. Springer, 2003. 19 [37] Bao, F., Deng, H., Ding, D., Gao, R., Gao, X., Huang, C., et al. Fluxonium: an alternative qubit platform for high-fidelity operations. Physical Review Letters, 129 (1), 010502, 2022. 21 [38] Somoroff, A., Ficheux, Q., Mencia, R. A., Xiong, H., Kuzmin, R. V., Manucharyan, V. E. Millisecond coherence in a superconducting qubit. arXiv preprint arXiv:2103.08578, 2021. 21 [39] Metzger, C., Park, S., Tosi, L., Janvier, C., Reynoso, A. A., Goffman, M., et al. Circuit-qed with phase-biased josephson weak links. Physical Review Research, 3 (1), 013036, 2021. 21 [40] Rabi, I. I., Ramsey, N., Schwinger, J. Use of rotating coordinates in magnetic resonance problems. Reviews of Modern Physics, 26 (2), 167, 1954. 23 [41] Campbell, D. L., Shim, Y.-P., Kannan, B., Winik, R., Kim, D. K., Melville, A., et al. Universal nonadiabatic control of small-gap superconducting qubits. Physical Review X, 10 (4), 041051, 2020. 24, 27, 41 [42] Shevchenko, S. N., Ashhab, S., Nori, F. Landau–zener–stuckelberg interferometry. Physics Reports, 492 (1), 1–30, 2010. 27, 28, 29 [43] Li, R., Hoover, M., Gaitan, F. High fidelity universal set of quantum gates using non-adiabatic rapid passage. arXiv preprint arXiv:0802.3543, 2008. 27 [44] Nagaya, K., Zhu, C., Lin, S. H. Nonlinear responses of degenerate two-level systems to intense few-cycle pulses. The Journal of chemical physics, 127 (9), 094304, 2007. 27 [45] Chu, S.-I., Telnov, D. A. Beyond the floquet theorem: generalized floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Physics reports, 390 (1-2), 1–131, 2004. 30, 31 [46] Floquet, G. Sur les equations differentielles lin´eaires a coefficients periodiques. En: Annales scientifiques de l’Ecole normale superieure, tomo 12, págs. 47–88. 1883. 30 [47] Van Vleck, J. On σ-type doubling and electron spin in the spectra of diatomic molecules. Physical Review, 33 (4), 467, 1929. 32 [48] Son, S.-K., Han, S., Chu, S.-I., et al. Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong ac field. Physical Review A, 79 (3), 032301, 2009. 32 [49] Abramowitz, M., Stegun, I. Dover; new york: 1972. Handbook of Mathematical Functions.[Google Scholar]. 34 [50] Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S., Lupascu, A. Observation of floquet states in a strongly driven artificial atom. Physical review letters, 115 (13), 133601, 2015. 35, 43 [51] Deng, C., Shen, F., Ashhab, S., Lupascu, A. Dynamics of a two-level system under strong driving: Quantum-gate optimization based on floquet theory. Physical Review A, 94 (3), 032323, 2016. 35 [52] Magnus, W. On the exponential solution of differential equations for a linear operator. Communications on pure and applied mathematics, 7 (4), 649–673, 1954. 38, 46 [53] Brinkmann, A. Introduction to average hamiltonian theory. i. basics. Concepts in Magnetic Resonance Part A, 45 (6), e21414, 2016. 38 [54] Johansson, J. R., Nation, P. D., Nori, F. Qutip: An open-source python framework for the dynamics of open quantum systems. Computer Physics Communications, 183 (8), 1760–1772, 2012. 41, 49 [55] Rohatgi, A. Webplotdigitizer: Version 4.5, 2021. URL https://automeris.io/WebPlotDigitizer. 42 [56] Bukov, M., D’Alessio, L., Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering. Advances in Physics, 64 (2), 139–226, 2015. 46 [57] Rol, M., Battistel, F., Malinowski, F., Bultink, C., Tarasinski, B., Vollmer, R., et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Physical review letters, 123 (12), 120502, 2019. 50 [58] Cáceres, M. O. Non-equilibrium statistical physics with application to disordered systems, tomo 14. Springer, 2017. 51 [59] Hausinger, J., Grifoni, M. Dissipative two-level system under strong ac driving: A combination of floquet and van vleck perturbation theory. Physical Review A, 81 (2), 022117, 2010. 52 [60] Kohler, S., Dittrich, T., Hanggi, P. Floquet-markovian description of the parametrically driven, dissipative harmonic quantum oscillator. Physical Review E, 55 (1), 300, 1997. 53 [61] Moskalenko, I. N., Simakov, I. A., Abramov, N. N., Moskalev, D. O., Pishchimova, A. A., Smirnov, N. S., et al. High fidelity two-qubit gates on fluxoniums using a tunable coupler. arXiv preprint arXiv:2203.16302, 2022. 57 [62] Lendi, K. Evolution matrix in a coherence vector formulation for quantum markovian master equations of n-level systems. Journal of Physics A: Mathematical and General, 20 (1), 15, 1987. 61 [63] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272, 2020. 62 [64] Cooley, J. W., Tukey, J. W. An algorithm for the machine calculation of complex fourier series. Mathematics of computation, 19 (90), 297–301, 1965. 62 [65] Koch, C. P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S. J., et al. Quantum optimal control in quantum technologies. strategic report on current status, visions and goals for research in europe. EPJ Quantum Technology, 9 (1), 19, 2022. 67
Materias:Física > Información cuántica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1147
Depositado Por:Tamara Cárcamo
Depositado En:11 Abr 2023 15:24
Última Modificación:12 Jul 2023 10:58

Personal del repositorio solamente: página de control del documento