Figura 12.9: Productos de la cloración de la mezcla Sm$_2$O$_3$-CeO$_2$-C a 750$^\circ$C. (a) 30 min. (b) 4 h. (c) Patrón de SmCl$_3$ [84]. (d) Patrón de CeCl$_3$ [63]. (e) Patrón de SmOCl [77].

- Carbocloración de Sm$_2$O$_3$:
 - A 725$^\circ$C
 - Primera Etapa:
 \[\text{Sm}_2\text{O}_3(s) + \text{Cl}_2(g) + \frac{1}{2} \text{C}(s) = 2 \text{SmOCl}(s) + \frac{1}{2} \text{CO}_2(g) \] \hspace{1cm} (8.2)
 - Segunda Etapa:
 \[\text{SmOCl}(s) + \text{Cl}_2(g) + \frac{1}{2} \text{C}(s) = \text{SmCl}_3(1,s) + \frac{1}{2} \text{CO}_2(g) \] \hspace{1cm} (8.35-8.36)
 - Reacción Global:
 \[\frac{1}{3} \text{Sm}_2\text{O}_3(s) + \text{Cl}_2(g) + \frac{1}{2} \text{C}(s) = \frac{2}{3} \text{SmCl}_3(1,s) + \frac{1}{2} \text{CO}_2(g) \] \hspace{1cm} (8.14-8.16)
 - Entre 750$^\circ$C y 950$^\circ$C:
 - Primera Etapa:
Figura 12.10: Productos de la cloración de la mezcla Sm₂O₃-CeO₂-C a 800 °C. (a) 3 min. (b) 30 min. (c) Patrón de SmCl₃ [84]. (d) Patrón de CeCl₃ [63]. (e) Patrón de Sm₂O₃ [51]. (f) Patrón de CeO₂ [50]. (g) Patrón de SmOCl [77]

Esta etapa entre 725 °C y 850 °C tiene la estequiometría de la ec. (8.2). A temperaturas mayores, esta etapa también se verifica, pero no se puede establecer claramente su estequiometría.

◊ Segunda Etapa:

\[
\text{SmOCl (s) + Cl}_2(g) + C(s) = \text{SmCl}_3 (l,s) + CO (g) \quad (8.31-8.32)
\]

◊ Reacción Global:

\[
\frac{1}{3}\text{Sm}_2\text{O}_3(s) + \text{Cl}_2(g) + C(s) = \frac{2}{3}\text{SmCl}_3 (l,s) + CO (g) \quad (8.13-8.15)
\]

12.4.4. Balances de masa para este sistema

A modo ilustrativo, se darán dos ejemplos de cómo se realizaron los balances de masa en este sistema. Para ello se seleccionaron dos temperaturas representativas: 700 °C y 950 °C. En la figura 12.11 se muestra las curvas TG (Δm vs t) a 700 °C (a) y a 950 °C (b).

A 700 °C, la reacción de carbocloración de CeO₂ tiene su temperatura de
Capítulo 12. Carbocloración de la mezcla CeO$_2$-Sm$_2$O$_3$

Figura 12.11: (a) Productos de la cloración de la mezcla Sm$_2$O$_3$-CeO$_2$-C a 900 °C. (b) Patrón de CeCl$_3$[63]. (c) Patrón de SmCl$_3$[84]. (d) Patrón de CeO$_2$[50]. (e) Patrón de SmOCl [77].

comienzo, mientras que a esta misma temperatura, la reacción de carbocloración de Sm$_2$O$_3$ se lleva a cabo con la estequiométria de la ec. (8.14, 8.16) por lo tanto en la figura 12.12 (a) se considera que la formación del condensado corresponde íntegramente a SmCl$_3$, como se vió en la figura 12.8 b mientras que en esa figura se observa que el CeO$_2$ no reacciona. En el punto “A” de la figura 12.12 (a) los reactivos iniciales son los constituyentes de la mezcla de composición SCC1 (cuadro 3.3, cap. 3): Sm$_2$O$_3$(s), CeO$_2$(s) y C(s).

En ese punto ingresa el Cl$_2(g)$ al reactor. Entre “A” y “B” se produce la carbocloración de Sm$_2$O$_3$ de acuerdo a la ec. (8.14, 8.16), mientras que el CeO$_2$ presente no reacciona. En el punto “B” las sustancias presentes son SmCl$_3$(l), CeO$_2$(s) y C(s). Como la evaporación del SmCl$_3$ es muy lenta a esa temperatura (ver figura 12.12 (a)), el ingreso de Cl$_2$ es cerrado, y el SmCl$_3$ presente en la mezcla SmCl$_3$(l) - CeO$_2$(s) - C(s) es evaporado en flujo de Ar(g) a 950 °C hasta masa estable. Posteriormente el crisol con el sólido remanente (CeO$_2$(s)-C(s)) era pesado y la mezcla en el crisol era calcinada en aire a 950 °C para quemar el C(s), de manera tal de obtener las masas de CeO$_2$ y C(s). Un resumen de resultados se presenta en el cuadro 12.3.

En el caso de la reacción a 950 °C, la muestra inicial (punto “A” tiene la
mezcla $\text{Sm}_2\text{O}_3(s)$-$\text{CeO}_2(s)$-C(s) de composición SCC1 (cuadro 3.3, cap. 3). Al igual que en el caso anterior, en el punto “A” se produce el ingreso de $\text{Cl}_2(g)$ en el sistema. Entre “A” y “B” se produce la carbocloración de ambos óxidos, la de Sm_2O_3 de acuerdo a la ecs. (8.13, 8.15) y la de CeO_2 de acuerdo a la ecs. (6.4, 6.6). Entonces en “B” las sustancias presentes son $\text{SmCl}_3(l)$, $\text{CeCl}_3(l)$ y C(s). La mezcla de cloruros era evaporada a 950 °C (no se muestra toda la reacción en la fig. 12.11 (b)), hasta que la lectura de la termobalanza indicaba masa estable. Luego la muestra era pesada para determinar la masa del C(s) remanente en el crisol. Un resumen de los resultados se muestra en el cuadro 12.3.

12.5. Efecto de los procesos individuales sobre la reacción global

En esta sección discutiremos los efectos de la velocidad de reacción de los procesos individuales (carbocloración de Sm_2O_3 y carbocloración de CeO_2) sobre el proceso global (carbocloración de la mezcla Sm_2O_3-CeO_2).
Cuadro 12.3: Ejemplos de balance de masa a 700 °C y 950 °C.

<table>
<thead>
<tr>
<th>T, °C</th>
<th>Sustancia</th>
<th>Puntos en la (fig. 12.12), mg</th>
<th>Masas luego de evaporación en Ar(g)* y quemado en aire**, mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>700</td>
<td>Sm₂O₃</td>
<td>4,468</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CeO₂</td>
<td>4,468</td>
<td>4,468</td>
</tr>
<tr>
<td></td>
<td>CeCl₃</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SmCl₃</td>
<td>0</td>
<td>6,550</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,995</td>
<td>0,764</td>
</tr>
<tr>
<td>900</td>
<td>Sm₂O₃</td>
<td>4,490</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CeO₂</td>
<td>4,490</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CeCl₃</td>
<td>0</td>
<td>6,610</td>
</tr>
<tr>
<td></td>
<td>SmCl₃</td>
<td>0</td>
<td>6,429</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1,066</td>
<td>0,166</td>
</tr>
</tbody>
</table>

12.5.1. Temperaturas entre 400 °C y 650 °C

En la figura 12.13 se comparan las curvas TG isotérmicas a 400 °C y 600 °C para las reacciones de carbocloración de Sm₂O₃ y de la mezcla Sm₂O₃-CeO₂. Como se discutiera en las secciones anteriores, la carbocloración de CeO₂ no ocurre a temperaturas menores a 700 °C. Las curvas rotuladas con 1 corresponden a las de carbocloración de 2 mg de una mezcla Sm₂O₃(%89.50 m/m)-Ce(%10.50 m/m) y las rotuladas con 2 corresponden a las de carbocloración de 10 mg de una mezcla Sm₂O₃(%45 m/m)-CeO₂(%45 m/m)-C(%10 m/m).

Las curvas prácticamente se superponen en todo el rango de αSm₂O₃ analizado lo que nos indica que la presencia de CeO₂ no afecta la velocidad de carbocloración de Sm₂O₃ en la mezcla ya que no presenta mayores diferencias con la de la velocidad de carbocloración individual. En la tabla 12.4 se muestra un resumen comparativo de las velocidades obtenidas para ambas reacciones. En la primera columna se muestran las temperaturas utilizadas para la comparación, en la segunda columna se menciona la ecuación cuya estequiometría se considera para el cálculo, las tercera y cuarta nos muestran dos valores de τa seleccionados y la quinta y sexta nos indican la expresión utilizada para el cálculo y los valores de velocidad de reacción.

Los resultados analizados en esta sección, nos permiten concluir que en este rango de temperaturas la carbocloración de la mezcla Sm₂O₃-CeO₂ mantiene las mismas características de las carbocloraciones individuales de cada óxido: el CeO₂ no reacciona en este rango de temperaturas y la reacción de carboclo-
Figura 12.13: Comparación entre las velocidades de reacción entre 400 °C y 650 °C para (1)Sm$_2$O$_3$-C. (2) Sm$_2$O$_3$-CeO$_2$-C.

Cuadro 12.4: Comparación entre las velocidades de carbocloración de Sm$_2$O$_3$, Sm$_2$O$_3$-CeO$_2$ y CeO$_2$(3) en función del τ_α alcanzado.

<table>
<thead>
<tr>
<th>T°C</th>
<th>Sistema</th>
<th>Estequiometría</th>
<th>$\tau_{0.2},$(s)</th>
<th>$\tau_{0.5},$(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Sm$_2$O$_3$</td>
<td>Ec. 8.2</td>
<td>143,59</td>
<td>260,13</td>
</tr>
<tr>
<td></td>
<td>Sm$_2$O$_3$-CeO$_2$</td>
<td>Ec. 8.2</td>
<td>138,45</td>
<td>265,48</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Sm$_2$O$_3$</td>
<td>Ec. 8.2</td>
<td>7,26</td>
<td>13,38</td>
</tr>
<tr>
<td></td>
<td>Sm$_2$O$_3$-CeO$_2$</td>
<td>Ec. 8.2</td>
<td>14,56</td>
<td>27,53</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Sm$_2$O$_3$</td>
<td>Ec. 8.2</td>
<td>4,63</td>
<td>7,32</td>
</tr>
<tr>
<td></td>
<td>Sm$_2$O$_3$-CeO$_2$</td>
<td>Ec. 8.2</td>
<td>5,41</td>
<td>8,54</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La carbocloración de Sm$_2$O$_3$ ocurre con las mismas características de la reacción individual independientemente de la presencia del otro óxido, que a los efectos reactivos, se comporta como un diluyente inerte.
12.5.2. **Temperaturas entre 650 °C y 700 °C**

Para el análisis del efecto de los procesos individuales sobre la velocidad de reacción global en este rango de temperaturas, fueron seleccionados los dos valores extremos 650 °C y 700 °C. En la figura 12.14 se muestran las curvas termogravimétricas correspondientes a la carbocloración de 2 mg de (1) Sm₂O₃ (%89.50 m/m)-C(%10.50 m/m), (2) 10 mg de Sm₂O₃(45% m/m)-CeO₂(45%m/m)-C(%10 m/m).

Como fue deducido en el capítulo 6 y en la § 12.4.2 de este capítulo, la reacción de carbocloración de CeO₂ no ocurre a temperaturas inferiores a 700 °C. A 650

![Diagrama de carbocloración de Sm₂O₃ y CeO₂](image)

Figura 12.14: Comparación entre las velocidades de reacción entre 650 °C y 700 °C para (1)Sm₂O₃-C. (2) Sm₂O₃-CeO₂-C.

°C, la reacción correspondiente a la carbocloración de la mezcla mantiene las mismas características de la reacción individual discutida en la 8.5.3: una etapa rápida, correspondiente a la formación de SmOCl (fig. 12.5-a) y una segunda etapa donde parte de este SmOCl inicial es convertido a SmCl₃ (fig. 12.5-b). En la figura 12.14, la mezcla de óxidos alcanza un mayor α_{SmO₃} que la de la carbocloración del óxido individual. Esto no significa que se produzcan cambios en la reacción debido a la presencia de CeO₂, sino que lo que se observa es el efecto del mayor contenido de carbón en la mezcla inicial, lo que produce un aumento en el α alcanzado a un tiempo dado. Este mismo
fenómeno se repite a 700 °C, donde el mayor contenido de carbón produce un notable incremento en la velocidad de reacción en la segunda etapa, como fuera discutido en la § 8.7. Se puede concluir entonces que a presencia de CeO₂ no afecta la velocidad de reacción y que por lo tanto, la velocidad de reacción a temperaturas menores de 700 °C para la mezcla Sm₂O₃-CeO₂ puede expresarse sólo en función de la velocidad de reacción del Sm₂O₃.

12.5.3. Temperaturas entre 725 °C y 950 °C

En la figura 12.15 (a) y (b) se muestran las curvas TG a 725 °C y 800 °C correspondientes a la carbocloración de 2 mg de (1) Sm₂O₃(%89.50 m/m)-C(%10.50 m/m)(S2-cuadro 3.3), (2) 2 mg de CeO₂(%84 m/m)-C(%16 m/m)-(C3-cuadro 3.3) y (3) 10 mg de Sm₂O₃(%45 m/m)-CeO₂(45 %)-C(%10 m/m)(SCC1-cuadro 3.3).

![Diagrama](image)

Figura 12.15: Comparación entre las velocidades de reacción a 725 °C y 800 °C para (1) Sm₂O₃-C, (2) CeO₂-C y (3) Sm₂O₃-CeO₂-C.

El estudio es realizado para flujos totales de gas de 7,9 l.h⁻¹, bajo una $P_{Cl₂}$ igual a 30,3 kPa y un P_T igual a 101,3 kPa.

En este rango de temperaturas, las velocidades de carbocloración son expresadas en función del grado de reacción del carbón (α_c) el único reactivo sóli-
Capítulo 12. Carbocloración de la mezcla CeO$_2$-Sm$_2$O$_3$

...do cuya estequiometría tienen los tres sistemas en común y cuyo consumo está relacionado con cada óxido presente, a diferencia de lo ocurrido a temperaturas menores a 700 °C donde las velocidades de la carbocloración de la mezcla eran expresadas en función del $\alpha_{Sm_2O_3}$, el único óxido que reacciona debido a que la carbocloración del CeO$_2$ presente en la mezcla no ocurre.

A 725 °C, la carbocloración individual de CeO$_2$ (curva 2-figura 12.15 (a)) no se completa, tal como fuera discutido en la §6.9. En cambio, la carbocloración individual de Sm$_2$O$_3$ (curva 1-figura 12.14 (a) agota completamente el Sm$_2$O$_3$ presente en la mezcla. (§8.5.4). Debe notarse que el máximo α_C no es alcanzado por ninguna de las dos curvas, ya que este reactivo se encuentra en exceso estequiométrico en las mezclas correspondientes. A diferencia de lo ocurrido a temperaturas menores (400 °C y 700 °C, la carbocloración de la mezcla Sm$_2$O$_3$-CeO$_2$ ocurre con conversión completa de los dos óxidos constituyentes. El α_C llega a su máximo en este caso, porque este compuesto se halla en un porcentaje estequiométrico respecto de las estequiométrias definidas en las ec. (8.13, 8.15) y ec. (6.4, 6.6). Comparando la curva (3) con las (1) y (2) se puede observar entonces que la carbocloración de los dos óxidos en la mezcla ocurre simultáneamente, a mayor velocidad y con conversión completa para ambos óxidos manteniendo la misma estequiometría del sistema individual. La mayor cantidad de C en la mezcla Sm$_2$O$_3$-CeO$_2$-C respecto de las mezclas Sm$_2$O$_3$-C, CeO$_2$-C tiene su correlación con el aumento de la velocidad de reacción de la curva (3) y con la conversión completa de los dos óxidos presentes en la misma. El otro factor presente que explica la conversión de CeO$_2$ en la curva (3) es la formación de SnCl$_3$(l) el cual coalesce y puede arrastrar consigo el CeCl$_3$(s) formado, evitando que se deposite sobre el CeO$_2$ y favoreciendo la conversión completa de este óxido, a diferencia de lo ocurrido en el sistema individual de carbocloración de CeO$_2$ donde el CeCl$_3$(s) formado por reacción se depositaba sobre la superficie desnuda de CeO$_2$, constituyendo una barrera física que impedía la continuación de la reacción. Este tema fue discutido en detalle en la §6.9.

En la figura 12.15 (b) se realiza el mismo estudio a 800 °C. Aunque los sistemas individuales no alcanzan el máximo α_C debido a que las composiciones de las mezclas S2 y C3 (cuadro 3.3) contienen porcentajes en exceso de C sobre el consumo estequiométrico del óxido respectivo, si consumen todo el óxido disponible. El máximo α_C es alcanzado por la carbocloración de la mezcla de óxidos (curva 3-fig.12.15 (b). En este caso, el incremento de la velocidad de carbocloración es notable para el Sm$_2$O$_3$ pero está correlacionado con la formación de intermediarios de reacción los cuales dependen de la cantidad de C presente en la mezcla. Los balances de masa realizados para cada temperatura, junto con los resultados hallados a en sección §12.4 donde se estudian los
productos de reacción y estequiometría permiten confirmar que la carbocloración de los componentes de la mezcla Sm$_2$O$_3$-CeO$_2$ se lleva a cabo con las estequiometrías y en los rangos de temperatura de los sistemas individuales.

En el cuadro 12.5 se comparan las velocidades de las curvas termogravimétricas mostradas en la figura 12.15. En el caso del sistema Sm$_2$O$_3$-CeO$_2$ las estequiometrías utilizadas corresponden a las de las carbocloraciones individuales. Podemos ver que el sistema mezcla tiene mayor velocidad de reacción que

<table>
<thead>
<tr>
<th>T $^\circ$C</th>
<th>Sistema</th>
<th>Estequiometría</th>
<th>$\tau_{0.2}$</th>
<th>$\tau_{0.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>725</td>
<td>Sm$_2$O$_3$</td>
<td>Ec. 8.13,8.15</td>
<td>11</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Sm$_2$O$_3$-CeO$_2$</td>
<td>Ec. 8.13, 8.15, 6.4, 6.6</td>
<td>8</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$</td>
<td>6.4, 6.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>800</td>
<td>Sm$_2$O$_3$</td>
<td>Ec. 8.13,8.15</td>
<td>10</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Sm$_2$O$_3$-CeO$_2$</td>
<td>Ec. 8.13,8.15, 6.4, 6.6</td>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$</td>
<td>6.4, 6.6</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

los sistemas individuales, lo cual puede observarse si se comparan los tiempos necesarios para que el Sm$_2$O$_3$ involucrado en los dos sistemas reaccione. Por otra parte, la reacción de CeO$_2$ se lleva completamente a cabo, a diferencia de lo que ocurriría en el sistema individual. Ambos efectos están correlacionados con la presencia de una cantidad mayor de C en el sistema y con la formación de un cloruro líquido (SmCl$_3$) el cual coalesce y favorece el contacto de los óxidos con los agentes clorantes.

12.6. Termogravimetría de la carbocloración de Sm$_2$O$_3$-CeO$_2$

Considerando que cada uno de los óxidos de la mezcla reacciona independientemente de la presencia del otro y que las estequiometrías en el rango de temperaturas estudiado es la correspondiente a la del sistema individual, se acepta que la estequiometría global de la carbocloración de la mezcla es la estequiometría de la suma de cada uno de los sistemas individuales.
12.6.1. Expresión para cálculos entre 400 °C y 700 °C

En este rango de temperaturas, es posible seguir la evolución temporal de esta reacción sólo a través del cambio de masa de Sm$_2$O$_3$(s) utilizando el sistema termogravimétrico (§ 3.1.1). Este cambio de masa puede ser expresado en función de $\alpha_{Sm_2O_3}$, el grado de reacción, como fue explicado en la sección § 2.1.1. Los productos de reacción son distintos a lo largo del rango de temperaturas, como fue analizado en la sección 12.4 y con más detalle en las figuras 12.12 y 12.13 y en el cuadro 12.3 por lo que la estequiometría no es única.

Los cambios de masa de Sm$_2$O$_3$ durante la carbocloración pueden ser expresados a través de:

$$\alpha_{Sm_2O_3} = -\frac{\Delta M}{m_{0Sm_2O_3}}$$ (12.1)

En esta ecuación, $\alpha_{Sm_2O_3}$, ΔM y $m_{0Sm_2O_3}$ representan el grado de reacción, el cambio de masa observado en la termobalanza y la masa inicial del Sm$_2$O$_3$, respectivamente. Como experimentalmente se verifica que $\Delta M = f . \Delta m_{0Sm_2O_3}$ donde f es un coeficiente de corrección estequiométrica (que depende de la estequiometría de la reacción involucrada, y por ende del rango de temperaturas). f es igual a 7,131 a temperaturas entre 400 °C y 625 °C y 2,71 entre 650 °C y 700 °C. Este coeficiente relaciona el cambio de masa del óxido con el cambio de masa observado en la termobalanza. Utilizando esta conversión podemos transformar la ec. (12.1) en:

$$\alpha_{Sm_2O_3} = -\frac{f . \Delta m_{0Sm_2O_3}}{m_{0Sm_2O_3}}$$ (12.2)

Entonces, la velocidad de reacción puede expresarse como:

$$R_{carboclo,Sm_2O_3-CeO_2} = \frac{d\alpha_{Sm_2O_3}}{dt} = -\frac{f}{m_{0Sm_2O_3}} . \frac{dm}{dt} (s^{-1})$$ (12.3)

La velocidad de reacción expresada en función del consumo de moles de Cl$_2$ es:

$$R_{carboclo,Cl_2} = \frac{dn_{Cl_2}}{dt} = \frac{m_{0Sm_2O_3}}{P.F.(Sm_2O_3)} . R_{carboclo,Sm_2O_3-CeO_2}(molCl_2.s^{-1})$$ (12.4)

donde n(Cl$_2$) son los moles de Cl$_2$ y PF(Sm$_2$O$_3$) es el peso fórmula de este óxido.

12.6.2. Expresión para cálculos entre 700 °C y 950 °C.

En este rango de temperaturas, la evolución de la reacción puede ser seguida a través de la evolución del cambio de masa de C(s) utilizando el sistema
termogravimétrico (§ 3.1.1), debido a que las reacciones de carbocloración de \(\text{Sm}_2\text{O}_3 \) y \(\text{CeO}_2 \) no ocurren en forma sucesiva, sino simultánea. Este cambio de masa puede ser expresado en función de \(\alpha_C \), el grado de reacción, como fue explicado en la sección § 2.1.1.

Los cambios de masa de la carbocloración son expresados en función de la pérdida de masa de la fracción en masa de C presente en la mezcla inicial a través de:

\[
\alpha_C = -\frac{\Delta M}{m_{0C}} \quad (12.5)
\]

En esta ecuación, \(\alpha_C \), \(\Delta M \) y \(m_{0C} \) representan el grado de reacción, el cambio de masa observado en la termobalanza, y la masa inicial del \(\text{CeO}_2 \), respectivamente. Como experimentalmente se verifica que \(\Delta M = f \cdot \Delta m_C \) donde f es un coeficiente de corrección estequiométrica (obtenido de las ecs. 6.4, 6.6, 8.13,8.15 y 8.14, 8.16) que relaciona el cambio de masa de \(\text{CeO}_2 \), \(\text{Sm}_2\text{O}_3 \) y de C con el cambio de masa observado en la termobalanza, podemos transformar la ec. (12.5), en:

\[
\alpha_C = -\frac{f \cdot \Delta m_{0C}}{m_{0C}} \quad (12.6)
\]

Entonces, la velocidad de reacción puede expresarse como:

\[
R_{\text{carboclo}_3\text{Sm}_{2}\text{O}_3\text{CeO}_2} = \frac{d\alpha_C}{dt} = -\frac{f}{m_{0C}} \cdot \frac{dm}{dt} \quad (s^{-1}) \quad (12.7)
\]

Como f depende de la estequiometría de las reacciones de carbocloración de \(\text{CeO}_2 \) y \(\text{Sm}_2\text{O}_3 \) cambiará su valor con el cambio de estequiometría. Entre 700 \(^\circ \text{C} \) y 725 \(^\circ \text{C} \) su valor es: 0.470 y entre 750 \(^\circ \text{C} \) y 950 \(^\circ \text{C} \) su valor es: 0.54.

La velocidad de reacción expresada en función del consumo de moles de \(\text{Cl}_2 \) es:

\[
R_{\text{carboclo}_3\text{Cl}_2} = \frac{dn_{\text{Cl}_2}}{dt} = \frac{3m_{0C}}{4PF(C)} \cdot R_{\text{carboclo}_3\text{Sm}_2\text{O}_3\text{CeO}_2} (mol\text{Cl}_2.s^{-1}) \quad (12.8)
\]

donde \(n(\text{Cl}_2) \) son los moles de \(\text{Cl}_2 \) y PF(C) es el peso atómico del carbón.

12.7. Efecto de la temperatura

12.7.1. Temperaturas entre 400 \(^\circ \text{C} \) y 625 \(^\circ \text{C} \)

En la figura 12.16 se muestra el efecto de la temperatura para valores entre 400 \(^\circ \text{C} \) y 625 \(^\circ \text{C} \). En este rango de temperaturas la reacción de carbocloración
sólo se produce para el \(\text{Sm}_2\text{O}_3 \), ya que como se discutiera en la §12.4. el \(\text{CeO}_2 \) tiene su temperatura de inicio en 700 °C.

Como se observa en esta figura, la reacción de carboxilación de la mezcla ocurre rápidamente en una etapa alcanzando el máximo valor posible de \(\alpha_{\text{Sm}_2\text{O}_3} \) en tiempos menores de \(1,10 \times 10^3 \) s. Los cálculos de velocidad en este rango de temperaturas fueron realizados con la estequiometría de la ec. (8.2). A medida que la temperatura aumenta el efecto sobre la velocidad de reacción es menos marcado, lo cual puede deducirse de la figura y del cuadro 12.5 donde se comparan los valores de \(\tau_{0,5} \) y \(\tau_{1,0} \). Este efecto es similar al de la carboxilación individual de \(\text{Sm}_2\text{O}_3 \) discutido en la 8.5.2.

![Gráfico de la reacción de carboxilación](image)

Figura 12.16: Efecto de la temperatura entre 400 °C y 625 °C para la carboxilación de \(\text{Sm}_2\text{O}_3\text{-CeO}_2 \). La estequiometría utilizada es la de la ec. (8.2). En este rango de temperaturas f es igual a 7,131.

12.7.2. Temperaturas entre 650 °C y 700 °C

El efecto sobre la velocidad de carboxilación de \(\text{Sm}_2\text{O}_3\text{-CeO}_2 \) de esta variable en este rango se muestra en la figura 12.17.

Como fuera discutido en la §12.5, en este rango de temperaturas se produce la formación sucesiva de \(\text{SmOCl} \) en la primera etapa seguida por la formación...
Figura 12.17: Efecto de la temperatura entre 650 °C y 700 °C para la carbocloración de Sm$_2$O$_3$-CeO$_2$. La estequiometría utilizada es la de las ec. 8.13, 8.15. En este rango de temperaturas f es igual a 2,71.

de SmCl$_3$ ya que el CeO$_2$ no reacciona en este rango. La reacción es expresada en función del $\alpha_{Sm_2O_3}$ de acuerdo a la estequiometría de las ec. 8.13, 8.15. En forma similar a lo sucedido en el sistema individual del Sm$_2$O$_3$, en este rango de temperaturas, se produce la carbocloración en forma sucesiva de SmOCl y SmCl$_3$ (fig. 12.5). A 650°C, la formación de SmCl$_3$ es incompleta, mientras que a mayores temperaturas el $\alpha_{Sm_2O_3}$ alcanza el grado de reacción máximo. Podemos ver el efecto que tienen el C sobre la velocidad de reacción a través de la forma de las curvas, aumentando la velocidad de reacción y suavizando los quebrados que se presentan a contenidos menores de C (Fig. 8.9). Este efecto fue analizado para este sistema en la §8.7.

12.7.3. Temperaturas entre 700 °C y 950 °C

En este rango de temperaturas se produce la carbocloración simultánea de Sm$_2$O$_3$ y CeO$_2$ por lo que el cálculo de las velocidad de la reacción se expresa en función del C, el reactivo que las reacciones tienen en común y cuya evolución puede ser seguida en la termobalanza. Las curvas se muestran en la figura 12.18. Se puede observar que las curvas de carbocloración de la mezcla Sm$_2$O$_3$-
Figura 12.18: Efecto de la temperatura entre 700 °C y 950 °C para la carbocloración de Sm$_2$O$_3$-CeO$_2$. La estequiometría utilizada es la de las ec. 8.14, 8.16 y 6.4, 6.6. Entre 700 °C y 725 °C f es igual a 0.47. Entre 750 °C y 950 °C f es igual a 0.54.

CeO$_2$ mantiene las mismas características de las curvas de carbocloración de Sm$_2$O$_3$-C (figura 8.11) y CeO$_2$-C (figura 6.11): la formación de Sm$_2$O$_3$ se lleva a cabo en dos etapas: la primera rápida del orden de segundos de reacción donde el SmOCl es producido (figura 12.10) simultánea con la formación de CeCl$_3$ y una segunda etapa cuyos productos de reacción finales son CeCl$_3$ y SmCl$_3$. Claramente puede notarse que el efecto de la temperatura es marcadamente mayor en la segunda etapa. Como se explicará en el cuadro 12.4 el aumento de la velocidad de reacción con respecto a los dos procesos individuales está relacionado con la mayor cantidad de C disponible. Por otro lado, el aumento del grado de reacción para el CeO$_2$ en todo el rango de temperaturas, está estrechamente relacionado con la formación de SmCl$_3$(l) el cual favorece la conversión de este óxido, ya que coalesce y arrastra el CeCl$_3$(s) liberando la superficie del óxido para su posterior reacción con el agente clorante Cl$_2$(g)-C(s).
12.8. Posibilidad de separación utilizando este método

Al igual que lo sucedido en el capítulo 11, la mezcla Sm₂O₃-CeO₂ puede ser transformada en productos menos estables térmica y termodinámicamente: cloruros y oxidchloruros. Una vez formados estos compuestos puede utilizarse la temperatura como variable de separación, ya que dependiendo del rango de temperaturas involucrado, los cloruros pueden ser separados en el mismo paso de la cloración o en uno posterior basado en un proceso unitario puramente físico. Pero el método de separación dependerá de la temperatura de operación y de los productos formados. No analizaremos en este capítulo el caso en que la reacción se produce a temperaturas menores a 650 °C, ya que los productos de reacción en este sistema son iguales a los analizados en el capítulo anterior (cloración directa de Sm₂O₃-CeO₂) y las conclusiones son aplicables a este sistema en el mismo rango de temperaturas, por lo tanto el método de separación propuesto mantiene las mismas condiciones generales que aquél propuesto en la §11.8.

12.9. Método de separación

La propuesta del método de separación para este sistema mantiene la misma idea generada en el capítulo anterior (§11.8.1): la separación de los óxidos a través de la cloración de uno de los dos constituyentes y su conversión a productos de menor estabilidad. En este sistema y a diferencia del anterior la reactividad de los óxidos con el agente clorante (Cl₂(g)-C(s)) es mayor ya el Sm₂O₃ presenta un nuevo producto de cloración (SmCl₃) y el CeO₂ reacciona en la mezcla formando rápidamente su propio cloruro CeCl₃. Esta reactividad es manifiesta a temperaturas superiores a 700 °C donde la carbocloración de ambos óxidos es simultánea y con la obtención final de los tricloruros respectivos. Habiendo diseñado un dispositivo y un procedimiento experimental para la separación de estos óxidos en el capítulo anterior, en este capítulo trataremos de centrar nuestro análisis en la posibilidad de aprovechar las diferencias en la reactividad y formación de productos de cada óxido a fin de favorecer la separación.

12.9.1. Método de separación entre 625 °C y 700 °C

En este rango de temperaturas, el Sm₂O₃ en la mezcla Sm₂O₃-CeO₂ es convertido a una mezcla SmOCl-SmCl₃. El primero es producto de la primera etapa
de la carboxloración de Sm₂O₃ y el segundo es producto de la carboxloración del SmOCl mientras que en este rango de temperaturas, el CeO₂ presente en la mezcla no reacciona.

En esta nueva mezcla, la fracción de SmOCl y SmCl₃ presente resulta ser función del contenido de C en la mezcla inicial Sm₂O₃-CeO₂-C y de la temperatura de operación. En este caso, la propuesta en el método de separación, utilizando el dispositivo experimental de la sección §11.8.2 incluye un ciclo que contiene los siguientes pasos:

1. Cloración de la mezcla Sm₂O₃-CeO₂-C en el rango entre 625°C - 700°C. Como resultado se obtiene como producto una nueva mezcla de sólidos formada por SmOCl-SmCl₃-CeO₂, donde la relación entre los dos primeros constituyentes es función del contenido de C y de la temperatura.

2. Se corta el flujo de Cl₂ y se evapora el SmCl₃ formado en atmósfera gaseosa inerte a temperaturas superiores a 700°C.

3. Se reinicia el ciclo en el paso 1, con una nueva mezcla SmOCl-CeO₂.

Esta nueva mezcla puede ser carboxlorada y enriquecida en CeO₂ hasta separación completa de ambos óxidos.

12.9.2. Método de separación a 700°C

En este punto se logra la separación óptima de la mezcla. Para contenidos de C superiores al consumo estequiométrico de la formación de SmCl₃ (ec. 8.13, 8.15) la formación de este triclorouro es completa y como esta temperatura es la de inicio de reacción de la carboxloración de CeO₂, la cual es más lenta que la de carboxloración de Sm₂O₃ (figura 12.14), el C presente en la mezcla es agotado por la formación de SmCl₃ dejando como resultado de la operación una mezcla SmCl₃-CeO₂, cuya separación puede ser llevada a cabo utilizando un procedimiento similar al del punto anterior.

12.9.3. Método de separación entre 700°C y 950°C

En este rango, la reacción de carboxloración de los dos óxidos se lleva a cabo en el orden de minutos arrojando como producto los dos triclorouros: SmCl₃ y CeCl₃. Una vez formados, ambos clorouros pueden ser separados aprovechando sus diferencias en valores de punto de fusión de 681°C y 816,19°C y Pᵥ del orden de 1.24.10⁻⁵kPa y 1.68.10⁻³kPa a 850°C para SmCl₃ y CeCl₃, respectivamente. Esta separación puede ser hecha bajo una atmósfera inerte (N₂) o en vacío. En este caso el ciclo descrito en el sistema anterior se transforma
en una combinación de dos procesos unitarios en el que la carbocloración de ambos óxidos es seguida de una separación diferencial de los cloruros.

12.10. Resumen y conclusiones del capítulo

En este capítulo se analizaron las interacciones presentes en el sistema Sm$_2$O$_3$-CeO$_2$-C-Cl$_2$. La carbocloración de la mezcla de óxidos es analizada en conjunto con los resultados obtenidos en los sistemas individuales (cap. 6 y 8). Se determinó que no se producen marcadas interacciones entre los dos óxidos constituyentes del sistema: mantienen las temperaturas individuales de inicio de reacción, las estequiometrías individuales y los rangos de temperatura de reacción respectivos. A partir de 700 °C, la carbocloración de CeO$_2$ se suma a la de Sm$_2$O$_3$. A diferencia del sistema individual discutido en el cap. 6, la carbocloración de CeO$_2$ en la mezcla se lleva a cabo en forma completa a temperaturas entre 725 °C y 800 °C lo cual es atribuido a la formación de SmCl$_3$(l) el cual coalesce y favorece el contacto entre el gas reactivo y el CeO$_2$. Por otra parte, el incremento en el grado de conversión que sufre el CeO$_2$ en este rango de temperaturas es también atribuido a la mayor cantidad de C disponible para reaccionar por unidad de área. Para obtener la separación de los óxidos se proponen distintos ciclos para los cuales se utiliza el dispositivo y procedimiento experimental utilizado en el capítulo 11 (§) y que está basado en los productos de reacción obtenidos a distintas temperaturas. Un resumen de los mismos se presenta a continuación:

- Temperaturas 400 °C y 625 °C. Este es un caso idéntico al descrito en el § 11.7., ya que los productos de reacción son similares a los de la cloración directa, sistema que fue descrito en esa sección.

- Temperaturas 650 °C y 700 °C. Debido a que el CeO$_2$ no reacciona a temperaturas menores a 700 °C, la separación de los dos óxidos está enfocada en la formación de SmCl$_3$, el cual puede ser evaporado de una mezcla hipotética CeO$_2$-SmOCl-SmCl$_3$, la fracción en la mezcla de este cloruro es mayor conforme aumentan la temperatura y el contenido de C. Una temperatura de 700 °C y un contenido de C estequiométrico de acuerdo a las ec. (8.14-8.16) representan valores óptimos. Alcanzando estos valores óptimos la formación de SmCl$_3$ puede ser total. En este caso, el ciclo se transforma en dos pasos sucesivos:

1. Carbocloración de Sm$_2$O$_3$-CeO$_2$ como resultado se obtiene una mezcla de sólidos conformada por SmOCl-SmCl$_3$-CeO$_2$. El óptimo en este rango de temperatura se logra para contenidos de C estequiométricos con la formación de SmCl$_3$ y a 700 °C donde la formación de
este cloruro es completa. A esta temperatura se inicia la reacción de
carbocloración de CeO₂, cuya velocidad de formación de CeCl₃ es
mucho menor que la de formación de SmCl₃.

2. Evaporación del SmCl₃ formado o destilación de este compuesto en
vacío dejando CeO₂ remanente.

Como resultado de este proceso se obtiene la separación total de los óxi-
dos, donde el Sm₂O₃ es transformado completamente en SmCl₃.

- Temperaturas entre 725 °C y 950 °C. En este rango ambos óxidos son
convertidos a sus tricloruros, rápidamente lo que conduce a la formación
de una mezcla SmCl₃-CeCl₃. Posteriormente los cloruros pueden ser sepa-
rados por evaporación diferencial o destilación en vacío aprovechando las
diferencias en sus propiedades físicas, entre ellas el punto de fusión y la Pᵥ.
A este efecto, se pueden utilizar los resultados obtenidos en los capítulos
4 y 9, donde los cloruros son evaporados en la mezcla gaseosa Ar(g)-
Cl₂(g). Otra alternativa válida para la separación total de los cloruros es
la condensación selectiva.
Capítulo 12. Carbocloración de la mezcla CeO$_2$-Sm$_2$O$_3$
Capítulo 13
Conclusiones Generales y Perspectivas

13.1. Conclusiones Generales

La HIPÓTESIS que diera origen a esta TESIS, comprendida en la Primera Parte del Proyecto DELTA de la Comisión Nacional de Energía Atómica, planteaba la posibilidad de estudiar la separación de dos nucleidos de Lantánidos, representativos de los lantánidos livianos, a través de la cloración de sus óxidos con distintos agentes clorantes.

La elección de los nucleidos a separar recayó en dos lantánidos representativos: Sm y Ce. Entre las razones que la motivaron se pueden mencionar las diferencias en los estados estables de oxidación de ambos, ya que el Ce presenta los estados 3+ y 4+ y el Sm los estados 3+ y 2+ y en los valores de vidas medias de los nucleidos involucrados (§ 1.4).

Como estos elementos no existen naturalmente en el estado metálico como el Au o la Ag, sino que debido a su marcada afinidad por el oxígeno (§ 1.1-1.4) se presentan como carbonatos y óxidos, estos últimos compuestos fueron seleccionados para el análisis de la posibilidad de separación. A este efecto, se seleccionaron dos agentes clorantes diferentes (Cl₂(g) y Cl₂(g)-C(s)) (§ 1.3).

Bajo esta propuesta, y ante la escasez de datos bibliográficos referidos a la cinética de cloración de los óxidos (§ 4.2, 5.1, 6.1, 7.1, 8.1, 11.1 y 12.1) se tuvo que plantear el análisis de la probabilidad de la separación de las mezclas Sm₂O₃-CeO₂ con los dos agentes seleccionados, lo que dio origen a dos sistemas Sm₂O₃(s)-CeO₂(s)-Cl₂(g) (cap. 11) y Sm₂O₃(s)-CeO₂(s)-Cl₂(g)-C(s) (cap. 12). Para poder comprender las interacciones en éstos dos, fue necesario el estudio de los siguientes sistemas individuales:

257
• Evaporación de CeCl₃ (cap. 4) Este sistema fue analizado por su marcada influencia sobre la velocidad de cloración de CeO₂ (cap. 5). Sus resultados son de utilidad para determinar la velocidad de evaporación de este compuesto en distintas mezclas que involucran a este cloruro. Los resultados hallados, además del aporte original que ofrecen, fueron modelados matemáticamente, lo cual facilita el análisis de sistemas en los cuales se varíen parámetros tales como masa, temperatura y P_{gas reactivo}.

• Cloración de CeO₂ (cap. 5). Los resultados hallados nos indican que este sistema reacciona a partir de 800 °C y ocurre con una lenta velocidad de cloración controlada por la reacción y por la evaporación del CeCl₃ formado. El estudio, llevado a cabo entre 800 °C y 950 °C permitió determinar que la reacción tiene una E_{ap} igual a 190 kJ.mol⁻¹.

• Carbocloración de CeO₂ (cap.6). Este sistema tiene una temperatura de inicio de reacción de 700 °C arrojando CeCl₃(s, l) como producto. La velocidad de reacción aumenta con la temperatura y con el contenido de C. La formación de CeCl₃(l) favorece el avance de la reacción y la misma se completa a temperaturas mayores de 800 °C para contenidos de C superiores al estequiométrico. La reacción es controlada por transferencia de masa externa, debido a que con los flujos totales de gas disponibles en el equipo no es posible evitar el fenómeno de agotamiento gaseoso.

• Cloración de Sm₂O₃. A diferencia del CeO₂, que reacciona a 800 °C, este óxido tiene su temperatura de inicio de cloración a 190 °C. La reacción aumenta su velocidad con el incremento de temperatura presentando dos etapas en paralelo afectadas por control mixto o químico: entre 200 °C - 270 °C y 270 °C - 350 °C con E_{ap} de 20-40 kJ.mol⁻¹ y 129 ± 1 kJ.mol⁻¹. A temperaturas superiores, entre 350 °C y 950 °C la E_{ap} hallada es igual a 12 ± 7 kJ.mol⁻¹. Esta última etapa es controlada por transferencia de masa en la capa límite.

• Carbocloración de Sm₂O₃. Este sistema fue analizado entre 200 °C y 950 °C. La estequiometría no es única en todo el rango de temperaturas. A temperaturas menores a 400 °C, la reacción se lleva a cabo es la cloración directa de Sm₂O₃. Entre ésta y 625 °C, ocurre la formación de SmOCl por carbocloración en una sola etapa. A temperaturas mayores se manifiestan las dos etapas de carbocloración: en la primera se forma SmOCl en la segunda SmCl₃. La relación entre ambos productos y la velocidad de formación son función de la temperatura, el flujo total de gas y el contenido de C en la mezcla.

• Evaporación de SmCl₃. Este sistema fue estudiado a partir de 700 °C. Es un sistema que transcurre en condiciones cercanas al equilibrio, con valores de E_a del orden de su ΔH de evaporación en el rango de temperaturas
correspondiente.
Si bien este sistema no interfiere con la cloración del óxido, su estudio es importante para el análisis de la velocidad de separación del cloruro en condiciones dinámicas. Al igual que en el caso del CeCl₃, esta evaporación fue modelada matemáticamente, lo cual facilita su simulación en condiciones distintas a las experimentales.

- Descomposición térmica de SmOCl. A diferencia de los cloruros los cuales se evaporan en forma congruente, este oxiclururo se descompone con el aumento de temperatura.

Su estequiométría de descomposición varía con la atmósfera donde ésta se lleva a cabo y uno de los productos de la descomposición, el Sm₂O₃, forma fases cuya composición depende de la temperatura de descomposición del oxiclururo. Estas características de separación son utilizadas para favorecer la separación parcial del núcleido de Sm contenido en la mezcla problema Sm₂O₃-CeO₂

Una vez estudiados los sistemas individuales (capítulos 4-9), los sistemas mezcla Sm₂O₃-CeO₂ fueron analizados en conjunto con los resultados previamente obtenidos. Se determinó que, en líneas generales, los sistemas individuales óxido-agente clorante mantienen sus temperaturas de inicio, estequiométrías y rangos de reacción propios, lo cual nos indica que la interacción entre los óxidos es mínima.

Esta baja interacción está dada por las grandes diferencias presentes en las temperaturas de inicio y cinéticas de reacción para cada óxido, condiciones en las que se disminuyen las interacciones entre los óxidos en condiciones reactivas lo cual favorece la ocurrencia de las reacciones en forma independiente.

Estas condiciones son aprovechadas en los métodos de separación propuestos para estos óxidos, etapa que constituye un paso posterior a los objetivos iniciales planteados de esta TESIS. Los métodos de separación con cada agente presentan las siguientes características:

- Separación de Sm₂O₃(s)-CeO₂(s) utilizando Cl₂(g): La propuesta está basada en un ciclo de cloración a bajas temperaturas (400⁰C) donde sólo se clora rápidamente el Sm₂O₃(s) de la mezcla. Esta cloración arroja como producto una nueva mezcla SmOCl(s)-CeO₂(s). Esta cloración es seguida por una descomposición térmica del SmOCl a temperaturas mayores en atmósfera inerte (N₂(g)).

- Separación de Sm₂O₃(s)-CeO₂(s) utilizando Cl₂(g)-C(s): La propuesta tiene varias opciones de acuerdo a la temperatura de opearación:
o A temperaturas menores a 625 °C, el esquema de separación es similar al de la cloración directa.

o Entre 650 °C y 700 °C, se propone un ciclo similar al del rango de temperaturas menores o un proceso unitario en dos pasos, dependiendo del contenido de C en la mezcla. El óptimo en este proceso se halla a 700 °C con la formación de una mezcla SmCl₃(l)-CeO₂(s), donde el C involucrado reacciona estequiométricamente con el Sm₂O₃ para formar el tricloruro, el cual es posteriormente evaporado del sistema en un medio inerte o a temperaturas menores a 800 °C, temperatura debajo de la cual CeO₂ permanece sin reaccionar.

o Entre 725 °C y 950 °C. El proceso de separación está basado en la carboxcloración de la mezcla de óxidos para formar una mezcla de SmCl₃(l)-CeCl₃(l, s) la cual puede ser separada explotando las diferencias en sus propiedades físicas utilizando métodos como destilación fraccionada o en vacío.

La elección de uno u otro método, que lleva a la separación parcial o total de los óxidos constituyentes de la mezcla, dependerá de consideraciones económicas, de diseño y de disponibilidad de equipos.

13.2. Perspectivas

Los resultados alcanzados en esta TESIS dejan abiertos muchos interrogantes a resolver que pueden constituir el núcleo de trabajos posteriores. Podemos mencionar los siguientes:

- extensión de este análisis de la separación involucrando otros óxidos representativos de los núcleidos de lantániidos pesados tales como los de Lu o Tb, de forma tal de extender el análisis a sistemas similares a los involucrados en el combustible gastado.

- obtención y simulación de la separación simultánea de más cloruros para evaluar la factibilidad económica de la separación por destilación fraccionada o en vacío.

- formación de óxidos tales como el Sm₂O₃ (o sus similares del grupo de los lantániidos) a partir de distintos precursores tales como los oxicloruros ya que este punto es de pleno interés tecnológico por sus aplicaciones en catalisis.

- Análisis de las reacciones de carboxcloración bajo control químico a fin de facilitar la determinación de intermediarios de reacción y el mecanismo intrínseco de cada una de ellas.
- Mejoras en el proceso experimental de separación y su traslado al manejo a volúmenes mayores a través del “scaling up” del diseño inicial.

- Se pone en evidencia la necesidad de medir coeficientes y constantes de velocidad específicas para realizar modelos matemáticos más avanzados y finalmente medir los coeficientes en forma aislada para establecer datos cuantitativos.
Lista de Símbolos

Símbolos latinos

\(a \) Coeficiente estequiométrico.
\(a_s \) Interfase de reacción; (cm²).
\(A \) Especie química.
\(A_i \) Área de interfase; (cm²).
\(A_b \) Factor de absorción.
\(A_e \) Coeficiente preexponencial.
\(b \) Coeficiente estequiométrico.
\(B \) Especie química.
\(c \) Coeficiente estequiométrico.
\(C \) Especie química.
\(d \) Coeficiente estequiométrico.
\(d_{hkl} \) Espaciado interplanar correspondiente a la familia de planos hkl.
\(D \) Especie química.
\(D_j \) Coeficiente de difusión en la fase gaseosa de la especie j-ésima; (cm².s⁻¹).
\(D_{ji} \) Coeficiente de difusión binario en la mezcla gaseosa j-i de la especie j-ésima; (cm².s⁻¹).
\(D_{ji{k}} \) Coeficiente de difusión ternario en la mezcla gaseosa j-i-k de la especie j-ésima; (cm².s⁻¹)

263
\(E_a \) Energía de activación; (kJ.mol\(^{-1}\)).

\(E_{ap} \) Energía de activación aparente; (kJ.mol\(^{-1}\)).

\(E_{ag} \) Energía de activación global; (kJ.mol\(^{-1}\)).

\(f \) Factor de corrección estequiométrico.

\(F_{hkl} \) Factor de estructura para las \(h,k,l \) ésimas reflexiones de Bragg.

\((g) \) Estado de agregación (gas).

\(k_g \) Coeficiente de transferencia de masa global; (cm.s\(^{-1}\)).

\(k_{gg} \) Coeficiente de transferencia de masa global; (cm.s\(^{-1}\)).

\(k_s \) Coeficiente de reacción superficial; (cm\(^2\).s\(^{-1}\)).

\(I_j \) Intensidad de la reflexión de la especie \(\epsilon \)-ésima en el paso \(j \)-ésimo.

\((l) \) Estado de agregación (líquido).

\(L \) Longitud equivalente; (cm).

\(\text{Ln} \) Lantánidos, elementos comprendidos entre los NA 57-71.

\(m \) Masa; (mg).

\(N \) Número de fases presentes.

\(N_j \) Flujo molar de la especie \(j \)-ésima, (mol.s\(^{-1}\))

\(P \) Presión; (kPa).

\(P_j \) Presión parcial de la especie \(j \)-ésima; (kPa).

\(P_{js} \) Presión parcial de la especie \(j \)-ésima en la superficie; (kPa).

\(P_{jsg} \) Presión parcial de la especie \(j \)-ésima en el seno del gas; (kPa).

\(P_T \) Presión total; (kPa).

\(P_{vjk} \) Presión de Vapor de la especie \(j \)-ésima; (kPa).

\(P_j \) Presión parcial de la especie \(j \)-ésima; (kPa).

\(P_{hkl} \) Función de orientación preferencial.

\(P.F. \) Peso fórmula de la fase \(\epsilon \)-ésima; (gr. mol\(^{-1}\)).

264
r Radio equivalente, longitud equivalente; (cm).

r_0 Radio equivalente inicial; (cm).

r_{mj} Velocidad de reacción de la especie j-ésima; (mg. s$^{-1}$.cm$^{-2}$).

$r_{y,j}$ Velocidad del proceso y-ésimo para la especie j-ésima; (mg.s$^{-1}$).

R Coeficiente de correlación de cuadrados mínimos.

R_{cm} Residuo de cuadrados mínimos.

R_e Número de Reynolds; (adimensional).

R_{evap} Velocidad de evaporación de la especie j-ésima; (mg. s$^{-1}$).

(s) Estado de agregación (sólido).

S_c Número de Schmidt; (adimensional).

S_e Factor de escala de la especie cristalina e-ésima.

t Tiempo; (s).

T Temperatura; (0C, K).

T_A Temperatura ambiente, (0C, K).

TG Termogravimetría.

V Volumen; (cm3)

V_m Volumen molar; (mol.cm$^{-3}$)

w_j Inversa de la intensidad observada en el paso j-ésimo.

W_e Fracción en masa de la fase e-ésima.

Z Número de unidades fórmula en la celda unitaria.
Símbolos Griegos

α_j Grado de reacción de la especie j-ésima.

$\alpha_{máx,t}$ Grado de reacción máximo para un tiempo dado.

β_j Fase de la especie j-ésima.

δ Espesor representativo de la capa límite, (cm).

ΔG^0 Cambio de Energía libre en condiciones estándar; (kJ.mol$^{-1}$).

Δm Variación de masa observada en la termobalanza; (mg).

ϵ Especie cristalina.

γ Fase.

λ Longitud de onda; (Å).

ν Velocidad de flujo; (cm.s$^{-1}$).

μ Viscosidad cinemática; (cm2.s$^{-1}$).

μ_i^j Potencial químico de la especie j-ésima en la fase i-ésima.

ρ_j Densidad de la especie j-ésima; (mg.cm$^{-3}$).

ρ_{jap} Densidad aparente de la especie j-ésima; (mg.cm$^{-3}$).

τ Tiempo para el cual el proceso analizado se completa; (s).

τ_α Tiempo para el cual se alcanza el grado de reacción α.

$\tau_{\alpha,máx}$ Tiempo para el cual se alcanza el máximo α.

θ Ángulo de reflexión.

ϕ_i Función del perfil de la reflexión i-ésima.

ε_j Porosidad del compuesto j-ésimo.

$\varepsilon_{j,ap}$ Porosidad aparente del compuesto j-ésimo.

ξ Factor de microabsorción.
Bibliografía

[43] Chapter 12 en Ref. 41.
[44] Chapter 13 en Ref. 41.

[53] Vol. 18, Ch. 125 p. 418-420 en Ref. 5.

[83] Ref 17, Cap. 2, p. 143-149.

Lista de Publicaciones

La Presente Tesis dio origen a los siguientes trabajos:

En Publicaciones Periódicas

En Proceedings de Congresos

Menciones y Agradecimientos

Debo agradecer a la Comisión Nacional de Energía Atómica por la beca doctoral, de la que actualmente soy beneficiario, otorgada para trabajar en la División Cinética Química del Centro Atómico Bariloche bajo la dirección de A. Bohe y D. Pasquevich, quienes dirigieron la Tesis, gestionaron el material de trabajo y pusieron el equipamiento de la División Cinética Química a disposición para esta Tesis y a la Fundación Antorchas por la beca para los viajes de finalización de Doctorado.

Además, quiero agradecer a las siguientes personas, por los distintos aportes que me hicieran, que me ayudaron a plasmar esta Tesis:

A Julio Andrade Gamboa, por introducirme al mundo de la cristalografía y métodos de difracción, materia en la que tuve el placer de ser su asistente y por las inolvidables discusiones sobre “flatland” y la mejor forma de aprender “el método Rietveld”, por las discusiones sobre cinética de las reacciones heterogéneas, curso en el cual tuve el privilegio de contarle como asistente y por darme el impulso para que “me largara” a dar cursos sobre cinética heterogénea. Por la revisión crítica de este trabajo y por el aprendizaje compartido en el campo de la educación y por algo mucho más importante: su amistad desinteresada y su enorme predisposición para escuchar y responder a mis múltiples interrogantes.

A Liliana Morales y Adriana Serquis, por auxiliarme y darme múltiples ideas (¡acompañadas de las consecuentes órdenes!) sobre la preparación y elección de parámetros para pasar las muestras de DRX, por las discusiones sobre aplicaciones de rayos X y la ayuda brindada en la elaboración de los primeros portamuestras. A Liliana por escucharme en los momentos de duda y auxiliarme en los momentos de necesidad, por su sincera y desinteresada amistad y por obligarme a aprender \LaTeX{}!!! y a utilizar el \FinePrintPDFFactoryPro!

A Alberto Caneiro, por la ayuda brindada cuando se rompió “el reactor de la balanza”, por el préstamo del equipamiento de su división y por sus útiles sugerencias y aliento permanentes.

A Julio Andrade Gamboa, Carlos González Oliver, Abel Kestelman, Sergio Ribeiro y Marcos Sade por la enseñanza y ámbito de discusión brindados en los cursos de Doctorado.

A Ernesto Scerbo, por su gran predisposición y ayuda para “pasar las muestras de rX”. A Cacho Cotaro y Silvia Dutrús, por la tremenda disposición para lograr
que mis muestras “no se cargarán” durante la toma de imágenes en el SEM. A los tres, por su buena onda, predisposición y amistad.

A Francisco Fürst (Tuco) y Enrique Aburto (Quique), por los excelentes trabajos realizados en vidrio y cuarzo, por el arreglo del reactor de cuarzo de la balanza y de las cápsulas de formas caprichosas que no dudaron en realizar, por la buena onda y excelente predisposición para escuchar sugerencias y sugerir modificaciones a los trabajos.

A Fabiola Alvarez, por su amistad, los mates con agua sin hervir y su ilimitada predisposición a alcanzarle los papers y datos que siempre olvidaba buscar y qué necesitaba durante el proceso de escritura.

A Fernanda Alonso, Inés Casper y Graciela Laserna, por su disposición y eficiencia para resolver rápidamente trámites administrativos referente a los viajes científicos.

A Hugo Antenao, Gabriela Cirelli, Alejandra Cohen, Graciela Docabo y Marisa Grisel Velazco Aldao, por la ayuda en la búsqueda y pedidos bibliográficos, por la buena onda y predisposición halladas.

A Martha Iparraguirre, Marcela Margutti y Ana María Quintanilla por la excelente predisposición y ayuda brindadas en los trámites administrativos en el Instituto Balseiro.

A Adela Liebhart, por la excelente predisposición y ayuda brindadas en los trámites administrativos para la realización de los viajes científicos.

A Ann Borsinger, Nora Rodríguez Grondona y Linda Yael por las múltiples sugerencias y enseñanzas en los cursos del TOEFL.

A Carlos Gómez y Marcos Sade, por el préstamo de los hornos para hacer las últimas mediciones necesarias para terminar el doctorado.

A Pablo Arganaraz, por ayudarme con ‘proyector del TEMADI’ cada vez que tuve que dar una charla de avance.

Al personal de la división y del edificio de Ciencias de Materiales, por las horas compartidas.

A Débora Buñach, Silvia Dutrús y Andrea Rizzo por compartir conmigo las horas de aprendizaje (¡y cálculos!) en “Activación Neutrónica”. A Liliana Morales y Silvia Dutrús, por las horas compartidas en el estudio (¡y cálculos!) de “Introducción a la Cristalografía y Elementos de Difracción”. A Andrea, por los momentos compartidos en el Centro Comunitario. A todas, por su sincera amistad.

A mis amigos, con los que compartí los primeros tiempos en el pabellón, mates, asados, guitarra, playa y coro y más tarde cumpleaños y bodas: Gabriela Alejandro, Mario Barbaglia, Ana Basset, Sebastián Bouzat, Débora Buñach, Karina Chatah, Mariel Galassi, Griselda García, Alexander Hernández, Zulema Mereles, Liliana Morales, Dario Niebieskikwiat, Sebastián Otranto y Andrea Rizzo.

A Armando Marino, Jorge Pellegrina y Margarita Ruda por los mates en la oficina.
A aquellos que se transformaron en mis amigos compartiendo el espacio laboral y el espacio educacional: Fabiola Álvarez, Julio Andrade, César Bilicich, Carlos Cotaro, Cristian Cugno, Carlos Delpiano, Georgina De Micco, Silvia Dutrús, Gastón Fouga, Nicolás Grumbaum, Mariel Michelena, Liliana Mogni y Ernesto Scerbo.

Y finalmente, a quien estuvo pacientemente junto a mí durante todo el proceso de escritura: Eugenia, mi Amor y mi Vida.