Estudio Raman de ultra-alta resolución de la dinámica de fonones acústicos confinados en cavidades. / Ultra-high resolution Raman investigation of the dynamics of cavity-confined acoustic phonons.

Rozas, Guillermo (2011) Estudio Raman de ultra-alta resolución de la dinámica de fonones acústicos confinados en cavidades. / Ultra-high resolution Raman investigation of the dynamics of cavity-confined acoustic phonons. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

Los fonones en el rango de frecuencias de terahertz (THz), con longitudes de onda de pocos nanómetros y energías del orden de algunos meV, son de gran interés tanto desde el punto de vista básico como aplicado. Las propiedades de los fonones a estas frecuencias tienen un rol importante en el transporte eléctrico y la propagación del calor, y su interacción con los electrones y los fotones los hace candidatos para aplicaciones en optoelectrónica y nanoscopía. Sin embargo, existe poca información sobre cómo las limitaciones intrínsecas asociadas a los fonones de alta frecuencia, como la anarmonicidad y los defectos en interfaces, afectan la eficiencia de los dispositivos acústicos de THz. En este trabajo, presentamos un estudio por dispersión Raman de nanocavidades acústicas de THz basadas en multicapas semiconductoras. Los dispositivos acústicos analizados están embebidos dentro de microcavidades ópticas planas, a fin de aprovechar los efectos de amplificación y cambio de reglas de selección asociados a ellas. Utilizamos para estudiar las cavidades acústicas una nueva técnica de espectroscopía Raman de ultra-alta resolución, desarrollada especificamente durante esta tesis, alcanzando resoluciones de hasta 0,008 cm"-1 sobre rangos espectrales de más de 5 cm"-1. En primer lugar, investigamos tanto teórica como experimentalmente cómo las cavidades ópticas afectan las propiedades ópticas, electrónicas y de dispersión Raman del sistema. En el caso de los efectos puramente fotónicos, utilizamos un modelo macroscópico completo de la sección eficaz Raman, que considera el cálculo exacto de los modos vibracionales y electromagnéticos de la estructura. El mismo nos permite describir en detalle la intensidad de la dispersión y las reglas de selección Raman a energías y geometrías arbitrarias, incluyendo la fuerte amplificación de la señal en el modo óptico de cavidad y los efectos presentes en el borde del gap óptico. En el caso de los efectos electrónicos, estudiamos la interacción fuerte entre el modo óptico confinado y los estados excitónicos, analizando la formación de polaritones de cavidad y los cambios que estos producen sobre el proceso Raman para fonones acústicos. La utilización de fonones acústicos nos permite trabajar experimentalmente en doble resonancia con un mismo estado polaritónico y sobre todas las ramas polaritónicas, incluyendo la rama inferior, que es la relevante para la dinámica de polaritones en estados condensados. Los perfiles de amplificación Raman correspondientes son reproducidos correctamente utilizando un modelo de factorización de la dispersión Raman mediada por polaritones, que considera fenomenológicamente las vidas medias de los estados involucrados. En segundo lugar, la novedosa técnica de espectroscopía Raman de ultra-alta resolución desarrollada nos permite estudiar las cavidades acústicas de THz con un detalle sin precedentes. Midiendo el ancho de línea del modo acústico confinado de cavidad, demostramos por primera vez en forma experimental que el factor de calidad de estas nanoestructuras fonónicas puede ser controlado sistemáticamente por diseño. Experimentos en función de la temperatura muestran que el efecto de la anarmonicidad es marginal, aún a temperatura ambiente y frecuencias de THz. Basados en simulaciones de la dispersión Raman, mostramos que la eficiencia de estas cavidades acústicas de THz está limitada por el ensanchamiento inhomogéneo originado en fluctuaciones sub-monocapa en las interfaces. Sin embargo, los resultados presentados establecen claramente el potencial de las nanocavidades acústicas semiconductoras como resonadores para fonones de alta energía, con factores de calidad medidos de Q ~ 260 a 1 THz y de ~ 1200 a 237 GHz.

Resumen en inglés

Acoustic phonons in the terahertz (THz) frequency range, with wavelengths of a few nanometers and energies of the order of a few meV, have great importance both in basic research and applications. The properties of phonons at these frequencies have an important role in electric transport and heat propagation, and their interaction with electrons and photons make them candidates for optoelectronic and nanoscopy applications. However, there is little information on how the intrinsic limitations associated with high frequency phonons, like anharmonicity and interface defects, affect the effciency of THz acoustic devices. We present in this work a Raman scattering study of THz acoustic nanocavities based on semiconductor multilayers. The studied acoustic devices are embedded inside planar optical microcavities, to take advantage of the amplification effects and the change in selection rules associated to them. To study the acoustic cavities we use a new ultra-high resolution Raman scattering technique specically developed during this thesis, reaching resolutions down to 0.008 cm"-1 over spectral ranges of more than 5 cm"-1. First, we investigate both theoretically and experimentally how the optical cavity affects the optical, electronic, and Raman scattering properties of the system. In the case of the purely photonic effects, we use a complete macroscopic model of the Raman cross section, which considers the exact calculation of the structure's vibrational and electromagnetic modes. This model allows us to describe in detail the scattering intensity and the Raman selection rules at arbitrary energies and geometries, including the strong signal amplification in the optical cavity mode and the effects present at the edge of the optical gap. In the case of the electronic effects, we study the strong interaction between the confined optical mode and the excitonic states, analysing the formation of cavity polaritons and the changes they produce on the Raman process for acoustic phonons. The use of acoustic phonons allows us to work experimentally in double resonance with a single polaritonic state and over all the powhich is relevant for the dynamics of polaritons in condensed states. The corresponding Raman amplification profiles are correctly reproduced using a factorization model of the polariton-mediated Raman scattering, which considers the lifetimes of the involved states in a phenomenological way. On the other hand, the newly developed ultra-high resolution Raman scattering technique allows us to study the THz acoustic cavities with unprecedented detail. By measuring the line-width of the cavity-confined acoustic mode we experimentally demonstrate for the first time that the quality factor for these phononic nanostructures can be systematically controlled by design. Temperature dependent experiments show that the effect of anharmonicity is marginal, even at room temperature and THz frequencies. Based on Raman scattering simulations, we show that the quality factor is limited by inhomogeneous broadening originated on sub-monolayer interface fluctuations. However, the presented results clearly establish the potential of semiconductor acoustic nanocavities as resonators for high energy phonons, with measured quality factors of Q ~ 260 at 1 THz and ~ 1200 at 237 GHz.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Referencias:[1] M. Cardona y G. Güntherodt, eds., Light Scattering in Solids V: Superlattices and Other Microstructures, vol. 66 de Topics in Applied Physics (Springer-Verlag, Berlin, 1989). [2] A. A. Balandin, Nanophononics: Phonon engineering in nanostructures and nanodevices, Journal of Nanoscience and Nanotechnology 5, 1015 (2005). [3] N. D. Lanzillotti-Kimura, A. Fainstein, A. Lema^itre, y B. Jusserand, Nanowave devices for terahertz acoustic phonons, Applied Physics Letters 88, 083113 (2006). [4] P. Giannozzi, S. de Gironcoli, P. Pavone, y S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Physical Review B 43, 7231 (1991). [5] S. Baroni, P. Giannozzi, y E. Molinari, Phonon spectra of ultrathin GaAs/AlAs superlattices: An ab initio calculation, Physical Review B 41, 3870 (1990). [6] S. Baroni, S. de Gironcoli, A. Dal Corso, y P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics 73, 515 (2001). [7] A. Debernardi, S. Baroni, y E. Molinari, Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory, Physical Review Letters 75, 1819 (1995). [8] C. Ulrich, E. Anastassakis, K. Syassen, A. Debernardi, y M. Cardona, Lifetime of phonons in semiconductors under pressure, Physical Review Letters 78, 1283 (1997). [9] P. Y. Yu y M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001), 3ra ed. [10] W. Chen, H. J. Maris, Z. R. Wasilewski, y S. Tamura, Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K, Philosophical Magazine B 70, 687 (1994). [11] W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, et al., Thermalconductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique, Physical Review B 59, 8105 (1999). [12] B. C. Daly, H. J. Maris, K. Imamura, y S. Tamura, Molecular dynamics calculation of the thermal conductivity of superlattices, Physical Review B 66, 024301 (2002). [13] C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, et al., Acoustically driven storage of light in a quantum well, Physical Review Letters 78, 4099 (1997). [14] K.-H. Lin, G.-W. Chern, Y.-K. Huang, y C.-K. Sun, Terahertz electron distribution modulation in piezoelectric In_xGa_1-xN/GaN multiple quantum wells using coherent acoustic nanowaves, Physical Review B 70, 073307 (2004). [15] A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, y M. Bayer, Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures, Physical Review Letters 97, 037401 (2006). [16] K.-H. Lin, C.-T. Yu, S.-Z. Sun, H.-P. Chen, C.-C. Pan, et al., Two-dimensional nanoultrasonic imaging by using acoustic nanowaves, Applied Physics Letters 89, 043106 (2006). [17] K. Lin, C. Lai, C. Pan, J. Chyi, J. Shi, et al., Spatial manipulation of nanoacoustic waves with nanoscale spot sizes, Nature Nanotechnology 2, 704 (2007). [18] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lema^itre, O. Mauguin, et al., Acoustic phonon nanowave devices based on aperiodic multilayers: Experiments and theory, Physical Review B 76, 174301 (2007). [19] M. Cardona, ed., Light Scattering in Solids I: Introductory Concepts, vol. 8 de Topics in Applied Physics (Springer-Verlag, Berlin, 1983), 2da ed. [20] T. Ruf, Phonon Raman Scattering in Semiconductors, Quantum Wells and Superlattices: Basic Results and Applications, vol. 142 de Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998). [21] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, et al., Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, Science 313, 1614 (2006). [22] G. Rozas, M. F. Pascual Winter, A. Fainstein, B. Jusserand, P. O. Vaccaro, et al., Acoustic phonon Raman scattering induced by a built-in electric field, Physical Review B 77, 165314 (2008). [23] R. Vacher, H. Sussner, y S. Hunklinger, Brillouin scattering in vitreous silica below 1 K, Physical Review B 21, 5850 (1980). [24] P. A. Knipp y T. L. Reinecke, Coupling between electrons and acoustic phonons in semiconductor nanostructures, Physical Review B 52, 5923 (1995). [25] C.-K. Sun, J.-C. Liang, y X.-Y. Yu, Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric elds, Physical Review Letters 84, 179 (2000). [26] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Raman scattering enhancement by optical connement in a semiconductor planar microcavity, Physical Review Letters 75, 3764 (1995). [27] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Raman effciency in a planar microcavity, Physical Review B 53, R13287 (1996). [28] M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Confi- nement of acoustical vibrations in a semiconductor planar phonon cavity, Physical Review Letters 89, 227402 (2002). [29] P. Lacharmoise, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Optical cavity enhancement of light-sound interaction in acoustic phonon cavities, Applied Physics Letters 84, 3274 (2004). [30] M. S. Skolnick, T. A. Fisher, y D. M. Whittaker, Strong coupling phenomena in quantum microcavity structures, Semiconductor Science and Technology 13, 645 (1998). [31] J. J. Baumberg y L. V. (eds.), Special Issue on Microcavities, Semiconductor Science and Technology 18, S279 (2003). [32] A. Fainstein y B. Jusserand, Raman Scattering in Resonant Cavities, en Light Scattering in Solids IX: Novel Materials and Techniques, editado por M. Cardona y R. Merlin (Springer-Verlag, Berlin, 2007), vol. 108 de Topics in Applied Physics. [33] A. Mlayah, O. Marco, J.-R. Huntzinger, A. Zwick, R. Carles, et al., Optical ampli fication of Raman scattering in a GaAs bulk microcavity, Journal of Physics: Condensed Matter 10, 9535 (1998). [34] L. A. Kuzik, V. A. Yakovlev, y G. Mattei, Raman scattering enhancement in porous silicon microcavity, Applied Physics Letters 75, 1830 (1999). [35] T. Kipp, L. Rolf, C. Schüller, D. Endler, C. Heyn, et al., Selectively enhanced inelastic light scattering of electronic excitations in a semiconductor microcavity, Physical Review B 63, 195304 (2001). [36] R. E. Slusher y C. Weisbuch, Optical microcavities in condensed matter systems, Solid State Communications 92, 149 (1994). [37] K. Iga, Vertical-Cavity Surface-Emitting Laser: Its conception and evolution, Japanese Journal of Applied Physics 47, 1 (2008). [38] C. Weisbuch, M. Nishioka, A. Ishikawa, y Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Physical Review Letters 69, 3314 (1992). [39] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, et al., Bose- Einstein condensation of exciton polaritons, Nature 443, 409 (2006). [40] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, y K.West, Bose-Einstein condensation of microcavity polaritons in a trap, Science 316, 1007 (2007). [41] L. S. Dang, D. Heger, R. André, F. Boeuf, y R. Romestain, Stimulation of polariton photoluminescence in semiconductor microcavity, Physical Review Letters 81, 3920 (1998). [42] P. Senellart y J. Bloch, Nonlinear emission of microcavity polaritons in the low density regime, Physical Review Letters 82, 1233 (1999). [43] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Cavity-Polariton mediated resonant Raman scattering, Physical Review Letters 78, 1576 (1997). [44] W. R. Tribe, D. Baxter, M. S. Skolnick, D. J. Mowbray, T. A. Fisher, et al., In- and out-going resonant Raman scattering from the cavity polaritons of semiconductor quantum microcavities, Physical Review B 56, 12429 (1997). [45] A. Fainstein, B. Jusserand, y R. André, Polariton effects on first-order Raman scattering in II-VI microcavities, Physical Review B 57, R9439 (1998). [46] A. Bruchhausen, A. Fainstein, B. Jusserand, y R. André, Polariton mediated resonant Raman scattering in II-VI microcavities: Exciton lifetime effects, Physical Review B 68, 205326 (2003). [47] A. Bruchhausen, L. M. L. Hilario, A. A. Aligia, A. M. Lobos, A. Fainstein, et al., Microcavity exciton-polariton mediated Raman scattering: Experiments and theory, Physical Review B 78, 125326 (2008). [48] V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, y W. Wiegmann, Selective transmission of high-frequency phonons by a superlattice: The \dielectric" phonon filter, Physical Review Letters 43, 2012 (1979). [49] A. Huynh, N. D. Lanzillotti-Kimura, B. Jusserand, B. Perrin, A. Fainstein, et al., Subterahertz phonon dynamics in acoustic nanocavities, Physical Review Letters 97, 115502 (2006). [50] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, y A. Lema^itre, Resonant Raman scattering of nanocavity-conned acoustic phonons, Physical Review B 79, 035404 (2009). [51] M. F. Pascual Winter, G. Rozas, A. Fainstein, B. Jusserand, B. Perrin, et al., Selective optical generation of coherent acoustic nanocavity modes, Physical Review Letters 98, 265501 (2007). [52] N. D. Lanzillotti-Kimura, A. Fainstein, A. Huynh, B. Perrin, B. Jusserand, et al., Coherent generation of acoustic phonons in an optical microcavity, Physical Review Letters 99, 217405 (2007). [53] A. Bartels, T. Dekorsy, H. Kurz, y K. Köhler, Coherent control of acoustic phonons in semiconductor superlattices, Applied Physics Letters 72, 2844 (1998). [54] Ü. Özgür, C.-W. Lee, y H. O. Everitt, Control of coherent acoustic phonons in semiconductor quantum wells, Physical Review Letters 86, 5604 (2001). [55] P. Hu, Stimulated emission of 29-cm"-1 phonons in ruby, Physical Review Letters 44, 417 (1980). [56] P. A. Fokker, J. I. Dijkhuis, y H. W. de Wijn, Stimulated emission of phonons in an acoustical cavity, Physical Review B 55, 2925 (1997). [57] S. M. Komirenko, K. W. Kim, A. A. Demidenko, V. A. Kochelap, y M. A. Stroscio, Generation and amplication of sub-THz coherent acoustic phonons under the drift of two-dimensional electrons, Physical Review B 62, 7459 (2000). [58] I. Camps, S. S. Makler, H. M. Pastawski, y L. E. F. Foa Torres, GaAs-Al_xGa_1-xAs double-barrier heterostructure phonon laser: A full quantum treatment, Physical Review B 64, 125311 (2001). [59] A. J. Kent, R. N. Kini, N. M. Stanton, M. Henini, B. A. Glavin, et al., Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: Observation of phonon resonance, Physical Review Letters 96, 215504 (2006). [60] K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, et al., A phonon laser, Nature Physics 5, 682 (2009). [61] R. P. Beardsley, A. V. Akimov, M. Henini, y A. J. Kent, Coherent terahertz sound amplification and spectral line narrowing in a Stark ladder superlattice, Physical Review Letters 104, 085501 (2010). [62] I. S. Grudinin, H. Lee, O. Painter, y K. J. Vahala, Phonon laser action in a tunable two-level system, Physical Review Letters 104, 083901 (2010). [63] P. G. Klemens, Decay of high-frequency longitudinal phonons, Journal of Applied Physics 38, 4573 (1967). [64] S.-i. Tamura, Spontaneous decay rates of LA phonons in quasi-isotropic solids, Physical Review B 31, 2574 (1985). [65] C. Herring, Role of low-energy phonons in thermal conduction, Physical Review 95, 954 (1954). [66] P. G. Klemens, Anharmonic attenuation of localized lattice vibrations, Physical Review 122, 443 (1961). [67] K. Termentzidis, P. Chantrenne, J. Duquesne, y A. Saci, Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces, Journal of Physics: Condensed Matter 22, 475001 (2010). Capítulo 1 [1] M. Born y E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diraction of Light (Pergamon Press, Oxford, 1975), 5ta ed. [2] M. Cardona y G. Güntherodt, eds., Light Scattering in Solids V: Superlattices and Other Microstructures, vol. 66 de Topics in Applied Physics (Springer-Verlag, Berlin, 1989). [3] K. Iga, Vertical-Cavity Surface-Emitting Laser: Its conception and evolution, Japanese Journal of Applied Physics 47, 1 (2008). [4] N. D. Lanzillotti-Kimura, Dispositivos para hipersonido y cavidades acústicas acopladas, Trabajo especial de Ingeniería Nuclear, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2005). [5] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3ra ed. [6] W. Hayes y R. Loudon, Scattering of Light by Crystals (John Wiley & Sons, New York, 1978). [7] G. Rozas, Dispositivos de fonones acusticos en nanoestructuras semiconductoras piezoelectricas, Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2005). [8] B. Jusserand y M. Cardona, Raman Spectroscopy of Vibrations in Superlattices, en Light Scattering in Solids V: Superlattices and Other Microstructures, editado por M. Cardona y G. Güntherodt (Springer-Verlag, Berlin, 1989), vol. 66 de Topics in Applied Physics. [9] A. Fainstein y B. Jusserand, Raman Scattering in Resonant Cavities, en Light Scattering in Solids IX: Novel Materials and Techniques, editado por M. Cardona y R. Merlin (Springer-Verlag, Berlin, 2007), vol. 108 de Topics in Applied Physics. [10] P. Giannozzi, S. de Gironcoli, P. Pavone, y S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Physical Review B 43, 7231 (1991). [11] S. M. Rytov, Acoustical properties of a thinly laminated medium, Soviet Physics: Acoustics 2, 68 (1956), [Akust. Zh. 2, 71 (1956)]. [12] N. W. Ashcroft y N. D. Mermin, Solid State Physics (Harcourt Brace College Publishers, Fort Worth, 1976). [13] D. I. Babic y S. W. Corzine, Analytic expressions for the re ection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors, Institute of Electrical and Electronics Engineers Journal of Quantum Electronics 28, 514 (1992). [14] O. Svelto, Principles of Lasers (Plenum Press, New York, 1976). [15] R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, y C. Weisbuch, Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities, Physical Review A 48, 2246 (1993). [16] P. Y. Yu y M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001), 3ra ed. [17] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, et al., Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting, Physical Review B 59, 5082 (1999). [18] A. Kastler, Atomes à i'lntérieur d'un interférométre Perot-Fabry, Applied Optics 1, 17 (1962). [19] B. E. A. Saleh y M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 1991). [20] G. García-Calderón, A. Rubio, y R. Romo, Decay widths for double-barrier resonant tunneling, Journal of Applied Physics 69, 3612 (1991). [21] T. Ruf, Phonon Raman Scattering in Semiconductors, Quantum Wells and Superlattices: Basic Results and Applications, vol. 142 de Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998). [22] I. Vurgaftman, J. R. Meyer, y L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89, 5815 (2001). [23] S. Jorda, Quantum theory of the interaction of quantum-well excitons with electromagnetic waveguide modes, Physical Review B 50, 2283 (1994). [24] Z. V. Popovi´c, J. Spitzer, T. Ruf, M. Cardona, R. Nötzel, et al., Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [311] direction, Physical Review B 48, 1659 (1993). [25] J. Sapriel, J. C. Michel, J. C. Tolédano, R. Vacher, J. Kervarec, et al., Light scattering from vibrational modes in GaAs-Ga_1-xA_lxAs superlattices and related alloys, Physical Review B 28, 2007 (1983). [26] B. Jusserand, D. Paquet, F. Mollot, F. Alexandre, y G. L. Roux, In uence of the supercell structure on the folded acoustical Raman line intensities in superlattices, Physical Review B 35, 2808 (1987). [27] C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, et al., Folded acoustic and quantized optic phonons in (GaAl)As superlattices, Physical Review B 31, 2080 (1985). [28] J. He, B. Djafari-Rouhani, y J. Sapriel, Theory of light scattering by longitudinalacoustic phonons in superlattices, Physical Review B 37, 4086 (1988). [29] A. Bruchhausen, Amplificación de la dispersión Raman en sistemas nanoestructurados, Tesis de Doctorado en Física, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2008). [30] A. Bruchhausen (2011), sin publicar. [31] M. F. Pascual Winter, Ingeniería de fonones en nanoestructuras semiconductoras, Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2004). [32] M. Trigo, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Finite-size effects on acoustic phonons in GaAs/AlAs superlattices, Physical Review B 66, 125311 (2002). [33] N. D. Lanzillotti-Kimura, A. Fainstein, A. Lema^ire, y B. Jusserand, Nanowave devices for terahertz acoustic phonons, Applied Physics Letters 88, 083113 (2006). [34] A. Fainstein y B. Jusserand, Performance of semiconductor planar microcavities for Raman-scattering enhancement, Physical Review B 57, 2402 (1998). [35] M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Confi- nement of acoustical vibrations in a semiconductor planar phonon cavity, Physical Review Letters 89, 227402 (2002). [36] K. Gottfried, Quantum mechanics: Fundamentals (Addison-Wesley, New York, 1966), 1ra ed. [37] A. Mlayah, J.-R. Huntzinger, y N. Large, Raman-Brillouin light scattering in lowdimensional systems: Photoelastic model versus quantum model, Physical Review B 75, 245303 (2007). [38] N. Large, J.-R. Huntzinger, J. Aizpurua, B. Jusserand, y A. Mlayah, Raman- Brillouin electronic density in short-period superlattices, Physical Review B 82, 075310 (2010). Capítulo 2 [1] A. Fainstein y B. Jusserand, Raman Scattering in Resonant Cavities, en Light Scattering in Solids IX: Novel Materials and Techniques, editado por M. Cardona y R. Merlin (Springer-Verlag, Berlin, 2007), vol. 108 de Topics in Applied Physics. [2] H.-B. Lin y A. J. Campillo, cw Nonlinear optics in droplet microcavities displaying enhanced gain, Physical Review Letters 73, 2440 (1994). [3] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Raman scattering enhancement by optical connement in a semiconductor planar microcavity, Physical Review Letters 75, 3764 (1995). [4] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Raman effciency in a planar microcavity, Physical Review B 53, R13287 (1996). [5] A. Mlayah, O. Marco, J.-R. Huntzinger, A. Zwick, R. Carles, et al., Optical ampli fication of Raman scattering in a GaAs bulk microcavity, Journal of Physics: Condensed Matter 10, 9535 (1998). [6] A. Fainstein y B. Jusserand, Performance of semiconductor planar microcavities for Raman-scattering enhancement, Physical Review B 57, 2402 (1998). [7] A. Fainstein, M. Trigo, D. Oliva, B. Jusserand, T. Freixanet, et al., Standing optical phonons in finite semiconductor superlattices studied by resonant Raman scattering in a double microcavity, Physical Review Letters 86, 3411 (2001). [8] M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Confi- nement of acoustical vibrations in a semiconductor planar phonon cavity, Physical Review Letters 89, 227402 (2002). [9] P. Lacharmoise, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Optical cavity enhancement of light-sound interaction in acoustic phonon cavities, Applied Physics Letters 84, 3274 (2004). [10] M. S. Skolnick, T. A. Fisher, y D. M. Whittaker, Strong coupling phenomena in quantum microcavity structures, Semiconductor Science and Technology 13, 645 (1998). [11] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Cavity-Polariton mediated resonant Raman scattering, Physical Review Letters 78, 1576 (1997). [12] W. R. Tribe, D. Baxter, M. S. Skolnick, D. J. Mowbray, T. A. Fisher, et al., In- and out-going resonant Raman scattering from the cavity polaritons of semiconductor quantum microcavities, Physical Review B 56, 12429 (1997). [13] A. Fainstein, B. Jusserand, y R. Andre, Polariton effects on rst-order Raman scattering in II-VI microcavities, Physical Review B 57, R9439 (1998). [14] A. Bruchhausen, A. Fainstein, B. Jusserand, y R. André, Polariton mediated resonant Raman scattering in II-VI microcavities: Exciton lifetime effects, Physical Review B 68, 205326 (2003). [15] A. Kastler, Atomes à i'lntèrieur d'un interfèromètre Perot-Fabry, Applied Optics 1, 17 (1962). [16] R. J. Potton, Reciprocity in optics, Reports on Progress in Physics 67, 717 (2004). [17] B. Jusserand, D. Paquet, F. Mollot, F. Alexandre, y G. L. Roux, In uence of the supercell structure on the folded acoustical Raman line intensities in superlattices, Physical Review B 35, 2808 (1987). [18] I. Abram, S. Iung, R. Kuszelewicz, G. Le Roux, C. Licoppe, et al., Nonguiding halfwave semiconductor microcavities displaying the exciton-photon mode splitting, Applied Physics Letters 65, 2516 (1994). [19] B. Jusserand y M. Cardona, Raman Spectroscopy of Vibrations in Superlattices, en Light Scattering in Solids V: Superlattices and Other Microstructures, editado por M. Cardona y G. Güntherodt (Springer-Verlag, Berlin, 1989), vol. 66 de Topics in Applied Physics. [20] B. Jusserand, F. Alexandre, J. Dubard, y D. Paquet, Raman scattering study of acoustical zone-center gaps in GaAs/AlAs superlattices, Physical Review B 33, 2897 (1986). [21] M. Born y E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, 1975), 5ta ed. [22] M. F. Pascual Winter, Ingeniería de fonones en nanoestructuras semiconductoras, Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2004). [23] Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, et al., Phase-Matched frequency doubling at photonic band edges: Effciency scaling as the fifth power of the length, Physical Review Letters 89, 043901 (2002). [24] A. Bruchhausen, Amplificación de la dispersion Raman en sistemas nanoestructurados, Tesis de Doctorado en Física, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2008). [25] P. Y. Yu y M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001), 3ra ed. [26] T. Ruf, Phonon Raman Scattering in Semiconductors, Quantum Wells and Superlattices: Basic Results and Applications, vol. 142 de Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1998). [27] J. J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals, Physical Review 112, 1555 (1958). [28] J. J. Hopfield, Resonant scattering of polaritons as composite particles, Physical Review 182, 945 (1969). [29] G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Physical Review 52, 191 (1937). [30] N. F. Mott, Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals, Transactions of the Faraday Society 34, 500 (1938). [31] R. J. Elliott, Intensity of optical absorption by excitons, Physical Review 108, 1384 (1957). [32] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, et al., Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting, Physical Review B 59, 5082 (1999). [33] R. Houdré, R. P. Stanley, y M. Ilegems, Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system, Physical Review A 53, 2711 (1996). [34] E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, A. I. Nesvizhskii, y A. F. Ioffe, Reflection and absorption spectra from microcavities with resonant Bragg quantum wells, Journal of the Optical Society of America B 13, 1061 (1996). [35] M. M. Voronov, E. L. Ivchenko, M. V. Erementchouk, L. I. Deych, y A. A. Lisyansky, Photoluminescence spectroscopy of one-dimensional resonant photonic crystals, Journal of Luminescence 125, 112 (2007). [36] M. Matsushita, J. Wicksted, y H. Z. Cummins, Resonant Brillouin scattering in CdS. II. Theory, Physical Review B 29, 3362 (1984). [37] M. Matsushita y M. Nakayama, Theory of resonant light scattering through exciton-polaritons, Physical Review B 30, 2074 (1984). [38] B. Bendow, Polariton Theory of Resonance Raman Scattering in Solids, en Electronic Structure of Noble Metals and Polariton-Mediated Light Scattering (Springer- Verlag, Berlin, 1978), vol. 82 de Springer Tracts in Modern Physics. [39] C. Weisbuch y R. G. Ulbrich, Resonant Light Scattering Mediated by Excitonic Polaritons in Semiconductors, en Light Scattering in Solids III: Recent Results, editado por M. Cardona y G. Güntherodt (Springer-Verlag, Berlin, 1982), vol. 51 de Topics in Applied Physics. [40] A. Fainstein, B. Jusserand, R. Andre, y V. Thierry-Mieg, Resonant Raman scattering in semiconductor microcavities, physica status solidi (b) 215, 403 (1999). [41] A. Bruchhausen, L. M. L. Hilario, A. A. Aligia, A. M. Lobos, A. Fainstein, et al., Microcavity exciton-polariton mediated Raman scattering: Experiments and theory, Physical Review B 78, 125326 (2008). [42] J. Wainstain, C. Delalande, D. Gendt, M. Voos, J. Bloch, et al., Dynamics of polaritons in a semiconductor multiple-quantum-well microcavity, Physical Review B 58, 7269 (1998). [43] L. M. L. Hilario, A. Bruchhausen, A. M. Lobos, y A. A. Aligia, Theory of polaritonmediated Raman scattering in microcavities, Journal of Physics: Condensed Matter 19, 176210 (2007). [44] G. Bastard, E. E. Mendez, L. L. Chang, y L. Esaki, Exciton binding energy in quantum wells, Physical Review B 26, 1974 (1982). Captulo 3 [1] C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, et al., Acoustically driven storage of light in a quantum well, Physical Review Letters 78, 4099 (1997). [2] K.-H. Lin, G.-W. Chern, Y.-K. Huang, y C.-K. Sun, Terahertz electron distribution modulation in piezoelectric In_xGa_1-xN/GaN multiple quantum wells using coherent acoustic nanowaves, Physical Review B 70, 073307 (2004). [3] A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, y M. Bayer, Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures, Physical Review Letters 97, 037401 (2006). [4] K.-H. Lin, C.-T. Yu, S.-Z. Sun, H.-P. Chen, C.-C. Pan, et al., Two-dimensional nanoultrasonic imaging by using acoustic nanowaves, Applied Physics Letters 89, 043106 (2006). [5] M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Con- nement of acoustical vibrations in a semiconductor planar phonon cavity, Physical Review Letters 89, 227402 (2002). [6] A. Huynh, N. D. Lanzillotti-Kimura, B. Jusserand, B. Perrin, A. Fainstein, et al., Subterahertz phonon dynamics in acoustic nanocavities, Physical Review Letters 97, 115502 (2006). [7] M. F. Pascual Winter, G. Rozas, A. Fainstein, B. Jusserand, B. Perrin, et al., Selective optical generation of coherent acoustic nanocavity modes, Physical Review Letters 98, 265501 (2007). [8] N. D. Lanzillotti-Kimura, A. Fainstein, A. Huynh, B. Perrin, B. Jusserand, et al., Coherent generation of acoustic phonons in an optical microcavity, Physical Review Letters 99, 217405 (2007). [9] M. F. Pascual Winter, A. Fainstein, M. Trigo, T. Eckhause, R. Merlin, et al., InP acoustic cavity phonon spectra probed by Raman scattering, Physical Review B 71, 085305 (2005). [10] R. P. Beardsley, A. V. Akimov, M. Henini, y A. J. Kent, Coherent terahertz sound amplication and spectral line narrowing in a Stark ladder superlattice, Physical Review Letters 104, 085501 (2010). [11] I. S. Grudinin, H. Lee, O. Painter, y K. J. Vahala, Phonon laser action in a tunable two-level system, Physical Review Letters 104, 083901 (2010). [12] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3ra ed. [13] P. G. Klemens, Decay of high-frequency longitudinal phonons, Journal of Applied Physics 38, 4573 (1967). [14] C. Herring, Role of low-energy phonons in thermal conduction, Physical Review 95, 954 (1954). [15] W. Chen, H. J. Maris, Z. R. Wasilewski, y S. Tamura, Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K, Philosophical Magazine B 70, 687 (1994). [16] N. W. Ashcroft y N. D. Mermin, Solid State Physics (Harcourt Brace College Publishers, Fort Worth, 1976). [17] W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, et al., Thermalconductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique, Physical Review B 59, 8105 (1999). [18] B. C. Daly, H. J. Maris, K. Imamura, y S. Tamura, Molecular dynamics calculation of the thermal conductivity of superlattices, Physical Review B 66, 024301 (2002). [19] K. Termentzidis, P. Chantrenne, J. Duquesne, y A. Saci, Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces, Journal of Physics: Condensed Matter 22, 475001 (2010). [20] C. Ulrich, E. Anastassakis, K. Syassen, A. Debernardi, y M. Cardona, Lifetime of phonons in semiconductors under pressure, Physical Review Letters 78, 1283 (1997). [21] C. Aku-Leh, J. Zhao, R. Merlin, J. Menendez, y M. Cardona, Long-lived optical phonons in ZnO studied with impulsive stimulated Raman scattering, Physical Review B 71, 205211 (2005). [22] J. Kulda, A. Debernardi, M. Cardona, F. de Geuser, y E. E. Haller, Self-energy of zone-boundary phonons in germanium: Ab initio calculations versus neutron spin-echo measurements, Physical Review B 69, 045209 (2004). [23] R. Vacher, H. Sussner, y S. Hunklinger, Brillouin scattering in vitreous silica below 1 K, Physical Review B 21, 5850 (1980). [24] J. Menéndez y M. Cardona, Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and -Sn: Anharmonic eects, Physical Review B 29, 2051 (1984). [25] W. Hayes y R. Loudon, Scattering of Light by Crystals (John Wiley & Sons, New York, 1978). [26] K. A. Nelson, R. J. D. Miller, D. R. Lutz, y M. D. Fayer, Optical generation of tunable ultrasonic waves, Journal of Applied Physics 53, 1144 (1982). [27] C. Thomsen, H. T. Grahn, H. J. Maris, y J. Tauc, Surface generation and detection of phonons by picosecond light pulses, Physical Review B 34, 4129 (1986). [28] G. Rozas, M. F. Pascual Winter, B. Jusserand, A. Fainstein, E. Semenova, et al., Ultra-high resolution Raman spectroscopy, American Institute of Physics Conference Proceedings 1199, 169 (2010). [29] M. F. Pascual Winter, Generacion y deteccion optica de fonones coherentes en nanoestructuras, Tesis de Doctorado en Fsica, Instituto Balseiro, Universidad Nacional de Cuyo & Comision Nacional de Energa Atomica, S. C. de Bariloche (2009). [30] C. Hsieh, K. Lin, S. Wu, C. Pan, J. Chyi, et al., Re ection property of nanoacoustic wave at the air=GaN interface, Applied Physics Letters 85, 4735 (2004). [31] B. Jusserand, D. Paquet, F. Mollot, F. Alexandre, y G. L. Roux, In uence of the supercell structure on the folded acoustical Raman line intensities in superlattices, Physical Review B 35, 2808 (1987). [32] A. Fainstein y B. Jusserand, Raman Scattering in Resonant Cavities, en Light Scattering in Solids IX: Novel Materials and Techniques, editado por M. Cardona y R. Merlin (Springer-Verlag, Berlin, 2007), vol. 108 de Topics in Applied Physics. [33] A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Raman eciency in a planar microcavity, Physical Review B 53, R13287 (1996). [34] A. Fainstein y B. Jusserand, Performance of semiconductor planar microcavities for Raman-scattering enhancement, Physical Review B 57, 2402 (1998). [35] M. F. Pascual Winter, Ingeniería de fonones en nanoestructuras semiconductoras, Tesis de Maestria en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche (2004). [36] P. Lacharmoise, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Optical cavity enhancement of light-sound interaction in acoustic phonon cavities, Applied Physics Letters 84, 3274 (2004). [37] M. Giehler, T. Ruf, M. Cardona, y K. Ploog, Interference effects in acousticphonon Raman scattering from GaAs/AlAs mirror-plane superlattices, Physical Review B 55, 7124 (1997). [38] M. Trigo, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Finite-size eects on acoustic phonons in GaAs/AlAs superlattices, Physical Review B 66, 125311 (2002). [39] M. F. Pascual Winter (2008), sin publicar. [40] R. I. Cottam y G. A. Saunders, The elastic constants of GaAs from 2 K to 320 K, Journal of Physics C: Solid State Physics 6, 2105 (1973). [41] S. Adachi, GaAs, AlAs, and Al_xGa_1-xAs: Material parameters for use in research and device applications, Journal of Applied Physics 58, R1 (1985). [42] P. G. Klemens, Anharmonic attenuation of localized lattice vibrations, Physical Review 122, 443 (1961). [43] G. S. Solomon, J. A. Trezza, A. F. Marshall, y J. Harris, Vertically aligned and electronically coupled growth induced InAs islands in GaAs, Physical Review Letters 76, 952 (1996). [44] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, et al., GNU Scientic Library Reference Manual (Network Theory Ltd., 2009), 3ra ed. [45] M. Tanaka, H. Sakaki, y J. Yoshino, Atomic-scale structures of top and bottom heterointerfaces in GaAs-Al_xGa_1-xAs (x=0.2-1) quantum wells prepared by molecular beam epitaxy with growth interruption, Japanese Journal of Applied Physics 25, L155 (1986). [46] J. M. Moison, C. Guille, F. Houzay, F. Barthe, y M. Van Rompay, Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures, Physical Review B 40, 6149 (1989). [47] O. Dehaese, X. Wallart, y F. Mollot, Kinetic model of element III segregation during molecular beam epitaxy of III-III'-V semiconductor compounds, Applied Physics Letters 66, 52 (1995). [48] V. I. Belitsky, T. Ruf, J. Spitzer, y M. Cardona, Theory of disorder-induced acoustic-phonon Raman scattering in quantum wells and superlattices, Physical Review B 49, 8263 (1994). [49] M. Gurioli, J. Martinez-Pastor, A. Vinattieri, y M. Colocci, The Stokes shift in good quality quantum well structures, Solid State Communications 91, 931 (1994). [50] A. Soukiassian, W. Tian, D. A. Tenne, X. X. Xi, D. G. Schlom, et al., Acoustic Bragg mirrors and cavities made using piezoelectric oxides, Applied Physics Letters 90, 042909 (2007). [51] D. J. Lockwood, M. W. C. Dharma-Wardana, G. C. Aers, y J.-M. Baribeau, Substrate and capping layer eects on the phonon spectrum of ultrathin superlattices, Applied Physics Letters 52, 2040 (1988). [52] T. Ruf, V. I. Belitsky, J. Spitzer, V. F. Sapega, M. Cardona, et al., Disorderinduced Raman scattering of folded phonons in quantum wells and superlattices, Solid-State Electronics 37, 609 (1994). [53] H. D. Fuchs, P. Etchegoin, M. Cardona, K. Itoh, y E. E. Haller, Vibrational band modes in germanium: Isotopic disorder-induced Raman scattering, Physical Review Letters 70, 1715 (1993). [54] A. A. Gogolin y E. I. Rashba, Mechanism of strong resonant 1LO raman scattering, Solid State Communications 19, 1177 (1976). [55] K. Nelson (2010), sin publicar. Apendice A [1] O. Madelung, ed., Semiconductors: Physics of Group IV Elements and III-V Compounds, vol. III-17(a) de Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series (Springer-Verlag, Berlin, 1982). [2] S. Adachi, GaAs, AlAs, and Al_xGa_1-xAs: Material parameters for use in research and device applications, Journal of Applied Physics 58, R1 (1985). [3] I. Vurgaftman, J. R. Meyer, y L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89, 5815 (2001). [4] Electronic archive on New Semiconductor Materials. Characteristics and Properties (Ioe Physico-Technical Institute, St. Petersburg). Apendice B [1] M. Cardona, ed., Light Scattering in Solids I: Introductory Concepts, vol. 8 de Topics in Applied Physics (Springer-Verlag, Berlin, 1983), 2da ed. [2] M. Cardona y G. Güntherodt, eds., Light Scattering in Solids V: Superlattices and Other Microstructures, vol. 66 de Topics in Applied Physics (Springer-Verlag, Berlin, 1989). [3] M. Cardona y R. Merlin, eds., Light Scattering in Solids IX: Novel Materials and Techniques, vol. 108 de Topics in Applied Physics (Springer-Verlag, Berlin, 2007). [4] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, et al., Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, Science 313, 1614 (2006). [5] P. Lacharmoise, A. Fainstein, B. Jusserand, y V. Thierry-Mieg, Optical cavity enhancement of light-sound interaction in acoustic phonon cavities, Applied Physics Letters 84, 3274 (2004). [6] G. Rozas, M. F. Pascual Winter, A. Fainstein, B. Jusserand, P. O. Vaccaro, et al., Acoustic phonon Raman scattering induced by a built-in electric eld, Physical Review B 77, 165314 (2008). [7] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, y A. Lema^tre, Resonant Raman scattering of nanocavity-conned acoustic phonons, Physical Review B 79, 035404 (2009). [8] G. Rozas, M. F. Pascual Winter, B. Jusserand, A. Fainstein, B. Perrin, et al., Lifetime of THz acoustic nanocavity modes, Physical Review Letters 102, 015502 (2009). [9] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lema^tre, O. Mauguin, et al., Acoustic phonon nanowave devices based on aperiodic multilayers: Experiments and theory, Physical Review B 76, 174301 (2007). [10] J. M. Zhang, M. Giehler, A. Göbel, T. Ruf, M. Cardona, et al., Optical phonons in isotopic Ge studied by Raman scattering, Physical Review B 57, 1348 (1998). [11] J. P. Pinan, R. Ouillon, P. Ranson, M. Becucci, y S. Califano, High resolution Raman study of phonon and vibron bandwidths in isotopically pure and natural benzene crystal, Journal of Chemical Physics 109, 5469 (1998). [12] P. Bousquet, Spectroscopie Instrumentale (Dunod Universite, Paris, 1969). [13] S. M. Lindsay, M. W. Anderson, y J. R. Sandercock, Construction and alignment of a high performance multipass vernier tandem Fabry{Perot interferometer, Review of Scientic Instruments 52, 1478 (1981). [14] P. Ranson, R. Ouillon, y S. Califano, Vibrational relaxation in molecular crystals. High-resolution Raman band proles of some naphthalene and naphthalene-d8 phonons at low temperature, Chemical Physics 86, 115 (1984). [15] G. Pratesi y F. Barocchi, A coupled high-resolution monochromator-Fabry-Perot system for Brillouin and Raman spectroscopy, Measurement Science and Technology 6, 41 (1995). [16] K. P. Birch y M. J. Downs, An updated Edlen equation for the refractive index of air, Metrologia 30, 155 (1993), [Corr.: Metrologia 31, 315 (1994)]. [17] K. P. Birch y M. J. Downs, Correction to the updated Edlen equation for the refractive index of air, Metrologia 31, 315 (1994). [18] E. R. Peck y B. N. Khanna, Dispersion of nitrogen, Journal of the Optical Society of America 56, 1059 (1966).
Materias:Física > Nanotecnología
Física > Óptica
Divisiones:Investigación y aplicaciones no nucleares > Física > Laboratorio de propiedades ópticas de los materiales
Código ID:370
Depositado Por:Marisa G. Velazco Aldao
Depositado En:05 Nov 2012 09:36
Última Modificación:13 Nov 2012 13:42

Personal del repositorio solamente: página de control del documento