Caracteristicas no lineales de cuerpos oscilantes en helio superfluido en regimen turbulento. / Turbulent flow around an oscillating body in superfluid helium: dissipation characteristics of the non linear regime.

Zemma, Elisa y Luzuriaga, Javier Caracteristicas no lineales de cuerpos oscilantes en helio superfluido en regimen turbulento. / Turbulent flow around an oscillating body in superfluid helium: dissipation characteristics of the non linear regime. Journal of Low Temperature Physics . (En Prensa)

[img]
Vista previa
PDF (Artículo - Journal of Low Temperature Physics) - Versión aceptada
Inglés
296Kb

Resumen en inglés

By examining the resonance curves of an oscillator submerged in superfluid liquid helium, it is found that their shape is affected by two distinct dissipation regimes when the amplitude is large enough to generate turbulence in the liquid. In a resonance curve, the central part close to resonance, may be in a turbulent regime, but the response is of much lower amplitude away from the resonance frequency, so that the oscillation can still be in the linear regime for frequencies not exactly at resonance. This introduces an ambiguity in estimating the inverse quality factor Q"-1 of the oscillator. By analyzing experimental data we consider a way of matching the two ways of estimating Q"-1 and use the information to evaluate the frictional force as a function of velocity in a silicon paddle oscillator generating turbulence in the superfluid.

Tipo de objeto:Artículo
Editor:Springer
Palabras Clave:Quantum fluids; Turbulence; Turbulencia; Superfluid helium; Non linear oscillator; Vibrating Paddle; Critical velocity; Velocidad crítica
Referencias:1. J. Jäger, B. Schuderer, and W. Schoepe, Phys. Rev. Lett., 74, 566 (1995). 2. J. Luzuriaga, J. Low Temp. Phys., 108, 267 (1997). 3. W. Schoepe,J. Low Temp. Phys. ,150,724 (2008). 4. M. Blazková, D. Schmoranzer, L. Skrbek, and W. F. Vinen, Phys. Rev. B, 79,054522(2009). 5. M. Blazková, M. Clovecko, E. Gao, L. Skrbek, and P. Skyba, J. Low Temp. Phys., 148,305 (2007). 6. M. Blazková, T. Chagovets, M. Rotter, D. Schmoranzer, and L. Skrbek, J. Low Temp. Phys., 150, 194 (2008). 7. W. F. Vinen, L. Skrbek, and H. A. Nichol, J. Low Temp. Phys.,135(5-6),423 (2004). 8. H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett.,92, 244501 (2004). 9. H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. E, 70, 056307 (2004). 10. D. Charalambous, L. Skrbek, P. C. Hendry, P. V. E. McClintock, and W. F. Vinen, Phys. Rev. E,74,036307 (2006). 11. V. Emov, D. Garg, M. Giltrow, P. McClintock, L. Skrbek, and W. Vinen, Journal of Low Temperature Physics, 158,462 (2010). 12. H. Yano, A. Handa, H. Nakagawa, M. Nakagawa, K. Obara, O. Ishikawa, and T. Hata, J. of Phys. Chem. Solids, 66(8-9),1501 (2005). 13. H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, and T. Hata, Phys. Rev. B ,75,012502 (2007). 14. H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, and T. Hata, Phys. Rev. B, 81, 220507 (2010).
URLs Relacionadas:
Número de Identificación:10.1007/s10909-013-0862-1
Materias:Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Bajas temperaturas
Código ID:389
Depositado Por:Dr Javier Luzuriaga
Depositado En:07 Feb 2013 14:50
Última Modificación:22 Mar 2013 09:27

Versiones Disponibles de este documento

Personal del repositorio solamente: página de control del documento