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Abstract By examining the resonance curves of an oscillator submerged in
superfluid liquid helium, it is found that their shape is affected by two distinct
dissipation regimes when the amplitude is large enough to generate turbu-
lence in the liquid. In a resonance curve, the central part close to resonance,
may be in a turbulent regime, but the response is of much lower amplitude
away from the resonance frequency, so that the oscillation can still be in the
linear regime for frequencies not exactly at resonance. This introduces an
ambiguity in estimating the inverse quality factor Q−1 of the oscillator. By
analyzing experimental data we consider a way of matching the two ways of
estimating Q−1 and use the information to evaluate the frictional force as a
function of velocity in a silicon paddle oscillator generating turbulence in the
superfluid.

Keywords Quantum fluids · Turbulence · Superfluid Helium · Non Linear
oscillator · Vibrating Paddle · Critical velocity
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1 Introduction

In Superfluid Turbulence research, one of the experimental methods makes
use of oscillators of different shapes submerged in the liquid. Changes in the
dissipation of the system are usually taken as an indication of the onset of
turbulence. Objects moving in the liquid probe characteristics of turbulence
that have a classical analogue and several shapes have been used, such as
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Centro Atómico Bariloche, CNEA, Inst. Balseiro,UNC, Argentina



2

spheres [1–3], quartz tuning forks [4–6] grids [7–11] wires [12–14] and silicon
paddles [15]. This method is a part of the wider study of superfluid physics,
an active field of research, reviewed in several publications [16–20].

However, in our recent studies [15] we have encountered some discrep-
ancies in the way dissipation is calculated as the fluid enters the turbulent
regime and the oscillating systems behaves non linearly.

In the laminar regime the equation of motion corresponds to the well
known formula for a forced oscillator with a dissipation term proportional to
velocity:

mẍ+ γẋ+ kx = E0.cos(ωt) (1)

where x is an angular or linear displacement, m a mass or inertia term, k a
generalized spring constant, γ the dissipation term and E0 is the strength of
the excitation. The solution is well known, and for small dissipation, results
in a Lorentzian resonance curve. There are two equivalent forms of measuring
the dissipation. One can take a resonance curve, plot the amplitude squared,
and measure the width of the curve at half the maximum value, ∆f . The
dissipation Q−1,i.e. the inverse quality factor, is then

Q−1 = ∆f/f0 (2)

with f0 the resonance frequency.
An equivalent definition makes use of the fact that at resonance the re-

sponse is enhanced with respect to the static displacement [21] by the factor
Q, that is, AM = kE0Q, or

Q−1 =
kE0

AM
(3)

with AM the displacement at the maximum of the resonance curve.
In our measurements of a silicon paddle oscillating in superfluid he-

lium [15] both definitions (Eqs. 2 and 3) no longer agree when the oscillator
behaves non linearly. Q−1 needs to be computed more carefully if one is to
obtain a coherent physical picture.

Nonlinear Oscillations have been extensively studied for decades, concep-
tual treatments and analysis techniques have progressed responding to many
problems in the field of experimental physics and engineering [22, 23]. The
Duffing equation [23], which for certain parameters presents stable harmonic
solutions is a much studied example of non linear variations of Eq. 1. In
our oscillator however, nonlinear parameters are not present in the displace-
ment term, but in the velocity. Furthermore, there is also a velocity threshold
for turbulence to start. This is an important characteristics of the problem,
probably more important than the higher powers in the velocity which also
appear. Non linear velocity terms have been studied by Collin et al [24] but
in their case no threshold appears. Our experimental data show important
differences from those reported by Collin et al [24] indicating that the exper-
imental systems are not equivalent and require a different analysis. Fincham
and Wraight [25] have also considered non linear velocity terms in the low
damping limit and we have been able to adapt their approximate method of
analysis to our data.
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In a submerged oscillator when a threshold critical velocity v0, is reached
turbulence is generated and it is only then that the frictional force F becomes
non linear. In their experiments Jager et al [1] propose a parabolic shape,

F = β(v2 − v20) + γv. (4)

In this empirical fit v is the velocity of the oscillating object, β and γ are
friction coefficients. Below v0 the system is linear, that is F = γv. Even if the
expression is not accurate in all details, the existence of a threshold v0 is a
justified assumption because it reflects the fact that until a certain velocity is
surpassed no turbulence is generated. The problem has further complications
because once generated turbulence can persist, possibly through several cy-
cles, at lower velocities [1, 4] however as a first approximation we consider a
stepwise threshold only. Because of the high proportion of normal fluid in our
temperature range, the persistence of the extrinsic generated vorticity, and
its corresponding influence in nucleating turbulence [26] below the threshold
is expected to be smaller in our experiments. This threshold introduces a
new type of non linear behaviour, in addition to the fact that v enters with
an exponent which is higher than one.

2 Experimental Results

The experimental setup used has been described elsewhere [15]. A single crys-
tal silicon oscillator with a double paddle of centimeter dimensions oscillates
in liquid helium in the 1.55 K to 2.17 K temperature range where the normal
fraction is between 14% and 100 % respectively. We report here the data ob-
tained in the Symmetric Torsional (ST) mode, which has a narrow resonance
curve around a frequency of 358 Hz inside the liquid. We have calibrated the
displacement of this mode so that a signal of 1 mV corresponds to 122 µm,
using an interferometric method [15]. The actual displacement however is not
a simple traslation, but a rotation, so that at the outer edge of the paddle
we estimate that the displacement is 1.6 times and in the inner edge 0.32
times the calibrated value. For simplicity here we report generally values in
the laboratory units (mV) directly measured.

In our previous experiment [15] for low amplitudes the resonance curves
fit the Lorentzian shape very well. At higher amplitudes, for turbulent flow,
the dissipation increases and the resonance curves become wider but can still
be fitted reasonably by a Lorentzian. The fit is not so good, but in any case
we have associated an inverse quality factor with the width of the curve at
half maximum.

In our oscillatory system the velocity is above the threshold only for part
of the cycle, as is shown in Fig. 1. This has to be taken into account when
analyzing the resonance curves. For small overall dissipation we can assume
a sinusoidal oscillation even when the system is turbulent. The relationship
between the velocity v and the amplitude A is then v = Aωsin(ωt). For the
critical threshold values it implies v0 = ACω. In the upper part of Fig. 1
we have represented the velocity of oscillation and v0. Curve 1 is above the
threshold for part of the cycle when t1 < t < t2 or t1 < t < t2. The associated
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Fig. 1 Oscillation cycle (above) and resonance curve (below) showing the threshold
for turbulence. The velocity is above the threshold for times between t1 and t2 or
t3 and t4 (curve 1) and their cyclical equivalents. Outside the central frequency the
whole oscillation may be below v0 = ACω (curve 2 in the figure above) even when
it is over AC in the central part fA < f < fB

resonance curve is shown in the lower part of Fig. 1. Here it can be seen that
when the driving frequency f < fA or f > fB the oscillation is always below
AC or v0 (curve 2 in Fig. 1) and therefore the whole cycle is linear for f < fA
or f > fB .

We have checked this hypothesis using experimental curves from the data
of ref. [15]. We have fitted Lorentzian functions for resonance curves using
only the points in the region f < fA or f > fB where the friction is still
linear. The data are shown in Fig. 2 where the points selected are shown as
closed symbols, and the fitted curves as dotted lines. Because the original
experimental data were taken over a relatively narrow window, we have been
forced to overestimate the experimental value of AC for the higher amplitude
curves, changing the boundary frequencies fA and fB . However, the qualita-
tive behavior observed appears to be robust with respect to the actual value
of AC . In the central part of the data fA < f < fB the interpolation is
well above the experimental points, in open symbols. In this region the am-
plitude of oscillation is above AC and the friction is non linear. The curves
with higher excitation amplitude show larger deviations as can be expected
because A > AC for a larger section of the oscillation.

A Lorentzian fit of the whole curve has also been tried, and the overall fit
is fair, as can be seen in the full line in Fig. 2. But looking in more detail it
can be seen that there is a slight assymetry in the experimental points, and
the tails are not so well adjusted by the Lorentzian curve. This is illustrated
in the lower part of Fig. 2, where we show the deviations of the experimental
points from the two fits. The closed symbols correspond to a fit in the region
f < fA or f > fB and the open symbols to a fit of all the experimental
data. It can be seen that the spread is greater for the open symbols, and also
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Fig. 2 Above: Resonance curves at 1.55 K for different excitation amplitudes for
the ST mode of an oscillating silicon paddle [15]. Open symbols: all experimental
points, closed symbols: points estimated to be below the threshold. In dotted lines
we plot Lorentzian fits to the points below threshold only and in full lines fits to the
whole curve for the higher amplitude of excitation. Below: Distance between the
two fits and the experimental points in the higher excitation curve. Open symbols:
fit over the whole curve, closed symbols: fit of the tail region only.

that the distribution is not at random but alternates between positive and
negative values of the distance from the fitted curve.

Fig. 3 shows the width of the curves ∆f (lower panel) calculated using
the whole curve fit in open symbols and that using only the tails (f < fA or
f > fB) in closed symbols, as a function of the amplitude at resonance. It
can be seen that the closed symbols almost coincide in magnitude with those
of the low amplitude, laminar regime. We attribute the small deviations to
experimental error in determining fA and fB . The coincidence is due to the
fact that the Lorentzians are fitted to the tails only, a region still laminar
and therefore the dissipation is the same that for the rest of the laminar
regime. On the other hand, the open symbols show an increase in ∆f due
to the turbulent part of the cycle. In the upper panel we show a similar
effect when plotting the excitation voltage against the amplitude. In this
graph the laminar regime appears as a linear relation between the amplitude
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and excitation. As above, closed symbols correspond to the tails, and are
almost linear up to the higher values of excitation, while the open symbols
curve upwards. The threshold amplitude AC is defined as the point where the
plateau ends (lower graph, open simbols) and it coincides with the amplitude
where the relation between excitation and amplitude stop being linear (upper
graph).

The above observations imply that the resonance curves are influenced by
two different dissipation mechanisms, one linear for points such that f < fA
or f > fB and one with non linear terms for the central, high amplitude part
of the curve.

0

2

4

6

0 2 4 6 8

1 . 0

1 . 5

2 . 0

 

E( 
Vrm

s)

S T  1 . 6 K
 

 

∆f 
/ f 0

A ( m V )

x 1 0 - 3

x 1 0 - 3

Fig. 3 Excitation voltage (above) and width of resonance curves (below) as a
function of the response amplitude. The open symbols are taken from the whole
resonance curve, and the closed symbols to magnitudes extracted from fits to the
tails of the resonance curves where we estimate that the system is linear. The closed
symbols are closer to a straight line in the upper graph or a plateau in the lower.

This presents a problem for the definition of Q−1 from Eq. 2 because
the Lorentzian fit is forced on a curve which is not wholly Lorentzian. The
other definition, Eq. 3 is perhaps more directly related to the turbulent state
because it is associated with the energy dissipation at the maximum, where
turbulence effects are stronger.



7

0 2 4 60 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0
x 1 0 - 3

S T   1 . 5 5  K

 

 

∆f/
 f 0 ,  

k E
 / A

A ( m V ) x 1 0 - 3

Fig. 4 Comparison of the definitions of Q−1 given by equations 2 and 3. Open
circles: ∆f/f0 (Eq. 2), closed inverted triangles: Excitation divided by amplitude
(Eq. 3) scaled to coincide in the plateau of the linear region, open upright triangles:
∆f/f0 in the non linear region scaled by a constant factor ≈ 0.5. The full line is a
quadratic fit to the non linear region.

In any case, the definitions are no longer equivalent, as we show in Fig.
4. Here we have plotted Q−1 derived from Eq. 2 and ∆f/f0 against the am-
plitude at resonance, and on the same graph the values of excitation divided
by the amplitude and multiplied by an adjustable constant as would corre-
spond to Q−1 defined through Eq. 3. The constant has been chosen so that
both values coincide in the low amplitude part of the curves,i.e. the laminar
regime. For high values of amplitude both data set deviate from a constant
but they do not coincide showing that in the turbulent regime the two defi-
nitions of Q−1 are no longer equivalent. However, correcting the increase of
the width of of resonance curve by a factor of about one half, the data agree
with those of Eq. 3 as can be seen in the upright open triangles in Fig. 4. The
data above the constant plateau can also be fitted very well by a quadratic
expression, shown as a full line in the figure. The non linear fit is valid for
amplitudes above AC and merges with the plateau with zero slope, as could
be expected for an extra dissipation that is absent for lower amplitudes.
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3 Discussion

The Q−1 factor in an oscillator can be also calculated theoretically by finding
the energy loss over a cycle, and dividing it by the the total energy of the
oscillator. In a system with small losses, the energy dissipated can be obtained
using the principle of energy balance [21, 25]. We assume the movement is
close to sinusoidal, x = Asin(ωt), v = ωAcos(ωt) and we propose a frictional
force that is cubic in the velocity and has a threshold v0 for the non linear
term.

FNL = ε(v − v0)2v = ε(ωAcos(ωt) − v0)2ωAcos(wt) (5)

adding the linear term FL = γv = γωAcos(ωt) and integrating over a cycle,
the energy dissipated ∆E is

∆E =

∫ 2πω

0

γω2A2cos2 (ωt) dt

+2

∫ π/ω−t1

t1

εω2A2cos2 (ωt) (ωAcos (ωt) − v0)
2
dt. (6)

The limits of integration of the non linear part t1 = (1/ω)arcsin(AcA ) and
t2 = π/ω − t1 are indicated in Fig. 1 and we have used the symmetry of the
sine function. Performing the integration we obtain

∆E = A2πγω
−1/8A4εω3 [−6π + 8sin (2ωt1) + sin (4ωt1) + 12ωt1]
−A2εωv20 [−π + sin(2ωt1) + 2ωt1] .

(7)

To find Q−1 we have to divide ∆E by the energy stored in the spring at
the maximum displacement, E = 1/2kA2. Then Eq. 7 gives a constant Q−1

for low amplitudes and a quadratic expression for A > AC . Thus the model
reproduces the functional dependence seen in the experimental data for both
the Q−1 definitions considered since they basically differ by a constant factor.
The threshold terms do not affect significantly the amplitude behaviour being
included in the slowly changing term t1. As discussed by Pippard [21] a
frictional force with a given velocity exponent ν implies a variation of Q−1

with an exponent ν − 1. Thus it appears that the threshold term affects
the resonance curves more than the exponent of the friction dependence on
velocity (or amplitude).

We have further analyzed the data obtained previously and already par-
tially reported [15], with the above considerations in mind. In Fig. 5 (upper
panel) we plot the excitation against velocity for different temperatures. The
velocity has been calibrated as described previously [15], and it is propor-
tional to the amplitude at resonance. The slopes of the linear part follow the
same function of temperature as the plateau seen in Q−1, as expected for
the linear system described by Eq. 1. The non linear part has been fitted by
a cubic expression, shown as full lines in the figure. If we assume, as done
by Jager et al [1] that by considerations of energy balance [21, 25] we can
identify the velocity dependence of the excitation with that of the frictional
force, the data show a cubic frictional force for our paddle also consistent with
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Fig. 5 Excitation plotted against velocity for different temperatures. The lines
are fits to a cubic expression. The relation between amplitude of oscillation and
velocity has been calibrated [15] and corresponds to 2.7 µm/s per mV.

the quadratic Q−1 dependence and Eq. 7. In the lower panel of Fig. 5 we
show the same data with a different scaling which emphasizes the functional
dependence proposed. In the ordinate axis we plot the excitation divided by
the velocity (Exc/v) for points above the threshold and in the abscissa axis
the velocity minus the threshold velocity squared ((v − v0)2) for different
temperatures. As expected from the functional dependence proposed in Eq.
5 the plots are straight lines and the points where they cut the y−axis are
higher for higher temperatures, corresponding to the higher slopes of the Exc
vs v curves. We have also tried quadratic fits for the excitation vs velocity
curves but they are poor, so we conclude that our paddle shows a different
behaviour than the sphere of reference [1].

A so far unexplained feature of these plots is that the excitation cor-
responding to the change in regime is approximately the same for all the
temperatures measured even when the critical velocity or amplitude changes
with temperature. This is shown by dotted lines in Fig. 5 upper panel, placed
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at the approximate excitation limits in which the system enters the non linear
regime. The critical velocity measured increases with decreasing temperature
while the slope of the linear part decreases and it appears that the two effects
compensate in some way so that we need to supply a level of excitation which
is relatively constant to observe the onset of turbulence.

4 Conclusions

We have shown that the resonance curves in an oscillator moving in superfluid
helium have a double structure, because away from the maximum the fluid
motion can be laminar, while it can be turbulent close to the maximum.

The resulting difficulty in defining a quality factor has been resolved em-
pirically by re normalizing the definition of Eq. 2 and by considering energy
balance in our paddle we find that the force in the damping is fitted by a
cubic polynomial, with a threshold velocity.
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