Desarrollo de materiales con memoria de forma de alta histéresis para disipación de energía en estructuras sismorresistentes. / Development of high hysteresis shape-memory materials for energy dissipation in seismic-resistant structures.

de Castro Bubani, Franco (2014) Desarrollo de materiales con memoria de forma de alta histéresis para disipación de energía en estructuras sismorresistentes. / Development of high hysteresis shape-memory materials for energy dissipation in seismic-resistant structures. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
2236Kb

Resumen en español

En esta tesis, las propiedades mecánicas de monocristales de CuZnAl y CuAlBe con efecto memoria son estudiadas, con vistas a posibles aplicaciones en estructuras sismorresistentes. Con el objetivo de optimizar las propiedades relacionadas a la amortiguación de vibraciones mecánicas, se estudia el efecto de la introducción de precipitados de otras fases sobre la formación de la martensita 6R. Se estudia el comportamiento mecánico asociado a la transformación secuencial martensita-martensita, a partir de la fase 18R hacia la estructura martensítica 6R, a distintas velocidades, en monocristales CuZnAl. La capacidad de amortiguación es evaluada por medio de un prototipo y un modelo numérico con un grado de libertad. Los resultados obtenidos indican que la histéresis asociada a las transformaciones martensíticas en monocristales de CuZnAl con precipitados puede ser aprovechada en sistemas amortiguadores de oscilaciones mecánicas.

Resumen en inglés

In this thesis, the mechanical properties of CuZnAl and CuAlBe shape-memory alloy single crystals are studied, aiming at possible applications in seismic-resistant structures. The effect of the introduction of precipitates of other phases on the formation of 6R martensite is studied, with the objective of optimizing the properties related to the damping of mechanical vibrations. The mechanical behavior associated with the sequential martensite-martensite transformation from the 18R phase to the 6R martensite, at different speeds, is studied in CuZnAl single crystals. Damping capacity is assessed by using a prototype and a numeric model with one degree of freedom. The results obtained show that the hysteresis associated with the martensitic transformations in CuZnAl single crystals with precipitates can be used in mechanical damping systems.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Shape memory effect; Efecto memoria forma; Precipitation; Precipitación; Mechanical properties; Propiedades mecánicas; [Martensitic transformations; Transformaciones matensíticas; Pseudoelasticity; Pseudoelasticidad; Cu-base alloys; aleaciones base Cu]
Referencias:1. Ghosh, S. K., Fanella, D. A. Seismic and Wind Design of Concrete Buildings. Country Club Hills, IL, EEUU: International Code Council, 2004. 2. Martelli, A. Modern Seismic Protection Systems for Civil and Industrial Structures. En: Structural Assessment, Monitoring and Control Network Final Report 2006 – F11 Selected Papers. Dübendorf, Switzerland: SAMCO, 2006. 3. Soong, T.T. Dargush, G.F. Passive Energy Dissipation and Active Control. En: Wai-Fah, C. (Ed.) Structural Engineering Handbook. Boca Raton: CRC Press LLC, 1999. 4. Renlund, M. Seismic footings [en línea], sin cambios. Disponible en http://www.flickr.com/photos/deltamike/2423266991. [consulta: 04 de septiembre de 2014]. Licencia: Creative Commons Attribution 2.0 Generic license, disponible en https://creativecommons.org/licenses/by/2.0/legalcode [consulta: 04 de septiembre de 2014]. 5. Utah State Capitol in October 2010 [en línea], sin cambios. Disponible en: http://en.wikipedia.org/wiki/File:Utah_State_Capitol_in_October_2010.JPG. [consulta: 04 de septiembre de 2014]. GNU Free Documentation License Version 1.2. 6. Torra, V. Isalgue, A. Martorell, F. Terriault, P. Lovey, F.C. Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Engineering Structures, 29, 1889–1902, 2007. 7. Ciampi, V. De Angelis, M. Paolacci, F. Design of yielding or friction-based dissipative bracings for seismic protection of buildings. Engineering Structures, 17, 381- 391, 1995. 8. Ibrahim, Y. E. Finley, J. M. Charney, A. A visco-plastic device for seismic protection of structures, Journal of Constructional Steel Research, 63, 1515–1528, 2007. 9. Motaharia, S. A. Ghassemieha, M. Abolmaalib, S. A. Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations, Journal of Constructional Steel Research, 63, 1570-1579, 2007. 10. Dolce, M. Cardone, D. Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. International Journal of Mechanical Sciences, 43, 2631–2656, 2001. 11. Dolce, M. Cardone, D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. International Journal of Mechanical Sciences, 43, 2657–2677, 2001. 12. Song, G. Ma, N. Li, H. N. Applications of shape memory alloys in civil structures. Engineering Structures, 28, 1266–1274, 2006. 13. Korkmaz, S. A review of active structural control: challenges for engineering informatics. Computers and Structures, 89, 2113–2132, 2011. 14. Tyler, D. E. Black, W. T. Introduction to Copper and Copper Alloys. En: ASM International. ASM Metals Handbook Volume 2. 9th ed. Metals Park, Ohio, EEUU: ASM International, 1990. pp. 759-839. 15. Ahlers, M. Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys. Progress in Materials Science, 30, 135-186, 1986. 16. Sade, M. Rapacioli, R. Lovey, F.C. Ahlers, M. An 18R to hexagonal transformation in Cu-Zn-Al. Journal de Physique, C4-43, 647-652, 1982. 17. Sade, M. Lovey, F.C. The structure of the modified 2H martensite in Cu-Zn-Al. Scripta Metallurgica, 17, 333-338, 1983. 18. Tolley, A. Ríos Jara, D. Lovey, F.C. 18R to 2H transformations in Cu-Zn-Al alloys. Acta Metallurgica, 37, 1099-1108, 1989. 19. Barceló, G. Ahlers, M. Rapacioli, R. The stress induced phase transformation in martensitic single crystal of CuZnAl alloys. Zeitschrift für Metallkunde, 70, 732-738, 1979. 20. Cuniberti, A. Romero, R. Slip systems in Cu–Zn–Al martensitic phases. Materials Science and Engineering A, 273-275, 362-365, 1999. 21. Damiani, C. Fatiga pseudoelástica en aleaciones Cu-Zn-Al: Consecuencias mecánicas y microestructurales. Tesis (Doctorado en Física). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 2003. 209 p. 22. Ashby, M. Jones, D. Engineering Materials 1. 2nd ed. Oxford: Butterworth- Heinemann, 1996. 23. Roqueta, D. Lovey, F.C. Sade, M. The hysteresis in the martensitic transformations due to the interaction with precipitates in Cu-Zn-Al alloys. Scripta Materialia, 34, 1747- 1752, 1996. 24. Tanaka, Y. Himuro, Y. Kainuma, R. Sutou, Y. Omori, T. Ishida, K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science, 327, 1488- 1490, 2010. 25. Omori, T. Ando, K. Okano, M. Xu, X. Tanaka, Y. Ohnuma, I. et al. Superelastic effect in polycrystalline ferrous alloys. Science, 333, 68-71, 2011. 26. Krooß, P. Niendorf, T. Karaman, I. Chumlyakov, Y. Maier, H. J. Cyclic Deformation Behavior of Aged FeNiCoAlTa Single Crystals. Functional Materials Letters, 5, art. no. 1250045, 2012. 27. Ben Mekki, O. Auricchio, F. Performance evaluation of shape-memory-alloy superelastic behavior to control a stay cable in cable-stayed bridges. International Journal of Non-Linear Mechanics, 46, 470-477, 2011. 28. Torra, V. Isalgue, A. Auguet, C. Carreras, G. Lovey, F. C. Terriault, P. et al. SMA in mitigation of extreme loads in civil engineering: Damping actions in stayed cables. Applied Mechanics and Materials, 82, 539-544, 2011. 29. Sharabash, A. M. Andrawes, B.O. Application of shape-memory alloy dampers in the seismic control of cable-stayed bridges. Engineering Structures, 31, 607-616, 2009. 30. Casciati, S. Faravelli, L. Structural Components in Shape-memory Alloy for Localized Energy Dissipation. Computers & Structures, 86, 330-339, 2008. 31. Zhang, Y. Zhu, S. Seismic Response Control of Building Structures with Superelastic Shape-memory Alloy Wire Dampers. Journal of Engineering Mechanics 134, 240-251, 2008. 32. Alam, M.S. Youssef , M.A. Nehdi, M. Utilizing shape-memory alloys to enhance the performance and safety of civil infrastructure: a review. Canadian Journal of Civil Engineering, 34, 1075-1086, 2007. 33. Auguet, C. Isalgué, A. Lovey, F. C. Martorell , F. Torra, V. Metastable effects on martensitic transformation in sma part 4. thermomechanical properties of CuAlBe and NiTi observations for dampers in family houses. Journal of Thermal Analysis and Calorimetry, 88, 537–548, 2007. 34. DesRoches, R. Smith, B. Shape-memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations. Journal of Earthquake Engineering, 8, 415-429, 2004. 35. DesRoches, R. McCormick, J. Delemont, M. Cyclic properties of superelastic shape-memory alloy wires and bars. Journal of Structural Engineering, 130, 38-46, 2004. 36. Yawny, A. Sade, M. Eggeler, G. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires. Zeitschrift für Metallkunde, 96, 608-618, 2005. 37. Yawny, A. Olbricht, J. Sade, M. Eggeler, G. Pseudoelastic cycling and ageing effects at ambient temperature in nanocrystalline Ni-rich NiTi wire. Materials Science and Engineering A, 481-482, 86-90, 2008. 38. Isalgue, A. Torra, V. Yawny, A. Lovey, F. C. Metastable effects on martensitic transformation. Part VI. The Clausius-Clapeyron relationship. Journal of Thermal Analysis and Calorimetry, 91, 991-998, 2008. 39. Saburi, T. Ti-Ni shape-memory alloys. En: Otsuka, K Wayman, C.M. (eds.). Shape Memory Materials. Cambridge: Cambridge University Press, 1998. pp 49-96. 40. Olbricht, J. Yawny, A. Condó, A. M. Lovey, F. C. Eggeler, G. The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi. Materials Science and Engineering A, 481–482,142–145, 2008 41. Beltran, J. F. Cruz, C. Herrera, R. Moroni, O. Shape-memory alloy CuAlBe strands subjected to cyclic axial loads. Engineering Structures, 33, 2910-2918, 2011. 42. Montecinos, S. Cuniberti, A. Thermomechanical behavior of a CuAlBe shapememory alloy. Journal of Alloys and Compounds, 457, 332-336, 2008. 43. Montecinos, S. Cuniberti, A. Sepúlveda, A. Grain size and pseudoelastic behaviour of a Cu–Al–Be alloy. Materials Characterization, 59, 117-123, 2008. 44. Chang, S.H. Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape-memory alloys. Materials Chemistry and Physics, 125, 358-363, 2011. 45. Barrado, M. López, G.A. Nó, M. L. San Juan, J. Composites with ultra high damping capacity based on powder metallurgy shape-memory alloys. Materials Science and Engineering A, 521-522, 363-367, 2009. 46. Mallik, U. S. Sampath, V. Effect of composition and ageing on damping characteristics of Cu–Al–Mn shape-memory alloys. Materials Science and Engineering A, 478, 48-55, 2008. 47. Cullity, B.D. Elements of X-ray diffraction. 2nd ed. Reading, Mass., EEUU: Addison-Wesley, 1978. 48. Cotes, S. Estabilidad de fases y transformación martensítica fcc/hcp en aleaciones Fe-Mn y Fe-Mn-Si. (Doctorado en Física). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 1992. 256p. 49. Lovey, F. C. Cesari, E. On the microstructural characteristics of non-equilibrium precipitates in Cu-Zn-Al alloys. Materials Science and Engineering A, 129, 127-133, 1990. 50. Pons, J. Sade, M. Lovey, F. C. Cesari, E. Pseudoelastic cycling and two-way shape memory effect in Cu-Zn-Al alloys with -precipitates. Materials Transactions JIM, 34, 888-894, 1993. 51. Roqueta, D. Lovey, F.C. Sade, M. Hysteresis evolution in the martensitic transformation cycling in -Cu-Zn-Al samples with -phase precipitates. Scripta Materialia, 36, 385-391, 1997. 52. Roqueta, D. Lovey, F.C. Sade, M. Martensite-austenite stability shifts due to the presence of -phase precipitates in Cu-Zn-Al alloys. Scripta Materialia, 40, 1359-1365, 1999. 53. Sade, M. Damiani, C. Gastien, R. Lovey, F. C. Malarría, J. Yawny, A. Smart Materials and Structures, 16, S126-S136, 2007. 54. Malarría, J. Lovey, F.C. Sade, M. Two way shape memory effect in CuZnAl single crystals after pseudoelastic cycling at low temperatures. Materials Science and Engineering A, 517, 118–124, 2009. 55. Lovey, F.C. Torra, V. Isalgué, A. Roqueta, D. Sade, M. Interaction of single variant martensitic transformation with small type precipitates in Cu-Zn-Al. Acta Metallurgica et Materialia, 42, 453-460, 1994. 56. Reppich, B. Particle Strengthening. En: Materials Science and Technology – A Comprehensive Treatment, Plastic Deformation and Fracture of Materials, Vol. 6, Cahn, R.W., Haasen, P., and Kramer, E. J. (eds.). Weinheim: VCH, 1993. pp 312-355. 57. Lovey, F. C. Rapacioli, R. Chandrasekaran, M. Precipitates with an incommensurate structure in -Cu-Zn-Al. Physica Status Solidi A, 68, K105-K111, 1981. 58. Williams, D. Carter, C.B. Transmission Electron Microscopy, II - Diffraction. 2nd ed. New York: Plenum Press, 1996. 59. Saule, F. Ahlers, M. Kropff, F. Rivero, E.B. The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys. IV: The influence of lattice parameter changes and evaluation of phase stabilities. Overview No.101. Acta Metallurgica et Materialia, 40, 3229-3238, 1992. 60. Rodriguez, P.L. Lovey, F.C. Guenin, G. Pelegrina, J.L. Sade, M. Morin, M. Elastic constants of the monoclinic 18R martensite of a Cu-Zn-Al alloy. Acta Metallurgica et Materialia, 41, 3307-3310, 1993. 61. Robinson, P. Properties of Wrought Coppers and Copper Alloys. En: ASM International. ASM Metals Handbook Volume 2. 9th ed. Metals Park, Ohio, EEUU: ASM International, 1990. pp. 917-1150. 62. Ahlers, M. Pelegrina, J.L. The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys. II: The transformation between the close packed martensitic phases. Acta Metallurgica et Materialia, 40, 3213-3220, 1992. 63. Saule, F. Ahlers, M. Stability, stabilization and lattice parameters in Cu-Zn-Al martensites. Acta Metallurgica et Materialia, 43, 2373-2384, 1995. 64. Saburi, Z. Inada, Y. Nenno, S. Hori, N. Stress-induced martensitic transformations in Cu-Zn-Al and Cu-Zn-Ga alloys. Journal de Physique, 43, C4-633-638, 1982. 65. Delaey, L. Janssen, J. Van Humbeeck, J. Luyten, J. Deruyttere, A. Pseudoelastic Transformation and Reorientation in 1-Cu-Zn-Al alloys. En: International Conference on Martensitic Transformations (1979, Cambridge, MA, EEUU). Proceedings. Cambridge, MA, EEUU: MIT, 1979. pp. 645-648. 66. Takezawa, K. Izumi, T. Chiba, H. Sato, S. Coherency of the transformation strain at the grain boundary and fracture in Cu-Zn-Al alloy. Journal de Physique, 43, C4-819-824, 1982. 67. Torra, V. Auguet, C. Carreras, G. Dieng, L. Lovey, F. C. Terriault, P. The SMA: an effective damper in civil engineering that smoothes oscillations. Materials Science Forum, 706-709, 2020-2025, 2012. 68. Bubani, F. Sade, M. Lovey, F. Improvements in the mechanical properties of the 18R-6R high-hysteresis martensitic transformation by nanoprecipitates in CuZnAl alloys. Materials Science and Engineering A, 543, 88-95, 2012. 69. Janssen, J. Van Humbeeck, J. Chandrasekaran, M. Mwamba, N. Delaey, L. Stabilization of martensite in copper-zinc-aluminum alloys. Journal de Physique, C4-43, 715-720, 1982. 70. Scarsbrook, G. Cook, J. M. Stobbs, W.M. The stabilization of martensite in Cu-Zn- AI shape memory alloys. Metallurgical Transactions A, 15, 1977-1986, 1984. 71. Abu Arab, A. Chandrasekaran, M. Ahlers, M. Martensite ageing and its stabilisation in Cu-Zn-Al shape memory alloys. Scripta Metallurgica, 18, 709-714, 1984. 72. Abu Arab, A. Ahlers, M. The stabilization of martensite in Cu-Zn-Al alloys. Acta Metallurgica, 36, 2627-2638, 1988. 73. Pelegrina, J.L. Ahlers, M. Vacancies and stabilisation in martensitic Cu–Zn–Al single crystals. Materials Science and Engineering A, 358, 310-317, 2003. 74. Kustov, S. Pons, J. Cesari, E. Van Humbeeck, J. Chemical and mechanical stabilization of martensite. Acta Materialia, 52, 4547–4559, 2004. 75. Stipcich, M. Romero, R. Vacancy influence on the stabilization of martensitic Cu– Zn–Al single crystals. Materials Science and Engineering A, 437, 328–333, 2006. 76. Cuniberti, A. Romero, R. Stipcich, M. Stabilization kinetics and defects retained by quenching in 18R Cu–Zn–Al martensite. Jounal of Alloys and Compounds, 472, 162– 165, 2009. 77. De Graef, M. Van Humbeeck, J. Andrade, M. Delaey, L. The stabilization of stepquenched copper-zinc-aluminium martensite. Part IV: changes in the microstructure. Scripta Metallurgica, 19, 643-646, 1985. 78. Delaey, L. Suzuki, T. Van Humbeeck, J. The stabilisation of step-quenched copperzinc- aluminum martensite part II : Crystal structure and reordering. Scripta Metallurgica, 18, 899-903, 1984. 79. Suzuki, T. Kojima, R Fujii, Y. Nagasawa, A. Reverse transformation behaviour of the stabilized martensite in Cu-Zn-Al alloy. Acta Metallurgica, 37, 163-168, 1989. 80. Otsuka, K. Ren, X. Mechanism of martensite aging effects and new aspects. Materials Science and Engineering A, 312, 207-218, 2001. 81. Ren, X. Otsuka, K. Origin of rubber-like behaviour in metal alloys. Nature, 389, 579-582, 1997. 82. Hashiguchi, Y. Higuchi, H. Matsui, I. Niitani, T. Tokunoh, H. Ikai, Y, The crystal structure and the change in long range order of thermoelastic martensite in a Cu-Zn-Al alloy. En: International Conference on Martensitic Transformations (1986, Nara, Japan). Proceedings. Nara, Japan: The Japan Institute of Metals, 1987, pp. 832-837. 83. Saule, F. Tolley, A. Ahlers, M. The stabilization of 6R martensite in Cu-Zn-Al single crystals. Scripta Metallurgica et Materialia, 24, 363-368, 1990. 84. Yawny, A. Lovey, F.C. Sade, M. Pseudoelastic fatigue of Cu-Zn-Al single crystals: The effect of concomitant diffusional processes. Materials Science and Engineering A, 290, 108-121, 2000. 85. Malarría, J. Sade, M. Lovey, F.C. Early stages of pseudoelastic fatigue in Cu-Zn-Al single-crystals cycled in the cryogenic range. Zeitschrift für Metallkunde, 87, 953-962, 1996. 86. Sade, M. Malarría, J. Yawny, A. Lovey, F.C. Bulk and surface defects in fatigued Cu-Zn-Al single crystals. En: Conference on Applied Crystallography (18, Wisla, Polonia). Proceedings. Wisla, Polonia: World Scientific, 2000. pp.153-170. 87. Lovey, F. C. Van Tendeloo, G. Van Landuyt, J. Chandrsekaran, M. Amelinckx, S. The origin of the incommensurate electron diffraction patterns in -brass type precipitates in -Cu-Zn-Al alloys. Acta Metallurgica, 32, 879-886, 1984. 88. Bradley, A.J. Jones, P. J. An X-ray investigation of the copper-aluminium alloys. Journal of the Institute of Metals, 51, 131-162, 1933. 89. Torra, V. Isalgue, A. Auguet, C. Carreras, G. Lovey, F.C. Soul, H. et al. Damping in Civil Engineering Using SMA. The Fatigue Behavior and Stability of CuAlBe and NiTi Alloys. Journal of Materials Engineering and Performance, 18, 738-745, 2009. 90. Salgueiro, W. Romero, R. Somoza, A. Ahlers, M. The post-quench vacancy behaviour in -Cu-Zn-Al alloy. Physica Status Solidi A, 138, 111-118, 1993. 91. Ahlers, M. The stabilization of martensite in Cu-Zn-Al alloys. En: International Conference on Martensitic Transformations (1986, Nara, Japan). Proceedings. Nara, Japan: The Japan Institute of Metals, 1987, pp. 786-793. 92. Polák, J. The effect of intermediate annealing on the electrical resistivity and shear stress of fatigued copper. Scripta Metallurgica, 4, 761-764, 1970. 93. Pelegrina, J.L. Rodriguez de Rivera, M. Torra, V. Lovey, F.C. Hysteresis in Cu-Zn- Al SMA: From high resolution studies to the time dependent modelling and simulation. Acta Metallurgica et Materialia, 43, 993-999, 1995. 94. García, J. Pons, J. Cesari, E. Effect of precipitates on the stabilization of martensite in Cu-Zn-Al alloys. Materials Research Bulletin, 31, 709-715, 1996. 95. Siredey, N. Eberhardt, A. Fatigue behavior of Cu-Al-Be shape memory single crystals. Materials Science and Engineering A, 290, 171–179, 2000. 96. Tidu, A. Eberhardt, A. Bolle, B. Moreau, F. Heizmann, J.J. Orthorhombic lattice deformation of CuAlBe shape-memory single crystals under cyclic strain. Journal of Applied Crystallography, 34, 722-729, 2001. 97. González, C. H. De Araújo, C. J. Quadros, N. F. Guénin, G. Morin, M. Study of martensitic stabilisation under stress in Cu–Al–Be shape memory alloy single cristal. Materials Science and Engineering A, 378, 253-256, 2004. 98. Sade, M. Yawny, A. Lovey, F.C. Torra. V. Pseudoelasticity of Cu–Al–Be single crystals: Unexpected mechanical behavior. Materials Science and Engineering A, 528, 7871-7877, 2011. 99. Olbricht, J. Yawny, A. Pelegrina, J.L. Dlouhy, A. Eggeler, G. On the Stress Induced Formation of R-phase in Ultra Fine Grained Ni-rich NiTi Shape Memory Alloys. Metallurgical and Materials Transactions A, 42, 2556-2574, 2011. 100. Arneodo, P. Condó, A. M. Ahlers, M. Stability and Stabilisation of 2H martensite in Cu-Zn-Al single crystals. Philosophical Magazine, 85, 2491-2525, 2005. 101. Hautcoeur, A. Eberhardt, A. Patoor, E. Berveiller, M. Thermomechanical Behaviour of Monocrystalline Cu-Al-Be Shape Memory Alloys and Determination of the Metastable Phase Diagram. Journal de Physique, C2-5, 459-464, 1995. 102. Amireche, R. Morin, M. A new stress-induced martensitic transformation in a Cu- Al-Be shape memory single crystal. En: International Conference on Martensitic Transformations (2008, Santa Fe, New Mexico, EEUU). Proceedings. Warrendale, EEUU: TMS, 2009. pp. 577-580. 103. K.Otsuka, C.M.Wayman. Mechanism of shape memory effect and superelasticity. En: Otsuka, K. Wayman, C. M. (eds.). Shape Memory Materials. Cambridge: Cambridge University Press, 1998. pp.27-48. 104. Van Humbeeck, J. Delaey, L. A comparative review of the (potential) shapememory alloys. En: E. Hornbogen, N. Jost (Eds.), The Martensitic Transformation in Science and Technology, Oberursel, Alemania: DGM, 1989. pp. 15–25. 105. De Castro Bubani, F. Sade, M. Lovey, F. C. Mechanical behavior under cyclic loading of the 18R-6R high-hysteresis martensitic transformation in Cu-Zn-Al alloys with nanoprecipitates. Materials Science and Engineering A, 577, 147-157, 2013. 106. Kustov, S. Pons, J. Cesari, E. Morin, M. Two-stage reverse transformation in hyperstabilized 1 martensite. Scripta Materialia, 46, 817-822, 2002. 107. Sade, M. Lovey, F.C. Torra, V. Yawny, A. Pseudoelastic cycling in Cu-Al-Be single crystals: Interaction with diffusive phenomena. En: European Symposium on Martensitic Transformations (8th , Prague, Czech Republic, 2009). Proceedings. Prague, Czech Republic: EDP Sciences, 2009. 108. Otsuka, K. Sakamoto, H. Shimizu, K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metallurgica, 27, 585-601, 1979. 109. Pelegrina, J.L. Ahlers, M.. The stability of the martensitic phases in Cu-Zn-Al at an electron concentration of 1.534. Acta Metallurgica et Materialia, 38, 293-299, 1990. 110. Wollants, P. Ross, J.R. Delaey, L. Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Progress in Materials Science, 37, 227-288, 1993. 111. Otsuka, K. Sakamoto, H. Shimizu, K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metallurgica, 27, 585-601, 1979. 112. Soul, H. Aleaciones con memoria de forma, propiedades mecánicas y microestructura. Desarrollo de sistemas de amortiguamiento basados en el efecto superelástico. Tesis (Doctorado en Ciencias de la Ingeniería). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 2011. 297 p. 113. Newmark, N. M. A Method for Structural Dynamics, Journal of the Engineering Mechanics Division, 85, 67-94, 1959. 114. Lovey, F.C. The fault density in 9R type martensites: A comparison between experimental and calculated results. Acta Metallurgica, 35, 1103-1108, 1987. 115. De Vos, J. Aernoudt, E. Delay, L. Crystallography of martensitic-transformation of BCC into 9R - Generalized mathematical-model. Zeitschrift für Metalllkunde, 69, 438-444, 1978. 116. Kelly, A. Groves, G.W. Crystallography and cristal defects. London: Longman, 1970.
Materias:Física > Física de materiales
Química > Materiales
Física > Sismología
Metalurgia > Transformaciones de fase
Metalurgia > Aleaciones
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:482
Depositado Por:Marisa G. Velazco Aldao
Depositado En:14 Abr 2015 18:07
Última Modificación:14 Abr 2015 18:13

Personal del repositorio solamente: página de control del documento