Estudio experimental de la turbulencia y disipación en helio superfluido mediante osciladores mecánicos y visualización del flujo . / Experimental study of turbulence and dissipation in superfluid He by mechanical oscillators and flow visualization.

Zemma, Elisa (2015) Estudio experimental de la turbulencia y disipación en helio superfluido mediante osciladores mecánicos y visualización del flujo . / Experimental study of turbulence and dissipation in superfluid He by mechanical oscillators and flow visualization. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
2163Kb

Resumen en español

El objetivo de este trabajo es obtener información experimental que contribuya a dilucidar aspectos de la turbulencia en superfluidos. La tesis puede dividirse en dos partes. En la primer parte, se estudió la respuesta de un oscilador de doble paleta de Silicio, sumergido en Helio entre la temperatura de transición superfluida Tλ = 2,17 K y los 1,55 K. En este oscilador de alto factor de calidad Q, medimos la frecuencia de resonancia y la disipación para tres modos de oscilación, y definimos la velocidad crítica V_c cuando la disipación Q"-1 deja de ser lineal. La no linealidad se toma como un indicador del comienzo de la turbulencia del Helio líquido y encontramos que V_c decrece con la temperatura. Usamos la densidad de la componente normal del superfluido para obtener el número de Reynolds asociado a esta V_c y encontramos un valor que es prácticamente independiente de temperatura. Así, en el rango de temperaturas estudiado, la transición parecería estar gobernada por la fracción normal actuando como en un fluido clásico. Examinando las curvas de resonancia, de las cuales se obtiene el valor de Q, se encontró que cuando la amplitud de oscilación es lo suficientemente grande para generar turbulencia, su forma es afectada por dos regímenes de disipación y que la oscilación puede permanecer en régimen lineal para frecuencias no resonantes. Así, se introduce una ambigüedad en el cálculo del factor de disipación Q"-1. Con nuestros datos experimentales buscamos una forma de calcular este parámetro y evaluamos la fuerza de fricción como función de la velocidad en el oscilador de doble paleta de Si. Para la segunda parte, se obtuvieron imágenes del flujo turbulento basándonos en el hecho de que micrométricas partículas sólidas pueden trazar en detalle la dinámica y la turbulencia del Helio superfluido. Se desarrollaron técnicas para producir partículas de H_2 sólido dentro del Helio superfluido modificando el criostato para iluminarlas y filmarlas. Tomamos imágenes a 240 fps de estas partículas de H_2 que siguen el flujo generado por la oscilación de cuerpos de distintas geometrías en el interior del Helio, entre los 2,1 y 1,7 K Con un software que desarrollamos a partir del programa Matlab, computamos las velocidades y trayectorias de miles de partículas. Obtuvimos el número de partículas para intervalos igualmente espaciados del módulo de la velocidad, encontrando que la probabilidad de hallar partículas con altas velocidades tiene un decaimiento exponencial. Cuando reproducimos el experimento con partículas de talco en aire, como control, encontramos el resultado esperado para fluidos clásicos, una distribución gaussiana. También hemos obtenido la Transformada de Fourier de las velocidades de partículas individuales y de las velocidades promediadas, encontrando que esta última puede ser caracterizada, en todos los osciladores medidos, por un ruido blanco. Se finaliza presentando imágenes en las que las partículas de H_2 forman estructuras, posiblemente decorando vórtices ya que se mueven en forma coordinada, estrechándose o estirándose. Analizamos una de ellas y concluimos que muy probablemente se debe a un vórtice superfluido sujeto al oscilador.

Resumen en inglés

The aim of this work is to obtain experimental data for describing aspects of superfluid turbulence. The thesis can be split into two parts. In the first part, we study the beginning of the turbulence by use of a silicon double paddle oscillator between the superfluid transition temperature, Tλ = 2.17 K and 1.55K. In this system of high Q, we measured the resonance frequency and the dissipation for three modes of oscillation, detecting the onset of turbulence at a velocity V_c where the response of the system becomes non linear. We found that this critical velocity V_c for the beginning of the turbulence decreases with temperature. We used the density of the normal component of superfluid to obtein the Reynolds number associated with this V_c and found a value that is not substantially dependent on temperature. Thus, in the range of temperatures studied, the transition seems governed by normal fraction acting as in a classic fluid. Examining the resonance curves was found that when the amplitude is large enough to generate turbulence, its shape is affected by two regimes dissipation and that oscillation can remain in linear regime for non-resonant frequencies. Thus, an ambiguity is introduced into the calculation of the quality factor Q"-1. With our experimental data, we seek a way to calculate this parameter and evaluate the friction force as a function of speed in the silicon double paddle oscillator. For the second part, we image the turbulent flow relying on the fact that micron solid particles can trace the dynamics and turbulence of superfluid helium. We adapted techniques for producing solid H_2 particles and took images at 240 fps of these particles that follow the flow generated by the oscillation of bodies of different geometries inside helium, between 2.1 and 1.7K. We developed a program based on the Matlab software to follow the particle velocities and trajectories. We compute the velocities and trajectories of thousands of particles, evaluating the number of particles obtained for evenly spaced intervals in modulus velocity. We found that the probability that a given particle have a high speed has an exponential decay. As a control we reproduced the experiment with talcum particles in air, finding the expected result for classical fluids, a Gaussian distribution. We have also obtained the Fast Fourier Transform (FFT) of the speeds of individual particles and averaged over particles, the averaged FFT is characterized, in all oscillators measured by a white noise. Finally, we present images where H_2 particles form structures,possibly decorating vortices, since they move in a coordinated way, narrowing or stretching. One of them adheres to the vibrating beam, analyzing it we conclude it is probably a decorating superfluid vortex attached to the oscillator.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Información Adicional:Área temática: Materia condensada, superfluidez
Palabras Clave:Critical velocity; Velocidad Crítica; Flow visualization; Visualización de flujo; [Quantum turbulence; Turbulencia cuántica; Superfluid helium; Helio superfluido; Vibrating paddle; Paleta vibrante; Tracer particles; Partículas trazadoras; Vortex superfluid; Vórtice superfluido]
Referencias:1) Donnelly, R. J. y Swanson, C. E. Quantum turbulence J. Fluid Mech. 173, 387, 1986. "Special Feature" de la Academia Nacional de Ciencias, USA :"Introduction to quantum turbulence." Barenghi, C. F., Skrbek, L. y Sreenivasan, K. R. Proceedings of the National Academy of Sciences 111, no. Supplement 1 (2014): 4647-4652. y artículos subsiguientes. 2) Feynman, R. P. Application of quantum mechanics to liquid helium, Vol. 1. Progress in Low Temperature Physics, C. J. Gorter ,North Holland, Amsterdam, 1955. 3) Vinen, W. F. Mutual friction in a heat current in liquid helium II, I. Experiments on steady heat currents, Proc. R. Soc.A 240, 114,1957; II. Experiments on transient effects, ibid. 240, 128 ,1957; III. Theory of the mutual friction, ibid. 242, 493, 1957; IV. Critical heat currents in wide channels, ibid. 243, 400, 1958. 4) Tilley, D. R. y Tilley, J. Superfluidity and Superconductivity Adam Hilger, Boston, 1986. 5) Andronikashvili, E. L. A direct observation of two kinds of motion in helium II, J. Phys. (Moscow) 10, 201,1946. 6) L. Onsager, in discussion on paper by C. J. Gorter, Nuovo Cimento 6 (Suppl. 2), 249 (1949); “Introductory talk,” en Proceedings of the International Conference of Theoretical Physics (Kyoto and Tokyo, 1953), p. 877. 7) Donnelly, R. J. Quantized Vortices in Helium II.Cambridge University Press, Cambridge, 1991. 8) Yarmchuk, E. J., Gordon, M. V. G., Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium, Phys. Rev. Lett. 43, 214, 1979. 9) Bewley, G. P.; Lathrop, D. P.; Sreenivasan, K. R. Superfluid helium-Visualization of quantized vortices, Nature 441, 588, 2006. 10) Skrbek L.y Vinen, W. F. The use of vibrating structures in the study of quantum turbulence, Vol. XVI, Chap. 4. Progress in Low Temperature Physics editado por M. Tsubota and W. P. Halperin ,Elsevier, Amsterdam, 2009. 11). Charalambous, D., Skrbek, L., Hendry, P.C., McClintock, P.V.E., Vinen, W.F. Experimental investigation of the dynamics of a vibrating grid in superfluid 4He over a range of temperatures and pressures. Phys. Rev. E 74, 036307, 2006. 12) Zemma E., Luzuriaga J. Measurements of turbulence onset and dissipation in superfluid helium with a silicon double paddle oscillator. J Low Temp Phys;166 (3- 4),171–181, 2012. 13) Vinen, W. F. y Niemela, J. J. 2002 Quantum turbulence. J. Low Temp. Phys. 128, 167–231, 2002. 14) Bradley, D. I., Clubb, D. O., Fisher, S. N., Gue´nault, A. M., Haley, R. P., Matthews, C. J., Pickett, G. R., Tsepelin, V. y Zaki, K. 2006 Decay of pure quantum turbulence in superfluid 3He-B. Phys. Rev. Lett. 96, 035301, 2006. 15) Walmsley, P. M., Golov, A. I., Hall, H. E., Levchenko, A. A. y Vinen, W. F. Dissipation of quantum turbulence in the zero temperature limit. Phys. Rev. Lett. 99, 265302. 2007. 16) Tsubota, M., Araki, T. & Nemirovskii, S. K. Dynamics of vortex tangle without mutual friction in superfluid 4He. Phys. Rev. B 62, 11751–11762, 2000 (doi:10.1103/PhysRevB.62.11751). 17) Donnelly, R.J., Karpetis, A.N., Niemela, J.J., Sreenivasan, K.R y Vinen, W. F. The use of particle image velocimetry in the study of turbulence in liquid helium J. Low Temp. Phys., 126, 327, 2002. 18) Zhang, T.y Van Sciver, S.W.. In S. Breon, editor. Advances in Cryogenics Engineering, AIP Conf. Proc. No. 613. AIP, Melville, NY, p.1372, 2002. 19) Zhang, T. y Van Sciver, S.W. The motion of micron-size particles in He II counterflow as observed by the PIV technique J. Low Temp. Phys., 138, 865, 2005. 20) Raffel, M., Willert, C. y Kompenhaus, J. Particle Image Velocimetry, a Practical Guide. Springer, Berlin, 1998. 21) Barenghi, C. F. y Sergeev Y.A. Motion of vortex ring with tracer particles in superfluid helium. Phys. Rev. B 80, 024514, 2009. 22) Bewley, G.P., Paoletti, M.S., Sreenivasan, K.R. y Lathrop, D.P. Characterization of reconnecting vortices in superfluid helium Proc. Nat. Acad. Sci., 105, 13707, 2008. 23) Paoletti, M. S., Fisher, M. E., Sreenivasan, K. R., Lathrop D. P. Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence. Phys. Rev. Lett. 101, 154501, 2008. 24) Paoletti, M.S., Fiorito, R.B., Sreenivasan, K.R. y Lathrop, D.P. Visualization of superfluid helium flow. J. Phys. Soc. Japan, 77, 111007, 2008. 25) Zhang T.y Van Sciver, S. W. Large-scale turbulent flow arounbd a cylinder in counterflow superfluid 4He (He II) Nature Physics, 1, 36, 2005. 26) Luzuriaga J. Measurements in the laminar and turbulent regime of superfluid 4He by means of an oscillating sphere. J Low Temp Phys. 108, 267–277, 1997. 27) Martinez, E.N., Esquinazi, P. Luzuriaga, J. .Measurements of the superfluid transition in heluim by means of a Vibrating Reed. Am.J.Phys. 58, 1163 ,1990. 28) Luzuriaga, J. Sphere on a vibrating reed for measurements of turbulence in superfluid Helium., Journal of Alloys and Compounds 310,1-2, 265-268, 2000. 29) Nichol, H. A., Skrbek, L., Hendry, P. C. y McClintock, P. V. E. Flow of He II due to an Oscillating Grid in the Low-Temperature Limit. Phys. Rev. Lett. 92, 244501, 2004. 30) Yano, H. ,Nago, Y., Goto, R. , Obara, K., Ishikawa, O. y Hata, T. Critical behavior of steady quantum turbulence generated by oscillating structures in superfluid He-4 Phys. Rev. B 81,22057, 2010. 31) Zemma, E. y Luzuriaga, J. Turbulent flow around an oscillating body in superfluid helium: dissipation characteristics of the non linear regime. J Low Temp Phys;172(3-4), 256–265, 2013. 32) Bewley, G. P.The generation of particles to observe quantized vortex dynamics in superfluid helium.Cryogenics 49, 549-553, 2009. 33) Skrbek, L. y Screenivasan, K. R. Developed QT and its decay. Phys. Fluids.24, 011301, 2012. 34) Bewley GP Using hydrogen particles to observe rotating and quantized flows in liquid helium. PhD Thesis, Yale University, 2006. 35) Fonda E, et al.. Visualization of Kelvin waves on quantum vortices. Fluid Dynamics,arXiv:1210.5194, 2013. 36) Schwarz KW Theory of turbulence in superfluid 4He. Phys Rev Lett 38(10) 551– 554, 1977. 37) Zemma E. y Luzuriaga J. Anomalous Trajectories of H2 Solid Particles Observed Near a Sphere Oscillating in Superfluid Turbulent 4He. J. Low Temp. Phys.173(1-2), 71-79,2013. 38) Zemma, E., Babuin S. y Luzuriaga, J. Analysis of motion of solid hydrogen tracer particles in oscillating superfluid flows. Journal of Physics: Conference Series (JPCS) 568 012029, 2014. 39) Schwarz, KW Three-dimensional vortex dynamics in superfluid he 4: Line-line and line-boundary interactions. Physical Review B, 31(9):5782, 1985. 40) Schwarz, KW Three-dimensional vortex dynamics in superfluid he 4: Homogeneous superfluid turbulence. Physical Review B, 38(4):2398, 1988. 41) Maurer, J. y Tabeling,P. Local investigation of superfluid turbulence. Europhys. Lett. 43, 29 ,1998. 42) Stalp, S. R., Skrbek, L.y Donnelly, R. J. Decay of grid turbulence in a finite channel. Phys. Rev. Let. 82, 4831–4834,1999. 43) Jäger J., Schuderer B. y Schoepe W. Turbulent and Laminar Drag of Superfluid Helium on an Oscillating Microsphere. Phys. Rev. Lett.74, 566-569, 1995. 44) Schoepe W. On the transition to turbulence of oscillatory flow of liquid helium-4. J. Low Temp. Phys. 150, 724-729 ,2008. 45) Blažková, M., Schmoranzer, D., Skrbek, L., Vinen, W.F. Generation of turbulence by vibrating forks and other structures in superfluid 4He . Phys. Rev. B 79, 054522, 2009. 46) Blažková, M., Clovecko, M., Gažo, E., Skrbek, L., Skyba, P.Quantum Turbulence generated and detected by a vibrating quartz. J. Low Temp. Phys. 148, 305-310, 2007. 47) Blažková, M., Chagovets, T., Rotter, M., Schmoranzer, D., Skrbek, L. Cavitation in Liquid Helium Observed in a Flow Due to a Vibrating Quartz Fork. J. Low Temp. Phys. 150, 194-199, 2008. 48) Vinen, W. F., Skrbek, L., Nichol, H.A. The Nucleation of Superfluid Turbulence at Very Low Temperatures by Flow Through a Grid. J. Low Temp. Phys. 135(5–6), 423 - 455, 2004. 49) Nichol, H.A., Skrbek, L., Hendry, P.C., McClintock, P.V.E. Experimental investigation of the macroscopic flow of He II due to an oscillating grid in the zero temperature limit. Phys. Rev. E 70, 056307, 2004. 50) Efimov, V., Garg, D., Giltrow, M., McClintock, P., Skrbek, L., Vinen, W. Experiments on a high quality grid oscillating in superfluid 4He at very low temperatures. J. Low Temp. Phys. 158, 462-467, 2010. 51)Yano, H.; Handa, A.; Nakagawa, H.; Nakagawa, M.; Obara, K.; Ishikawa, O.; Hata, T. Observation of the turbulent flow in superfluid 4He using a vibrating wire. Phys. Chem. Solids 66(8–9), 1501-1505, 2005. 52) Yano, H., Hashimoto, N., Handa, A., Nakagawa, M., Obara, K., Ishikawa, O., Hata, T. Motions of quantized vortices attached to a boundary in alternating currents of superfluid 4He. Phys. Rev. B 75, 012502, 2007. 53) Paalanen, M. A., Bishop, D. J., Dail, H. W. Dislocation Motion in hcp 4He. Phys. Rev. Lett. 46, 664, 1981. 54) Bishop, D. J., Paalanen, M. A., Reppy, J. D. Search for superfluidity in hcp 4He Phys. Rev. B 24, 2844, 1981. 55) Kleiman, R.N., Kaminsky, G.K., Reppy, J.D., Pindak, R., Bishop, D.J. Single crystal silicon high-Q torsional oscillators. Rev. Sci. Instrum. 56, 2088, 1985. 56) Spiel C. L., Pohl R. O. , Zehnder A. T. Normal modes of a Si(100) double-paddle oscillator. Rev. Sci. Instrum. 72, 1482-1491, 2001. 57) Liu, X., Morse, S. F., Vignola, J. F., Photiadis, D.M, Marcus, M. H, Houston, B. H .On the modes and loss mechanisms of a high Q mechanical oscillator. Applied Physics Letters 78, 1346, 2001. 58) Durán, C., Anisotropía estructural y su rol en el diagrama de fases de los óxidos superconductores. Tesis (doctorado, Física). Bariloche, Universidad Nacional de Cuyo. Instituto Balseiro, 1992, 84p. 59) Donnelly, R.J., Barenghi, C.F. The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 1217, 1998. 60) Wilks,J. The Properties of Liquid and Solid Helium Clarendon, Oxford, 1967. 61) Landau, L.D. y Lifshitz, E.M. A Course in Theoretical Physics - Fluid Mechanics, vol. 6. Pergamon, Elmsford, 1987. 62) Hudson, J.D y Dennis, S.C.R. The flow of a viscous incompressible fluid past a normal flat plate at low and intermediate Reynolds numbers: the wake J. Fluid Mech. 160, 369, 1985. 63) Dennis, S. C. R, Qiang, W., Coutanceau, M., Launay J.-L.Viscous flow normal to a flat plate at moderate Reynolds numbers J. Fluid Mech. 248, 605, 1993. 64) Vinen, W.F. An introduction to quantum turbulence. Philos. Trans. R. Soc. 366, 2925, 2008. 65) Pippard, A. B. The physics of vibration. Vol.1: The simple classical vibrator. Cambridge: University Press, 1978. 66) Weaver, W, Timoshenko, S. and Young, D. Vibration problems in engineering. Wiley-Interscience, 1990. 67) Nayfeh A. H. y Mook, D. T. Nonlinear Oscillations. Wiley & Sons, New York, 1979. 68) Collin, E., Bunkov, Y. M. y Godfrin, H. Addressing geometric nonlinearities with cantilever microelectromechanical systems: Beyond the Duffing model. Phys. Rev. B, 82, 235416,2010. 69) Fincham D. G. y Wraight, P. C. A simple method for the analysis of damped oscillations. Journal of Physics A: General Physics 5, 248, 1972. 70) Brandt E. H. Thermal depinning and ‘‘melting’’ of the flux-line lattice in high-Tc superconductors. Int J Mod Phys B. 5,751–795, 1991. 71) Chuang I., Durrer R., Turok N., Yurke B. Cosmology in the laboratory: Defect dynamics in liquid crystals. Science 251, 1336–1342, 1991. 72) Tyson J. J., Keener J. P. in Chemical Waves and Patterns, eds Kapral R, Showalter K Kluwer, Dordrecht, The Netherlands, 93–118, 1995. 73) Parks P. E., Donnelly R. J. Radii of positive and negative ions in Helium II. Phys Rev Lett 16,45–48, 1966. 74) La Mantia,M., Chagovets, T., Rotter, M., Skrbek, L. Testing the performance of a cryogenic visualization system on thermal counterflow by using hydrogen and deuterium solid tracers. Rev. Sci. Instrum. 83, 055109, 2012. 75) Van Sciver, S.W., Barenghi, C. F. Visualization of quantum turbulence. Prog. Low Temp. Phys. 16, 247, 2009. 76) Chung, . D.Y., Critchlow, P. Motion of suspended particles in turbulent superflow of liquid helium II. Phys. Rev. Lett. 14, 892, 1965. 77) Chagovets, T. y Van Sciver, s. A study of thermal counterflow using particle tracking velocimetry Phys. Fluids 23, 107102, 2011. 78) Kitchens, T.A., Steyert, W.A., Taylor, R.D., Craig, P.P. Flow Visualization in He II: Direct Observation of Helmholtz Flow. Phys. Rev. Lett. 14, 942, 1965. 79) Chopra, K. L. y Brown, J. B. Suspension of particles in liquid helium. Phys Rev. 108,157, 1957. 80) Vinen, W. Quantum turbulence: achievements and challenges. J. Low Temp. Phys. 161, 419, 2010. 81) Bewley, G, Sreenivasan, K., Lathrop, D. Particles for tracing turbulent liquid helium Exp. Fluids 44, 887, 2008. 82) Douady, S., Couder, Y., Brachet, M. Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67, 983, 1991. 83) Titon, J. y Cadot, O. Direct measurements of the energy of intense vorticity filaments in turbulence. Phys. Rev. E 67, 027301, 2003. 84) Voth, G.A., la Porta, A., Crawford, A. M., Alexander, J., Bodenschatz, E. Measurement of particle accelerations in fully developed turbulence. J. FluidMech. 469, 121, 2002. 85) Otto, F., Riegler, E.K., Voth, G.A.Measurements of the steady streaming flow around oscillating spheres using three dimensional particle tracking velocimetry. Phys. Fluids 20, 093304, 2008. 86) Bradley D. I., et al. Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid 4He.Phys Rev B 85,014501, 2012. 87) Zurek W. H. Cosmological experiments in superfluid helium. Nature 317 (6037), 505 – 508, 1985. 88) Hänninen R., Tsubota M., Vinen W. F. Generation of turbulence by oscillating structures in superfluid helium at very low temperatures. Phys Rev B 75(6),064502, 2007. 89) Vinen, W. F., Skrbek, L. Quantum turbulence generated by oscillating structures. Proc. Natl. Acad. Sci. 111(1),4699,2014. 90) La Mantia M., Duda D., Rotter M., Skrbek, L. Lagrangian accelerations of particles in superfluid turbulence. J Fluid Mech 717, 9, 2013. 91) Fonda E., Sreenivasan K. R., Lathrop D. P. Liquid nitrogen in fluid dynamics: Visualization and velocimetry using frozen particles. Rev Sci Instrum 83(8),085101, 2012. 92) Guo W., Cahn S. B., Nikkel J. A., Vinen W. F., McKinsey D. N. Visualization study of counterflow in superfluid 4He using metastable helium molecules. Phys Rev Lett 105(4)045301, 2010. 93) Surko C. M., Reif, F. Investigation of a new kind of energetic neutral excitation in superfluid helium. Phys Rev 175(1)229–241,1968. 94) McKinsey D. N. et al.. Radiative decay of the metastable He*2ða3Σ+u Þ molecule in liquid helium. Phys Rev A 59(1)200–204, 1999. 95) Rellergert W. G. et al.. Detection and imaging of He2 molecules in superfluid helium. Phys Rev Lett 100(2) 025301, 2008. 96) Rellergert W. G. Detecting and imaging He2 molecules in superfluid helium by láser-induced fluorescence. PhD thesis.Yale University, New Haven, CT,2008. 97) Papanastasiou T., Georgiou G. and Alexandrou A. N. Viscous fluid flow. CRC Press., New York, 2000. 98) La Mantia M. y Skrbek L. Quantum, or classical turbulence? .2014 EPL (Europhysics Letters) 105, 46002, 2014. 99) Hoch H., Busse L. y Moss F. Noise from vortex-line turbulence in He II. Physical Review Letters 34, 384, 1975. 100) Penney, R. y Hunt, T.K. Particle Motion and Heat-Exchange "Viscosity" in Superfluid Helium.Phys. Rev. 169, 228 ,1968. 101) Gordon, E. B. y Okuda, Y. Catalysis of impurities coalescence by quantized vortices in superfluid helium with nanofilament formation. Low Temperature Physics, 35(3),209–213, 2009. 102) Gordon, E. B., Nishida, R., Nomura, R. y Okuda, Y. Filament formation by impurities embedding into superfluid helium. JETP Letters, 85(11),581–584, 2007. 103) M. Blazkova, M., Schmoranzer, D. y Skrbek, L. Transition from Laminar to Turbulent drag Regime in Flow due to a Vibrating Quartz. Fork, Phys. Rev. E 75, 025302,2007. 104) Zemma, E. , Tsubota, M. , Luzuriaga, J. Possible visualization of a superfluid vortex loop attached to an oscillating beam.. J. Low Temp. Phys. Aceptado.
Materias:Física
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas
Código ID:497
Depositado Por:Marisa G. Velazco Aldao
Depositado En:29 Sep 2015 14:51
Última Modificación:29 Sep 2015 14:51

Personal del repositorio solamente: página de control del documento