Estabilización de la frecuencia de un microoscilador no lineal mediante una resonancia interna. / Frecuency stabilization of a nonlinear micromechanical oscillator by internal resonance.

Mangussi, Franco (2015) Estabilización de la frecuencia de un microoscilador no lineal mediante una resonancia interna. / Frecuency stabilization of a nonlinear micromechanical oscillator by internal resonance. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
10Mb

Resumen en español

Los osciladores electromecánicos son un componente indispensable en cualquier dispositivo electrónico moderno, que necesite una frecuencia patrón para sincronización o cronometraje y son ampliamente utilizados en la fabricación de sensores. Los osciladores de cristales de cuarzo han sido utilizados clásicamente para este tipo de aplicaciones. Sin embargo, recientemente con el auge en el estudio de sistemas microelectromecánicos (MEMS), el desarrollo de osciladores a escalas micrométricas representa una alternativa potencial para sustituir a las tecnologías a base de cuarzo. La implementación de osciladores y sensores basados en MEMS, no solo permite disminuir enormemente las dimensiones físicas de esta clase de componentes, sino que también presenta la ventaja de que los métodos de microfabricación son compatibles con la tecnología de producción de semiconductores, lo que permite la incorporación de los osciladores y sensores en circuitos integrados directamente en su etapa de fabricación. Desafortunadamente, la aparición de fenómenos no lineales al reducir los mecanismos resonantes a tan pequeña escala, resulta un gran impedimento a la hora de conseguir sistemas con frecuencias de funcionamiento estables, dificultando así la aplicación de MEMS en sensores u osciladores. En este trabajo se presenta un estudio teórico-experimental de la dinámica no lineal que domina el comportamiento de un tipo especial de MEMS, denominado resonador clamped-clamped. En particular se ahondará en el desarrollo de modelos analíticos que permitan describir la interacción entre distintos modos de vibración del resonador mediante una resonancia interna, y que demuestran como la misma puede utilizarse como mecanismo de estabilización de la frecuencia de operación del microoscilador.

Resumen en inglés

Micromechanical oscillators are an essential component of practically every modern electronic device requiring a frequency reference for time keeping or synchronization and are also widely used in frequency-shift-based sensors. However, recently with the rise in the study of microelectromechanical systems (MEMS), micro- and nanomechanical oscillators are being developed as an alternative to quartz oscillators. The implementation of oscillators and MEMS based sensors, not only allows greatly reduce the physical dimensions of such components, but also presents the advantage that the microfabrication methods are compatible with the technology of semiconductor production, allowing incorporate sensors and oscillators in integrated circuits directly at its manufacturing stage. Unfortunately, as the dimensions of the vibrating structures are reduced to the micro-sacle, their dynamics response at the amplitudes needed for operation frequently becomes nonlinear. These nonlinearities are the biggest impediment to getting systems with stable operating frequencies, thus hindering the application of MEMS sensors or oscillators. This thesis presents a theoretical and experimental study of nonlinear dynamics that dominates the behavior of a special type of MEMS resonator called clampedclamped beam resonator. In particular we will deal with the development of analytical models to describe the interaction between different vibration modes of the resonator through an internal resonance, and showing how it can be used as a mechanism for stabilizing the operating frequency of the microoscilador.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Información Adicional:Area temática: Física aplicada. Sistemas dinámicos.
Palabras Clave:Oscillators; Osciladores;[Microelectromechanical systems; Sistemas microelectromecánicos; Internal resonance; Resonancia interna; Duffing; Clamped-clamped; Non lineal micromechanical oscillator; Microoscilador no lineal]
Referencias:[1] Antonio, D., Zanette, D. H., Lopez, D. Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun., 3, 802, 2012. [2] Postma, H. W. C., Kozinsky, I., Husain, A., Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett., 86, 223105, 2005. [3] Audoin, C., Guinot, B. The measurement of time: Time, frequency, and the atomic clock. Cambridge University Press., 2001. [4] Van Beek, J. T. M., Puers, R. A review of mems oscillators for frequency reference and timing applications. Journal of Micromechanics and Microengineering, 22, 013001, 2012. [5] Nguyen, C. Mems technology for timing and frequency control. IEEE trans. ultrason. ferroelectr. freq. control, 54, 251-270, 2007. [6] Pikovsky, A., Rosenblum, M., Kurths, J. A universal concept in nonlinear sciences. Synchronization: A Universal Concept in Nonlinear Sciences, 2003. [7] Yang, Y. T. S., Feng, X. L., Ekinci, K. L., Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett., 6, 583-586, 2006. [8] Decca, R. S., et al. Constraining new forces in the casimir regime using the isoelectronic technique. Phys. Rev. Lett., 94, 240401, 2005. [9] Stowe, T. D., et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett., 71, 288-290, 1997. [10] Rugar, D., Budakian, R., Mamin, H. J., Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature, 430, 329-332, 2004. [11] Bishop, D., Gammel, P., Giles, R. The little machines that are making it big. Phys. Today, 54, 38-44, 2001. [12] Ekinci, K. L., Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum., 76, 061101, 2005. [13] Yurke, B., Greywall, D. S., Pargellis, A. N., Busch, P. A. Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A, 51, 4211-4229, 1995. [14] Lee, H. K., et al. Verification of the phase-noise model for mems oscillators operating in the nonlinear regime. in: Solid-state sensors. Actuators and Microsystems Conference, pág. 510-513, 2011. [15] Ward, P., Duwel, A. Oscillator phase noise: systematic construction of an analytical mode encompassing nonlinearity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 195-205, 2011. [16] Cleland, A. N., Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys., 92, 2758-2769, 2002. [17] Dykman, M. I., Mannella, R., McClintock, P. V. E., Soskin, S. M., Stocks, M. G. Noiseinduced narrowing of peaks in power spectra of underdamped nolinear oscillators. Physical Review A, 42(12), 7041, 1990. [18] Manevich, A. I., Manevitch, L. I. Mechanics of nonlinear systems with internal resonances. Imperial College Press, 2005. [19] MEMSCAP Inc. Durham, NC. [Online]. Available: http://www.memscap.com. [20] Mohammad, I. Y. Mems linear and nonlinear statics and dinamics. Springer, 2011. [21] Lin, R. M. L., Wang, W. J. Structural dynamics of microsystems current state of research and future directions. Mechanical Systems and Signal Processing, 20, 1015-1043, 2006. [22] Hentz, S. Downscaling silicon resonant mems and nems sensors, devices, transduction, nonlinear dynamics and applications. Micro and Nanotechnologies and Microelectronics. INSA de Lyon, 2012. [23] Palaniapan, M., Khine, L. Nonlinear behavior of soi free free micromechanical beam resonator. ScienceDirect Sensors and Actuators A, 142, 203-210, 2007. [24] Lifshitz, R., Cross, M. C. Nonlinear dynamics of nanomechanical and micromechanical resonators. Preprint of contribution to: Review of Nonlinear Dynamics and Complexity., 2008. [25] Agarwal, M., Park, K., Candler, R., Hopcroft, M., Jha, C., Melamud, R., et al. Nonlinear cacellation in mems resonators for improved power-handling. Proceedings of the IEEE International Electron Devices Meeting, IEDM, págs. 286-289, 2005. [26] Agarwal, M., Chandorkar, S. A., Candler, R., Hopcroft, M., Jha, C., Melamud, R., et al. Optimal drive condition for nonlinearity reduction in electrostatic microresonators. Appl. Phys. Lett., 89, 214105, 2006. [27] Matthys, R. J. Cristal oscillator circuits. New York, Wiley Interscience, 1, 244, 1983. [28] Mestrom, R. M. C., Fey, R. H. B., Phan, K. L., Nijmeijer, H. Simulations and experiments of hardening and softening resonances in a clamped-clamped beam mems resonator. Sensors and Actuators A, 162, 225-234, 2010. [29] Mestrom, R. M. C., Fey, R. H. B., Nijmeijer, H. Theroretical and experimental nonlinear dynamics of a clamped-clamped beam mems resonator. ENOC, 2008. [30] Lopez, D., Czaplewski, D. Nanofabrication and devices group at argonne national labs. [31] Arroyo, S. I. Dinámica de micro osciladores clamped-clamped, estabilización de la frecuencia. Tesis carrera de maestría en física, 2013. [32] Lin, R. M. L., Wang, W. J. Nonlinear dynamics of a micromechanical torsional resonator: Analitycal model and experiments. Jornal of Micromechanical Systems, 18, 1396-1400, 2009. [33] Mestrom, R. M. C., Fey, R. H. B., van Beek, J. T. M., Phan, K. L., Nijmeijer, H. Modelling the dynamics of a mems resonator: Simulations and experiments. Sensors and Actuators A, 142, 306-315, 2008. [34] Mestrom, R. M. C., Fey, R. H. B., Phan, K. L., Nijmeijer, H. Experimental validation of hardening and softening resonances in a clamped-clamped beam mems resonator. Proceedings of Eurosensors XXIII conference, 1, 812-815, 2009. [35] Braghin, F., Resta, F., Leo, E., Spinola, G. Nonlinear dynamics of vibrating mems. Sensors and Actuators A, 134, 98-108, 2007. [36] Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V. Nonlinear dynamics of nanomechanical beam resonators: improving the preformance of nems-based sensors. IOPsience- Nanotechnology, 20, 275501, 2009. Bibliografía 37 [37] Nayfeh, A. H., Mook, D. T. Nonlinear oscilations. Wiley, New York, 1995. [38] Guckenheimer, J., Holmes, P. Nonlinear oscilations, dynamical systems, and bifurcations of vector fields. Springer-Verlag New York, 42, 1983. [39] Arroyo, S. I., Zanette, D. H. Duffing revisted: Phase shift control and internal resonance in self-sustained oscillators. Preprint submitted to Elseiver Science, pág. 0, 2014. [40] Zanette, D., Arroyo, S. I. H. Synchronization of a forced self-sustained duffinf oscillator. The European Physical Journal Special Topics, 223, 2807-2817, 2014. [41] Arroyo, S. I., Zanette, D. H. Synchronization propertird of self-sustained mechanical oscillators. Phys. Rev. E, 87, 052910, 2013. [42] Matheny, M., Villanueva, L. G., Karabalin, R. B., Sader, J. E., Roukes, M. L. Nonlinear mode-coupling in nanomechanical systems. Nano letters, 2013. [43] Lulla, K. J., Cousins, R. B., Venkatesan, A., Patton, M. J., Armour, A. D., Mellor, C. J., et al. Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator. New Journal of Physics, 14, 113040, 2012. [44] A., T. P., B., H. J., E., A., C., S. K. Linear and nonlinear coupling between trnsverse modes of a nanomechanical resonator. Journal of Applied Physics, 114, 114307, 2013. [45] Poluinin, P. M., Strachan, S., Ahn, C. H., Shaw, W. S. Experimental investigation on mode coupling of bulk mode silicon mems resonators. In Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference , págs. 1008-1011, 2015. [46] Strachan, B. S. Exploiting internal resonance in mems for a signal processing applications. A dissertation submitted to Michigan State University in partial fulfillment of the requirements of a degree of doctor of philosophy- Mechanical Engineering-Electrical Engiennering, 2015. [47] Narashima, R. Non-lienar vibration of an elastic string. J. Sound Vib., 8, 464, 1968. [48] Lee, C. L., Perkins, N. C. Nonlinear oscillations os suspended cables containing a two-to-one internal resonance. Nano letters, 3, 465-490, 1992. [49] Benedettini, F., Rega, G., Alaggio, R. Nonlinear oscillations of a four degree of freedom model of a suspended cable under multiple internal resonance conditions. Journal of sound and vibration, 18, 775-798, 1995. Bibliografía 38 [50] Nayfeh, A. H., Balachandran, B. Modal interactions in dynamical and structural systems. Appl. Mech. Rev., 42, S175-S201, 1989. [51] Visweswara, R. G., Iyengar, R. N. Internal resonance and nonlinear response of a cable under periodic excitation. Journal of Sound and Vibration, 149, 25-41, 1991.
Materias:Física
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:545
Depositado Por:USUARIO INVÁLIDO
Depositado En:29 Abr 2016 15:09
Última Modificación:09 May 2017 12:31

Personal del repositorio solamente: página de control del documento