Evaluación de tenacidad a la fractura e integridad estructural de tubos de generadores de vapor nucleares. / Evaluation of fracture toughness and structural integrity of nuclear steam generators tubes.

Bergant, Marcos A. (2016) Evaluación de tenacidad a la fractura e integridad estructural de tubos de generadores de vapor nucleares. / Evaluation of fracture toughness and structural integrity of nuclear steam generators tubes. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]PDF (Tesis) - Versión publicada
Español
27Mb

Resumen en español

Dado el impacto negativo asociado a la ocurrencia de fallas en tubos de generadores de vapor (TGVs) en centrales nucleares, el estudio de la integridad estructural de éstos ha comenzado a recibir mayor atención recientemente. Diversas metodologías basadas en análisis de carga límite han sido propuestas para asegurar la integridad estructural de los tubos, según los requerimientos establecidos por las autoridades regulatorias. Éstas han conducido, sin embargo, a la definición de criterios de reparación o taponado de TGVs excesivamente conservativos. Por lo tanto, con el objetivo de reducir la cantidad de tubos innecesariamente removidos de servicio, nuevos criterios de evaluación de integridad han sido propuestos recientemente en la literatura. En este contexto, la mecánica de fractura elastoplástica se presenta como una alternativa para la evaluación de la integridad de TGVs, requiriéndose dos elementos para su aplicación: la estimación de la fuerza impulsora en términos del parámetro elastoplástico (por ejemplo, la integral J) y la medición experimental de la tenacidad a la fractura del material de los tubos (por ejemplo, a través de la curva de resistencia J-R). Este trabajo presenta el desarrollo de técnicas experimentales no normalizadas para la determinación de curvas J-R para TGVs con fisuras pasantes circunferenciales y longitudinales. Debido a las dimensiones reducidas de los TGVs, diferentes probetas no normalizadas fueron propuestas. Además, en los ensayos se utilizaron condiciones de carga de tracción y flexión con el objetivo de modelar más adecuadamente los estados tensionales y las condiciones de constraint reales en TGVs. Los valores de la integral J fueron estimados utilizando el método del factor η. La aptitud del método fue evaluada a partir de simulaciones numéricas de los ensayos propuestos mediante análisis elastoplásticos con la técnica de elementos finitos. Se encontró que condiciones de mayor constraint asociadas con fisuras profundas y cargas de flexión favorecen la validez del método del factor η, mientras que configuraciones de menor constraint dan como resultado factores η que exhiben una mayor dependencia con el nivel de carga aplicada. También se observó que los factores η basados en la apertura de la boca de la fisura (Crack Mouth Opening Displacement o CMOD) presentan una dependencia mucho menor con el nivel de carga respecto a los factores η definidos a partir del desplazamiento del punto de aplicación de la carga (Load Line Displacement o LLD). Se presentan los valores del factor η para las probetas estudiadas con fisuras profundas (a/W ≥ 0,40). Se realizaron ensayos de fractura a temperatura ambiente y 300 °C con probetas obtenidas de TGVs nucleares fabricados a partir de las aleaciones 690 (Ni: 61; Cr: 29; Fe: 8,95, % en peso) y 800 (Ni: 33; Cr: 21,6; Fe: 42,2, % en peso). Durante los ensayos de fractura a temperatura ambiente, la extensión estable de fisura fue medida mediante una técnica óptica utilizando un microscopio digital. Para estos ensayos también se aplicó el método de normalización que propone la norma ASTM E1820-15 en el Anexo 15, encontrándose una buena coincidencia entre las longitudes estimadas por éste y las medidas ópticamente. De esta manera, el método de normalización fue utilizado para los ensayos a alta temperatura. Los resultados experimentales mostraron que ambos materiales tienen elevadas tenacidades a la fractura, siendo la aleación 800 la que presentó curvas J-R más elevadas que la aleación 690 tanto para fisuras circunferenciales como longitudinales. Las curvas J-R para ambas aleaciones mostraron un efecto marcado con la orientación de la fisura, es decir que existe una importante anisotropía en las propiedades de fractura: las fisuras circunferenciales presentaron curvas J-R más elevadas que las fisuras longitudinales. El nivel de constraint desarrollado en los ensayos, dado por las condiciones de carga de tracción y flexión, evidenció poco efecto sobre las curvas J-R para probetas con fisuras profundas (a/W ~ 0,50). A su vez, la temperatura de ensayo (temperatura ambiente y 300 °C) presentó un efecto prácticamente nulo para ambas aleaciones. Usando las propiedades de fractura obtenidas en este trabajo, la metodología FAD (Failure Assessment Diagram) fue propuesta y utilizada para la predicción de las condiciones de falla de TGVs fisurados para diferentes geometrías de fisura y condiciones de carga. La comparación entre análisis teóricos y datos experimentales muestra la potencialidad del FAD como una metodología capaz de predecir adecuadamente las fallas de estos componentes.

Resumen en inglés

The assessment of the structural integrity of steam generator tubes (SGTs) in nuclear power plants has been receiving increasing attention in the literature in the last years due to the negative impact related to their failures. Diverse failure prediction methodologies based on limit load analyses were proposed in the past to ensure tube integrity by fulfilling regulatory authorities’ requirements. They have lead however to overly conservative plugging or repairing criteria. Therefore, with the purpose of reducing the number of tubes that are unnecessarily removed from service, new revised fitness for service criteria was recently proposed in the open literature. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J-integral) and the experimental measurement of the fracture toughness of the material (e.g., the material J-R resistance curve). The present work describes the development of non standardized experimental techniques aimed to determine J-R curves for SGTs with circumferential and longitudinal through wall cracks. Due to the reduced dimensions of SGTs, different candidate non-standard specimens´ geometries were proposed. Also, tensile and bending loading conditions were used in the tests in order to modeling the actual stress and constraint conditions in SGTs. The J-integral values were estimated through the η-factor method. The suitability of this method was evaluated from the numerical simulation of the proposed tests using elastoplastic finite element analysis. It was shown how higher constraint conditions associated with deep cracks geometries and prevailing bending loads favor the η-factor validity while lower constraint configurations resulted in a η-factors exhibiting a higher dependence on the applied load. It was also verified that η-factors based on the crack mouth opening displacement (CMOD) showed much less dependency on the loading level than η-factors derived from load line displacement (LLD). The η-factors for the studied specimens with deep cracks (a/W ≥ 0.40) were reported. Fracture tests at room temperature and 300 °C were performed with specimens obtained from nuclear SGTs made of alloy 690 (Ni: 61; Cr: 29; Fe: 8.95, % in weight) and 800 (Ni: 33; Cr: 21.6; Fe: 42.2, % in weight). During the fracture tests at room temperature, the stable crack extension was measured by means of an optical technique using a digital microscope. The normalization method proposed in Annex 15 of ASTM E1820-15 was also applied to estimate the crack length during these tests, showing a general good coincidence with the experimental optical data. Therefore, the normalization method was used for high temperature tests. The experimental results exhibited that both materials have high fracture toughness, while alloy 800 showed higher J-R curves than alloy 690 for both circumferential and longitudinal cracks. The J-R curves for both alloys presented a strong effect on the crack orientation, i.e., there is an important anisotropy in fracture properties: circumferential cracks showed higher J-R curves than longitudinal cracks. The constraint level in the tests, due to tensile and bending loading conditions, showed a reduced effect for specimens with deep cracks (a/W ~ 0.50). Furthermore, the testing temperature (i.e., room temperature and 300 °C) showed a negligible effect for both materials. Using fracture properties obtained in this research, the Failure Assessment Diagram (FAD) methodology was proposed and used for predicting the failure conditions of defective SGTs for varied crack geometries and loading conditions. The comparison between theoretical analyses and experimental data results indicates the potentiality of the FAD as a comprehensive methodology for predicting the failure of flawed SGTs.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Información Adicional:Área temática: Mecánica de fractura e integridad estructural.
Palabras Clave:Steam generator; Generadores de vapor de agua ; Fracture; Fracturas; Crack propagation; Propagación de fracturas; Fracture mechanics; Mecánica de fracturas;[ Resistance cruves; Curvas de resistencia]
Referencias:Abaqus Analysis User´s Manual, Abaqus 6.12-1. Contour integral evaluation, Section 11.4.2. Abouu-Hanna, J., McGreevy, T., Majumdar, S., 2004. Prediction of crack coalescence of steam generator tubes in nuclear power plants. Nuclear Engineering and Design 229, 175-187. DOI:10.1115/IMECE2004-60666 Ainsworth, R. A., 1984. The assessment of defects in structures of strain hardening material. Engineering Fracture Mechanics 19, 633-642. DOI:10.1016/0013-7944(84)90096-1 Ainsworth, R. A., 1996. Failure assessment diagrams for use in R6 assessments for austenitic components. International Journal of Pressure Vessels and Piping 65, 303-309. DOI:10.1016/0308-0161(94)00141-5 Anderson, T., 2005. Fracture Mechanics, Fundamentals and Applications. CRC Press, Boca Raton, Florida. API 579-1 / ASME FFS-1, 2007. Fitness for service. American Petroleum Institute. American Society of Mechanical Engineers. ASTM A370-12 Standard Test Methods and Definitions for Mechanical Testing of Steel Products, 2012. American Society for Testing and Materials. DOI:10.1520/A0370-12 ASTM E1820-13 Standard Test Method for Measurement of Fracture Toughness, 2013. American Society for Testing and Materials. DOI:10.1520/E1820-13 ASTM E2472-12 Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions, 2012. American Society for Testing and Materials. DOI:10.1520/E2472-12E01 Bergant, M., Yawny, A., Perez Ipiña, J., 2012. Estimation procedure of J-resistance curves for through wall cracked steam generator tubes. Procedia Materials Science 1, 273-280. DOI:10.1016/j.mspro.2012.06.037 Bergant, M., Yawny, A., Perez Ipiña, J., 2015a. Failure Assessment Diagram in Structural Integrity Analysis of Steam Generator Tubes. Procedia Material Science 8, 128-138. DOI:10.1016/j.mspro.2015.04.056 Bergant, M., Yawny, A., Perez Ipiña, J., 2015b. Structural integrity assessments of steam generator tubes using the FAD methodology. Nuclear Engineering and Design 295, 457-467. DOI:10.1016/j.nucengdes.2015.09.022 Bergant, M., Yawny, A., Perez Ipiña, J., 2015c. Numerical study of the applicability of the η-factor method to J-resistance curve determination of steam generator tubes using non-standard specimens. Engineering Fracture Mechanics 146, 109-120. DOI:10.1016/j.engfracmech.2015.07.059152 Bertsch, J., Hoffelner, W., 2006. Crack resistance curves determination of tube cladding material. Journal of Nuclear Materials 352, 116-125. DOI:10.1016/j.jnucmat.2006.02.045 Bloom, J. M., 1983. Validation of a Deformation Plasticity Failure Assessment Diagram Approach to Flaw Evaluation. Elastic-Plastic Fracture: Second Symposium, Volume II, Fracture Resistance Curves and Engineering Applications, ASTM STP 803, 206-238. DOI:10.1520/STP36769S Brocks, W., Cornec A., Scheider, I., 2002. Computational Aspects of Nonlinear Fracture Mechanics. Technical Note GKSS/WMS/02/05, Institute of Materials Research, GKSS research centre Geesthacht. DOI:10.1016/B0-08-043749-4/03102-5 Brocks, W., Müller, W., Olschewski, J., 1985. Experiences in applying ADINA to the analysis of crack tip fields in elastic-plastic fracture mechanics. Nonlinear Finite Element Analysis and ADINA, Computers and Structures 21 (1/2), 137-158. DOI:10.1016/0045-7949(85)90238-X Brocks, W., Scheider, I., 2001. Numerical Aspects of the Path-Dependence of the J-Integral in Incremental Plasticity. Technical Note GKSS/WMS/01/08, Institut für Werkstofforschung, GKSS-Forschungszentrum Geesthacht. BS 8571:2014 Methods of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimens, 2014. The British Standards Institution. Cerný, I., 2004. The use of DCPD method for measurement of growth of cracks in large components at normal and elevated temperatures. Engineering Fracture Mechanics 71, 837-848. DOI:10.1016/S0013-7944(03)00012-2 Chang, Y., Kim, Y., Hwang, S., Kim, J., 2006. Burst pressure estimation of steam generator tubes based on fracture mechanics analyses. Key Engineering Materials 321-323, 666-669. DOI:10.4028/www.scientific.net/ KEM.321-323.666 Chattopadhyay, J., Dutta, B.K., Kushwaha, H.S., 2001. Derivation of ‘γ’ parameter from limit load expression of cracked component to evaluate J-R curve. International Journal of Pressure Vessels and Piping 78, 401-427. DOI:10.1016/S0308-0161(01)00053-9 Cizelj, L., Mavko, B., Riesch-Oppermann, H., Brucker-Froit, A., 1995. Propagation of stress corrosion cracks in steam generator tubes. International Journal of Pressure Vessels and Piping 63, 35-43. DOI:10.1016/0308-0161(94)00046-L Cravero, S., Ruggieri, C., 2005. Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – Part I: Plane-strain analyses. Engineering Fracture Mechanics 72, 1344-1360. DOI:10.1016/j.engfracmech.2004.10.010 Cravero, S., Ruggieri, C., 2007. Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance. Engineering Fracture Mechanics 74, 2735-2757. DOI:101016/j.engfracmech.2007.01.012 Dawicke, D. S., Sutton, M. A., 1993. Crack-Tip-Opening Angle Measurements and Crack Tunneling Under Stable Tearing in Thin Sheet 2024-T3 Aluminum Alloy. Nasa Contract Report 191523. Langley Research Center.153 de Vedia, L., 1986. Mecánica de Fractura, 1° Ed. Buenos Aires, Comisión Nacional de Energía Atómica – CNEA (monografía tecnológica n° 1). EPRI, 1997. Steam Generator Management Project: Burst Pressure Correlation for Steam Generator Tubes With Throughwall Axial Cracks. Technical Report TR-105505. EPRI, 2006a. Steam generator integrity assessment guidelines. Revision 2, Technical Report 1012987. EPRI, 2006b. Guidelines for PWR Steam Generator Tubing Specifications and Repair. Volume 2, Revision 1, Technical Report TR-016743-V2R1. Erhard, A., Schuler, X., Otremba, F., 2012. A new concept for steam generator tube integrity assessment. Nuclear Engineering and Design 249, 297-303. DOI:10.1016/j.nucengdes.2012.04.014 Ernst, H.A., Paris, P.C., Landes, J.D., 1981. Estimations on J-Integral and Tearing Modulus T from a Single Specimen Test Record. Fracture Mechanics: Thirteenth Conference, ASTM STP 743, 476-502. DOI:10.1520/STP28814S Flesch, B., Cochet, B., 1990. Leak-before-break in steam generator tubes. International Journal of Pressure Vessels and Piping 43, 165-179. DOI:10.1016/0308-0161(90)90099-4 Gupta, S., Bhasin, V., Vaze, K., Ghosh, A., Kushwaha, H., Chapuliot, S., Marie, S., Kayser, I., 2006. Derivation of J-resistance curve for through wall cracked pipes from crack mouth opening displacement. International Journal of Pressure Vessels and Piping 83, 686-699. DOI:10.1016/j.ijpvp.2006.05.004 Heerens J., Schwalbe K. H., Cornec A., 1988. Modifications of ASTM E813-81 Standard Test Method for an Improved Definition of Using New Blunting-Line Equation. Fracture Mechanics: Eighteenth Symposium, ASTM STP 945, 374-389. DOI:10.1520/STP23253S HKNIC, 2015. Inside a Nuclear Island – The Steam Generator, Hong Kong Nuclear Investment Company Limited. Recuperado de https://www.hknuclear.com/dayabay/plant/nuclearisland/generator Hu, J., Liu, F., Cheng, G., Zhang, Z., 2011. Determintation of the critical crack length for steam generator tubing based on fracture-mechanics-based method. Annals of Nuclear Energy 38, 1900-1905. DOI:10.1016/j.anucene.2011.05.009 Huh, N., Kim, J., Chang, Y., Kim, Y., Hwang, S., Kim, J., 2006. Elastic-plastic fracture mechanics assessment for steam generator tubes with through-wall cracks. Fatigue & Fracture of Engineering Materials & Structures 30, 131-142. DOI:10.1111/j.1460-2695.2006.01094.x Hutchinson, J. W., 1968. Singular Behavior at the End of a Tensile Crack Tip in a Hardening Material. Journal of the Mechanics and Physics of Solids 16, 13-31. DOI:10.1016/0022-5096(68)90014-8 IAEA-TECDOC-1577: Strategy for Assessment of WWER Steam Generator Tube Integrity, International Atomic Energy Agency, Dec. 2007.154 IAEA-TECDOC-1668: Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators, International Atomic Energy Agency, 2011 update. IAEA-NP-T-3.13: Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, International Atomic Energy Agency, 2011. James, M. A., Newman, J. C., 2005. Characterization of Crack Length Measurement Methods for Flat Fracture with Tunneling. Journal of ASTM International Vol. 2, N° 3, 506-520. DOI:10.1520/JAI12053 Landes, J. D., Begley, J. A., 1974. Test Results from J-Integral Studies: An Attempt to Establish a JIC Testing Procedure. ASTM STP 560, 170-440. DOI:10.1520/STP33140S Landes, J. D., 1990. Fracture Mechanics and the nuclear industry. Metallurgical Transactions A 21-4, 1097-1104. DOI:10.1007/BF02698241 Landes, J. D., 1995. The Blunting Line in Elastic-Plastic Fracture. Fatigue and Fracture of Engineering Materials and Structures 18, 1289-1297. DOI:10.1111/j.1460-2695.1995.tb00855.x Lee, J., Park, Y., Song, M., Kim. Y., Moon, S., 2001. Determination of equivalent single crack based on coalescence criterion of collinear axial cracks. Nuclear Engineering and Design 205, 1-11. DOI:10.1016/S0029-5493(00)00368-X Majumdar, S., 1999a. Prediction of structural integrity of steam generator tubes under severe accident conditions. Nuclear Engineering and Design 194, 31-55. DOI:10.1016/S0029-5493(99)00168-5 Majumdar, S., 1999b. Failure and leakage through circumferential cracks in steam generator tubing during accident conditions. International Journal of Pressure Vessels and Piping 76, 839-847. DOI:10.1016/S0308-0161(99)00058-7 McMeeking, R.M., 1977. Path dependence of the J-integral and the role of J as a parameter characterizing the near tip field. Flaw Growth and Fracture: Tenth Conference, ASTM STP 631,175-194. DOI:10.1520/STP35530S Merkle, J., Corten H., 1974. A J-integral Analysis for the Compact Specimen Considering Axial Force as Well as Bending. Journal of Pressure Vessel Technology 96, 286-292. DOI:10.1115/1.3454183 Milne, I., Ainsworth, R. A., Dowling, A. R., Stewart, A. T., 1988a. Assessment of the integrity of structures containing defects. International Journal of Pressure Vessels and Piping 32, 3-104. DOI:10.1016/0308-0161(88)90071-3 Milne, I., Ainsworth, R. A., Dowling, A. R., Stewart, A. T., 1988b. Background to and validation of CEGB report R/H/R6-Revision 3. International Journal of Pressure Vessels and Piping 32, 105-196. DOI:10.1016/0308-0161(88)90072-5 Newman Jr., J.C., Crews Jr., J.H., Bigelow, C.A., Dawicke, D.S., 1995. Variations of a global constraint factor in cracked bodies under tension and bending loads. Constraint Effects in Fracture Theory and Applications: Second Vol., ASTM STP 1244. DOI:10.1520/STP14629S155 NRC, 2015. The inverted U-tube bundle of a Combustion Engineering steam generator, Nuclear Regulatory Comission. Recuperado de http://www.nrc.gov/reading-rm/photo-gallery/index.cfm?& cat=Nuclear_Reactors. Paris, P., Ernst, H., Turner, C., 1980. A J-Integral Approach to Development of η-Factors. Fracture Mechanics: Twelfth Conference, ASTM STP 700, 338-350. DOI: 10.1520/STP36979S Park, Y., Song, M., Lee, J., Moon, S., Kim, Y., 2002. Investigation on the interaction effect of two parallel axial through-wall cracks existing in steam generator tube. Nuclear Engineering and Design 214, 13-23. DOI:10.1016/S0029-5493(02)00010-9 Perez Ipiña, J., 2004. Mecánica de Fractura, Librería y Editorial Alsina, Buenos Aires, Argentina. Rice, J.R., 1968. A Path Independent Integral and The Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics 55 (E2), 379-386. DOI:10.1115/1.3601206 Rice, J., Paris, P., Merkle, J., 1973. Some further results of J-integral analysis and estimates. Progress in flaw growth and fracture toughness testing, ASTM STP 536, 231-245. DOI: 10.1520/STP49643S Rice, J.R. y Rosengren, G.F., 1968. Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material. Journal of the Mechanics and Physics of Solids 16, 1-12. DOI:10.1016/0022-5096(68)90013-6 Sanyal, G., Samal, M., 2012. Assessment of Axial Cracking of a Steam Generator Tube. Journal of Metallurgical Engineering 1, 53-62. Sanyal, G., Samal, M., 2013. Investigation of Fracture Behavior of Steam Generator Tubes of Indian PHWR using PLT Specimens. Procedia Engineering 55, 578-584. DOI:10.1016/j.proeng.2013.03.298 Schwalbe, K. H., Cornec, A., Baustian, K., 1996. Application of fracture mechanics principles to austenitic steels. International Journal of Pressure Vessels and Piping 65, 193-207. DOI:10.1016/0308-0161(96)00131-S Schwalbe, K. H., Heerens, J., 1998. R-curve testing and its relevance to structural assessment. Fatigue & Fracture of Engineering Materials & Structures 21, 1259-1271. DOI:10.1046/j.1460-2695.1998.00110.x Schwalbe, K.H., Newman Jr., J.C., Shannon Jr., J.L., 2005. Fracture mechanics testing on specimens with low constraint-standardisation activities within ISO and ASTM. Engineering Fracture Mechanics 72, 557-576. DOI: 10.1016/j.engfracmech.2004.04.006 Silva, L., Cravero, S., Ruggieri, C., 2006. Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens – Part II: 3-D effects on constraint. Engineering Fracture Mechanics 73, 2123-2138. DOI:10.1016/j.engfracmech.2006.04.004. Suh, N., Kim, Y., 2008. Determination of J-integral using the Load-COD record for circumferential through-wall cracked pipes. Journal of Pressure Vessel Technology 130, 1-4. DOI: 10.1115/1.2967830156 Sumpter, J., Turner, C., 1976. Method for laboratory determination on Jc. Cracks and Fracture, ASTM STP 601, 3-18. DOI: 10.1520/STP28634S Timoshenko, S.P. y Goodier, J.N., 1970. Theory of Elasticity, McGraw-Hill, Nueva York. Tonkovic, Z., Skozrit, I., Alfirevic, I., 2008. Influence of flow stress choice on the plastic collapse estimation of axially cracked steam generator tubes. Nuclear Engineering and Design 238, 1762-1770. DOI:10.1016/j.nucengdes.2008.01.008 Tonkovic, Z., Skozrit, I., Soric, J., 2005. A contribution to assessment of steam generator tubes integrity. 11th International Conference on Fracture, 01/2005, 4. Turin, Italy. Turner, C., 1980. The Ubiquitous η Factor. Fracture Mechanics: Twelfth Conference, ASTM STP 700, 314-337. DOI: 10.1520/STP36978 Wallin, K., 2011. Fracture Toughness of Engineering Materials, Estimation and Application. EMAS Publishing, Warrington, UK. Wang, X., Reinhardt, W., 2003. On the assessment of through-wall circumferential cracks in steam generator tubes with tube supports. Journal of Pressure Vessel Technology 125, 85-90. DOI:10.1115/1.1511737 Ward, A., 2006. Proyecto CAREM: Central ARgentina de Elementos Modulares, Comisión Nacional de Energía Atómica. Recuperado de http://www.uxc.com/smr. Wilkowski, G. M., Maxey, W. A., 1984. Review and Applications of the Electric Potential Method for Measuring Crack Growth in Specimens, Flawed Pipes, and Pressure Vessels. Fracture Mechanics: Fourteenth Symposium – Volume II: Testing and Applications, ASTM STP 791, 266-294. Wu, S., Mai., Y., Cotterell, B., 1990. Plastic η-factor (ηp) of fracture specimens with deep and shallow cracks. International Journal of Fracture 45, 1-18. DOI: 10.1007/BF00012606. Xu, J., Zhang, Z.L., Ostby, E., Nyhus, B., Sun, D.B., 2010. Constraint effect on the ductile crack growth resistance of circumferentially cracked pipes. Engineering Fracture Mechanics 77, 671-684. DOI:10.1016/j.engfracmech.2009.11.005 Yagnik, S. K., Ramasubramanian, N., Grigoriev, V., Sainte-Catherine, C., Bertsch, J., Adamson, R., Kuo, R.-C., Mahmood, S. T., Fukuda, T., Efsing, P., Oberländer, B., C., 2008. Round-Robin Testing of Fracture Toughness Characteristics of Thin-Walled Tubing. Journal of ASTM International Vol. 5, No. 2, 205-226. DOI:10.1520/JAI101140 Zahoor, A., 1989-1991. Ductile Fracture Handbook. EPRI-NP-6301-D, N14-1, Research Project 1757-69, Electric Power Research Institute. Zhu, X., Leis, B., Joyce, J., 2008. Experimental Estimation of J-R Curves from Load-CMOD record for SE(B) Specimens. Journal of ASTM International 5, 66-86. DOI:10.1520/JAI101532157
Materias:Ingeniería > Defectos de los materiales
Física > Física de materiales
Ingeniería
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:549
Depositado Por:USUARIO INVÁLIDO
Depositado En:25 Aug 2016 12:35
Última Modificación:25 Aug 2016 12:48

Personal del repositorio solamente: página de control del documento