Efectos de la microestructura sobre la transmisión de neutrones en materiales de interés nuclear. / Microstructural effects on the neutron transmission signal of nuclear materials.

Malamud, Florencia (2016) Efectos de la microestructura sobre la transmisión de neutrones en materiales de interés nuclear. / Microstructural effects on the neutron transmission signal of nuclear materials. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis) - Versión publicada
Español
100Mb

Resumen en español

Cuando un haz policromático de neutrones pasa a través de un material, los neutrones de distintas longitudes de onda son atenuados en formas muy diferentes. Como resultado, el espectro de energía del haz de neutrones cambia cuando una muestra es colocada frente el haz. Un análisis detallado del cociente de intensidad entre los haces de transmitido e incidente puede proporcionar una gran cantidad de información acerca de la estructura cristalina y microestructura de la muestra, definidas a través de la sección eficaz total del material. Para neutrones térmicos y sub-térmicos, el ordenamiento y movimiento de los átomos a escala microscópica define en forma precisa la dependencia de esta magnitud con la energía del neutrón incidente. Así, la variación con la energía de la sección eficaz total de los sólidos debido a la estructura de los átomos para distancias entre 0,1 y 100 Å se encuentra bien establecida, y es explotada en el estudio de estructuras cristalinas y de los movimientos vibracionales y rotacionales. Como contrapartida, el efecto de la estructura mesoscópica de los materiales, esto es para dimensiones entre 0,1 y 100 µm, sobre la sección eficaz total ha sido mucho menos estudiado, a pesar de provocar cambios profundos en esta magnitud. En esta Tesis estudiamos y formalizamos la dependencia de la sección eficaz total con características microestructurales tales como la porosidad, y la distribución de tamaños y orientaciones de los granos que componen los materiales, y desarrollamos modelos teóricos a partir de las características microestructurales de muestras de interés nuclear con diferente microestructura. Estos modelos permiten describir la contribuci ón de la componente elástica coherente de la seción eficaz total sobre los espectros de transmisión de neutrones e introducen parámetros como la cantidad de cristales que conforman el material, su estructura cristalina, parámetros de red, mosaicidad, estructura de poros u orientación preferencial de granos, para describir la sección total de materiales monocristalinos o policristalinos. En todos los casos, los modelos desarrollados fueron implementados en una biblioteca basada en el lenguaje computacional MATLAB y fueron comparados con secciones eficaces totales obtenidas en experimentos de transmisión de neutrones realizados en el Departamento de Física de Neutrones del Centro Atómico Bariloche y en ISIS Facility, Reino Unido. Los novedosos modelos microestructurales propuestos describen fielmente los experimentos desarrollados sobre muestras con distinta microestructura, lo que permite el empleo de los mismos en un código de refinamiento sobre los datos experimentales. Aquí, desarrollamos herramientas computacionales que ajustan por cuadrados mínimos no lineales los modelos paramétricos representativos de cada microestructura, sobre la sección eficaz total o la transmisión experimental, para determinar parámetros microestructurales de la muestra a partir de experimentos de transmisión de neutrones con resolución en longitud de onda. Los resultados son de particular relevancia para la interpretación y el análisis cuantitativo de las imágenes realizadas por la técnica de radiografía neutrónica con resolución en energía, que ha recibido un gran impulso en años recientes.

Resumen en inglés

When a polychromatic neutron beam passes through a crystalline material, neutrons of different energies are attenuated differently. As a result, the energy spectrum of the neutron beam changes with a sample in the beam. A careful analysis of the intensity ratio between the transmitted and incident beams can provide a wealth of information about the crystalline structure and microstructure of the sample, deffined by the material total cross section. For sub-thermal and thermal neutrons, the order and movement of atoms on a microscopic scale precisely define the dependence of this magnitude with the incident neutron energy. Thus, the variation with energy of the total cross section of the solid because of the structure of atoms to distances between 0.1 and 100 Å is well established, and is exploited in the study of crystal structures and vibrational and rotational motions. In contrast, the effect of the mesoscopic structure of materials, this is for dimensions between 0.1 and 100 µ m, on the total cross section has been much less studied, although cause profound changes in this magnitude. This thesis study and formalize the dependence of the total cross section with microstructural characteristics such as porosity, and distribution of sizes and orientations of grains making up the materials, and develop theoretical models from the microstructural characteristics of nuclear interest samples with different microstructure. These models allow to describe the contribution of the coherent elastic component of the total cross secion on the neutrons transmission spectra and introduce parameters such as the amount of crystals and crystal structure, lattice parameters, mosaicity, pore structure or preferential orientation of grains, in order to describe the total cross section of monocrystalline or polycrystalline materials. In all cases, the models developed were implemented in a MATLAB-based library and were compared with total cross sections obtained in neutron transmission experiments performed in the Departamento de Física de Neutrones del Centro Atómico Bariloche and ISIS Facility, UK. The novel microstructural models faithfully describe experiments on samples with different microstructure, enabling the use thereof in a reffinement over the experimental data. Here, we developed computational tools which set minimum squares nonlinear parametric models representative of each microstructure on the total cross section or the experimental transmission spectra, to determine microstructural parameters of the sample from energy resolved neutron transmission experiments. The results are of particular relevance to the interpretation and quantitative analysis of the images taken by the technique of neutron radiography with energy resolution, which has received a boost in recent years.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Neutron transport theory; Teoría del transporte de neutrones; Neutron diffraction; Difracción de neutrones; Crystal structure; Estructura cristalina; Neutron transfer; Tranferencia de neutrones; Transfer reactions; Reacciones de transferencia; Porosity; Porosidad; Cross sections; Secciones eficaces;[MATLAB; Microstructures; Microestructuras; Monocrystalline materials; Materiales monocristalinos; Polycrystalline materials; Materiales policristalinos; Nuclear Materials; Materiales nucleares]
Referencias:[1] Reimers, W., Pyzalla, A. R., Schreyer, A., and Clemens, H., 2008. Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Material and Component Characterization. Wiley, June. 3 [2] Snyder, R. L., Fiala, J., Bunge, H. J., and International Union of Crystallography, 1999. Defect and microstructure analysis by diffraction. Oxford University Press, Oxford. 5, 236 [3] Petriw, S., Dawidowski, J., and Santisteban, J., 2010. _Porosity effects on the neutron total cross section of graphite_. Journal of Nuclear Materials, 396(2-3), pp. 181_188. 8, 100, 101, 102, 104 [4] Antal, J. J., Weiss, R. J., and Dienes, G. J., 1955. _Long-Wavelength Neutron Transmission as an Absolute Method for Determining the Concentration of Lattice Defects in Crystals_. Phys. Rev., 99(4), Aug., pp. 1081_1085. 8, 119 [5] Weiss, R. J., 1951. _Small Angle Scattering of Neutrons_. Physical Review, 83(2), July, pp. 379_389. 8, 93 [6] Arnold, G. P., Myers, V. W., and Weber, A. H., 1949. _The Effect of Crystal Orientation on the Scattering of Slow Neutrons_. Phys. Rev., 75(2), Jan., pp. 217_220. 8 [7] Egelsta_, P., 1957. _The slow-neutron cross-section of graphite_. Journal of Nuclear Energy (1954), 5(2), pp. 203 _ 209. 8 [8] Vogel, S., 2000. _A Rietveld-approach for the analysis of neutron time-of-light transmission data_. Proceedings of the Mathematisch-Naturwissenschaftliche Fakult ät, Uni Kiel, Kiel, p. 174. 8 [9] Santisteban, J. R., Edwards, L., and Stelmukh, V., 2006. _Characterization of textured materials by TOF transmission_. Physica B: Condensed Matter, 385- 386, Part 1, Nov., pp. 636_638. 8, 62, 118, 120 [10] Santisteban, J., Vicente-Alvarez, M., Vizcaino, P., Banchik, A., Vogel, S., Tremsin, A., Vallerga, J., McPhate, J., Lehmann, E., and Kockelmann, W., 2012. _Texture imaging of zirconium based components by total neutron cross-section experiments_. Journal of Nuclear Materials, 425(1-3), June, pp. 218_227. 8, 140 [11] Squires, G. L., 1978. Introduction to the Theory of Thermal Neutron Scattering. Courier Dover Publications. 15, 16, 38, 219, 221 [12] Parks, D. E., Nelkin, M. S., Beyster, J. R., and Wikner, N. F., 1970. Slow Neutron Scattering and Thermalization. W. A. Benjamin. 16, 219 [13] Granada, J. R., 1984. _Total scattering cross section of solids for cold and epithermal neutrons_. Z. Naturforsch, 39(a), pp. 1160_1167. 18, 45, 59, 123, 227 [14] Zachariasen, W. H., 2004. Theory of X-ray Diffraction in Crystals. Courier Corporation. 19 [15] Darwin, C., 1914. _The theory of X-ray reflexion_. Philosophical Magazine Series 6, 27(158), pp. 315_333. 19, 20, 40, 41, 47 [16] Bacon, G. E., and Lowde, R. D., 1948. _Secondary extinction and neutron crystallography _. Acta Crystallographica, 1(6), Dec., pp. 303_314. 19, 20, 47, 77 [17] Schneider, J. R., 1974. _Interpretation of rocking curves measured by gamma-ray diffractometry. Journal of Applied Crystallography, 7(6), pp. 547_554. 20, 41 [18] Becker, P. J., and Coppens, P., 1974. _Extinction within the limit of validity of the Darwin transfer equations. I. General formalism for primary and secondary extinction and their applications to spherical crystals_. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 30(2), pp. 129_147. 20 [19] Zachariasen, W. H., 1969. _Theoretical corrections for extinction_. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 25(1), pp. 102_102. 20, 47, 77 [20] Sears, V. F., 1997. _Bragg reflection in mosaic crystals. II. Neutron monochromator properties_. Acta Crystallographica Section A: Foundations of Crystallography, 53(1), pp. 46_54. 20, 42, 47, 77 [21] Lehmann, E., Frei, G., Vontobel, P., Josic, L., Kardjilov, N., Hilger, A., Kockelmann, W., and Steuwer, A., 2009. _The energy-selective option in neutron imaging_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), May, pp. 429_438. 21 [22] Kockelmann, W., Frei, G., Lehmann, E., Vontobel, P., and Santisteban, J., 2007. _Energy-selective neutron transmission imaging at a pulsed source_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 578(2), pp. 421_434. 22, 45 [23] Granada, J., Santisteban, J., Dawidowski, J., and Mayer, R., 2012. _Neutron transmission: A powerful technique for small accelerator-based neutron sources_. Physics Procedia, 26, pp. 108_116. 22 [24] Steuwer, A., Withers, P., Santisteban, J., Edwards, L., Bruno, G., Fitzpatrick, M., Daymond, M., Johnson, M., and Wang, D., 2001. _Bragg Edge Determination for Accurate Lattice Parameter and Elastic Strain Measurement_. Physica Status Solidi A, 185(2), pp. 221_230. 22 [25] Santisteban, J. R., Edwards, L., Fitzpatrick, M. E., Steuwer, A., Withers, P. J., Daymond, M. R., Johnson, M. W., Rhodes, N., and Schooneveld, E. M., 2002. _Strain imaging by Bragg edge neutron transmission_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 481(1), pp. 765_768. 22, 29 [26] Steuwer, A., Santisteban, J. R., Withers, P. J., Edwards, L., and Fitzpatrick, M. E., 2003. _In situ determination of stresses from time-of-light neutron transmission spectra_. Journal of Applied Crystallography, 36(5), pp. 1159_1168. 22 [27] Santisteban, J. R., Daymond, M. R., James, J. A., and Edwards, L., 2006. _ENGIN-X: a third-generation neutron strain scanner_. Journal of Applied Crystallography, 39(6), Nov., pp. 812_825. 22, 29, 51, 147, 149 [28] Mampe, W., Ageron, P., Bates, C., Pendlebuty, J. C., and Steyerl, A., 1989. _Neutron lifetime measured with stored ultracold neutrons_. Physical Review Letters, 63(6). 23 [29] Tremsin, A., McPhate, J., Vallerga, J., Siegmund, O., Hull, J., Feller, W., and Lehmann, E., 2009. _Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 604(1-2), June, pp. 140_143. 27 [30] Schneider, J. R., 1974. _A gamma-ray di_ractometer: a tool for investigating mosaic structure_. Journal of Applied Crystallography, 7(6), pp. 541_546. 41 [31] Courtois, P., Andersen, K. H., and Bastie, P., 2006. _Copper Mosaic Crystals for Laue Lenses_. Experimental Astronomy, 20(1-3), Nov., pp. 195_200. 43 [32] Santisteban, J. R., 2005. _Time-of-_light neutron transmission of mosaic crystals_. Journal of Applied Crystallography, 38(6), pp. 934_944. 44, 49, 50, 54 [33] Zachariasen, W. H., 1945. Theory of X-Ray Diffraction in Crystals. John Wiley & Sons. 46 [34] Krop_, F., Granada, J., and Mayer, R., 1982. _The bragg lineshapes in timeof _light neutron powder spectroscopy_. Nuclear Instruments and Methods in Physics Research, 198(2-3), July, pp. 515_521. 47, 49, 153, 182 [35] Bastie, P., Hamelin, B., and Courtois, P., 2000. _Méthode de Laue refocalisée à haute énergie : intérêts et apports de la spectrométrie des faisceaux di_ractés_. Le Journal de Physique IV, 10(PR10), Sept., pp. Pr10_21_Pr10_26. 50 [36] Bunge, H. J., 1982. Texture analysis in materials science: mathematical methods. Butterworths. 55, 113, 114, 115, 232 [37] Gale, W. F., and Totemeier, T. C., 2004. Smithells Metals Reference Book, 8th edition ed. Elsevier. 58 [38] Simmons, R. O., and Ballu_, R. W., 1957. _Low-temperature thermal expansion of copper_. Physical Review, 108(2), p. 278. 61 [39] Buchwald, V. F., 1976. Handbook of Iron Meteorites. Their History, Distribution, Composition and Structure. University of California Press_ CA, USA. 61 [40] Gallant, R., 1996. _Sikhote-Alin Revisited_. Meteorite Magazine, pp. 8 _ 11. 61 [41] Reisener, R. J., and Goldstein, J. I., 2003. _Ordinary chondrite metallography: Part 1. Fe-Ni taenite cooling experiments_. Meteoritics & Planetary Science, 38(11), pp. 1669_1678. 61 [42] He, Y., Godet, S., Jacques, P. J., and Jonas, J. J., 2006. _Crystallographic relations between face- and body-centred cubic crystals formed under nearequilibrium conditions: Observations from the Gibeon meteorite_. Acta Materialia, 54(5), Mar., pp. 1323_1334. 62 [43] Owen, E. A., and Burns, B. D., 1939. _X-ray study of some meteoric irons_. Philosophical Magazine, 28, pp. 497_519. 63 [44] McKeehan, L. W., 1923. _The Crystal Structure of Iron-Nickel Alloys_. Physical Review, 21(4), pp. 402_407. 63 [45] Owen, E. A., Yates, E. L., and Sully, A. H., 1937. _An X-ray investigation of pure iron-nickel alloys. Part 4: the variation of lattice-parameter with composition_. Proceedings of the Physical Society, 49(3), p. 315. 63 [46] Sato, K., 1985. _Pyrite type compounds - With particular reference to optical characterization_. Progress in Crystal Growth and Characterization, 11(3), pp. 109_154. 64 [47] Birkholz, M., 1992. _The crystal energy of pyrite_. Journal of Physics: Condensed Matter, 4(29), p. 6227. 64 [48] Schieck, R., Hartmann, A., Fiechter, S., Könenkamp, R., and Wetzel, H., 1990. _Electrical properties of natural and synthetic pyrite (FeS2) crystals_. Journal of Materials Research, 5(07), pp. 1567_1572. 64 [49] Ferrer, I. J., and Sánchez, C., 1992. _Photoelectrochemical response and optical absorption of pyrite (FeS2) natural single crystals_. Solid State Communications, 81(5), Feb., pp. 371_374. 64 [50] Echarri, A. L., and Sánchez, C., 1974. _"n"type semiconductivity in natural single crystals of FeS2 (pyrite)_. Solid State Communications, 15(5), Sept., pp. 827_831. 64 [51] Bragg, W. L., 1914. _The analysis of crystals by the X-ray spectrometer_. Royal Sociaty Proceedings, 89, pp. 468_489. 65 [52] Murphy, R., and Strongin, D. R., 2009. _Surface reactivity of pyrite and related sulfides . Surface Science Reports, 64(1), pp. 1_45. 65, 66 [53] Murowchick, J. B., and Barnes, H. L., 1987. Effects of temperature and degree of supersaturation on pyrite morphology_. American Mineralogist, 72(11-12), Dec., pp. 1241_1250. 65 [54] Dietrich, O. W., and Als-Nielsen, J., 1965. _The effect of experimental resolution on crystal reflectivity and secondary extinction in neutron diffraction_. Acta Crystallographica, 18(2), pp. 184_188. 73 [55] Pollock, T. M., and Tin, S., 2006. _Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties_. Journal of propulsion and power, 22(2), pp. 361_374. 76 [56] Murty, K., and Charit, I., 2008. _Structural materials for Gen-IV nuclear reactors: Challenges and opportunities_. Journal of Nuclear Materials, 383(1_2), Dec., pp. 189_195. 76 [57] Segersäll, M., and Moverare, J. J., 2013. _Crystallographic orientation influence on the serrated yielding behavior of a single-crystal superalloy_. Materials, 6(2), p. 437. 76 [58] Marshall, W., and Lovesey, S. W., 1971. Theory of thermal neutron scattering: the use of neutrons for the investigation of condensed matter. Clarendon Press. 90 [59] Halpern, O., Hamermesh, M., and Johnson, M. H., 1941. _The Passage of Neutrons Through Crystals and Polycrystals_. Physical Review, 59(12), June, pp. 981_996. 91 [60] Fermi, E., and Marshall, L., 1947. _Interference Phenomena of Slow Neutrons_. Physical Review, 71(10), May, pp. 666_677. 91 [61] Santisteban, J. R., Edwards, L., Steuwer, A., and Withers, P. J., 2001. _Timeof- _light neutron transmission diffraction_. Journal of Applied Crystallography, 34(3), June, pp. 289_297. 92, 182 [62] Egelsta_, P. A., 1965. Thermal neutron scattering. Academic Press. 94 [63] Davis, M. E., 2002. _Ordered porous materials for emerging applications_. Nature, 417(6891), June, pp. 813_821. 98 [64] Rodríguez-Reinoso, F., Rouquerol, J., Unger, K. K., and Sing, K. S. W., 1994. Characterization of Porous Solids III. Elsevier, Aug. 98 [65] Espinal, L., 2002. _Porosity and Its Measurement_. In Characterization of Materials. John Wiley & Sons, Inc. 98 [66] Lowe, T., Bradley, R., Yue, S., Barii, K., Gelb, J., Rohbeck, N., Turner, J., and Withers, P., 2015. _Microstructural analysis of TRISO particles using multi-scale X-ray computed tomography_. Journal of Nuclear Materials, 461, pp. 29_36. 99 [67] Kelly, B. T., 1981. Physics of graphite. Springer Netherlands. 99 [68] Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M., Monson, P. A., Pez, G., Scherer, G. W., Vartuli, J. C., and Yaghi, O. M., 1999. _Tailored Porous Materials_. Chemistry of Materials, 11(10), pp. 2633_2656. 99 [69] Brun, M., Lallemand, A., Quinson, J.-F., and Eyraud, C., 1977. _A new method for the simultaneous determination of the size and shape of pores: the thermoporometry _. Thermochimica Acta, 21(1), pp. 59_88. 100 [70] Barrett, E. P., Joyner, L. G., and Halenda, P. P., 1951. _The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms_. Journal of the American Chemical Society, 73(1), pp. 373_380. 100 [71] Kelly, B. T., Marsden, B. J., and Hall, K., 2000. Irradiation damage in graphite due to fast neutrons in fussion and fusion systems. Tech. Rep. IAEA-TECDOC- 1154, International Atomic Energy Agency, Vienna (Austria). 102 [72] MacFarlane, R. E., and Muir, D. W., 1994. The NJOY Nuclear Data Processing System, Version 91, Oct. 104, 109 [73] Young, J. A., and Koppel, J. U., 1964. _Lattice Vibrational Spectra of Beryllium, Magnesium, and Zinc_. Phys. Rev., 134(6A), June, pp. A1476_A1479. 105 [74] Roe, R. J., 2007. Methods of X-ray and Neutron Scattering in Polymer Science. Oxford University Press. 105 [75] Galván Josa, V., Dawidowski, J., Santisteban, J., Malamud, F., and Oliveira, R., 2015. _Model for neutron total cross section at low energies for nuclear grade graphite_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 107 [76] Ingham, B., Li, H., Allen, E. L., and Toney, M. F., 2009. SAXSFit: A program for fitting small-angle x-ray and neutron scattering data. 107 [77] Mileeva, Z., Ross, D. K., Wilkinson, D., King, S., Ryan, T., and Sharrock, H., 2012. _The use of small angle neutron scattering with contrast matching and variable adsorbate partial pressures in the study of porosity in activated carbons_. Carbon, 50(14), pp. 5062 _ 5075. 111 [78] Schwarzer, R. A., 1997. _Advances in crystal orientation mapping with the SEM and TEM_. Ultramicroscopy, 67(1-4), June, pp. 19_24. 115 [79] Roe, R.-J., 1965. _Description of Crystallite Orientation in Polycrystalline Materials. III. General Solution to Pole Figure Inversion_. Journal of Applied Physics, 36(6), pp. 2024_2031. 115 [80] Matthies, S., and Vinel, G. W., 1982. _An Example Demonstrating a New Reproduction Method of the ODF of Texturized Samples from Reduced Pole Figures_. Physica Status Solidi B, 112(2), pp. K115_K120. 115 [81] Matthies, S., Wenk, H.-R., and Vinel, G. W., 1988. _Some basic concepts of texture analysis and comparison of three methods to calculate orientation distributions from pole figures. Journal of Applied Crystallography, 21(4), Aug., pp. 285_304. 115 [82] Hielscher, R., and Schaeben, H., 2008. _A novel pole figure inversion method: specification of the MTEX algorithm_. Journal of Applied Crystallography, 41(6), Dec., pp. 1024_1037. 115, 123, 147, 153, 176, 189 [83] Artioli, G., 2007. _Crystallographic texture analysis of archaeological metals: interpretation of manufacturing techniques_. Applied Physics A, 89(4), pp. 899_ 908. 116, 145, 155, 156, 192 [84] Siano, S., Bartoli, L., Kockelmann, W., Zoppi, M., and Miccio, M., 2004. _Neutron metallography of archaeological bronzes_. Physica B: Condensed Matter, 350(1- 3), pp. 123_126. 116, 145 [85] Siano, S., Bartoli, L., Santisteban, J. R., Kockelmann, W., Daymond, M. R., Miccio, M., and De Marinis, G., 2006. _Non-destructive investigation of bronze artefacts from the Marches National Museum of Archaeology using neutron diffraction_. Archaeometry, 48(1), pp. 77_96. 116, 145, 154 [86] Langh, R. v., Bartoli, L., Santisteban, J., and Visser, D., 2011. _Casting technology of Renaissance bronze statuettes: the use of TOF-neutron diffraction for studying afterwork of Renaissance casting techniques_. Journal of Analytical Atomic Spectrometry, 26(5), May, pp. 892_898. 116, 145 [87] Kocks, U. F., 2000. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press. 121, 160, 168, 231 [88] Féron, D., ed., 2012. Nuclear corrosion science and engineering. No. 22 in Woodhead Publishing Series in Energy. 124 [89] Engler, O., and Hirsch, J., 2002. _Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-a review_. Materials Science and Engineering: A, 336(1-2), Oct., pp. 249_262. 124 [90] Kong, X. Y., Liu, W. C., Li, J., and Yuan, H., 2010. _Deformation and recrystallization textures in straight-rolled and pseudo cross-rolled AA 3105 aluminum alloy_. Journal of Alloys and Compounds, 491(1-2), Feb., pp. 301_307. 124 [91] Hirsch, J., and Lücke, K., 1988. _Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals-I. Description of rolling texture development in homogeneous CuZn alloys_. Acta Metallurgica, 36(11), Nov., pp. 2863_2882. 124 [92] Schoenfeld, S. E., and Asaro, R. J., 1996. _Through thickness texture gradients in rolled polycrystalline alloys_. International Journal of Mechanical Sciences, 38(6), June, pp. 661_683. 124 [93] Dutkiewicz, J., and Bonarski, J., 1997. _Structure, texture and mechanical properties of AlZnMgCuZr alloy rolled after heat treatments_. Materials & Design, 18(4-6), pp. 247_252. 125 [94] Stelmukh, V., Edwards, L., Santisteban, J., Ganguly, S., and Fitzpatrick, M. E., 2002. _Weld Stress Mapping Using Neutron and Synchrotron X-Ray Diffraction_. Materials Science Forum, 404-407, pp. 599_604. 125, 166 [95] Kallend, J. S., Kocks, U. F., Rollett, A. D., and Wenk, H. R., 1991. _Operational texture analysis_. Materials Science and Engineering: A, 132, Feb., pp. 1_11. 125 [96] Garland, W. L., ed., 2014. The Essential CANDU - A textbook on the CANDU Nuclear Power Plant Technology. UNENE, Canada. 129, 136 [97] Tenckho_, E., 1988. Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy. No. 966 in ASTM Special Technical Publication. 137, 232 [98] Schemel, J. H., and Rosenbaum, H. S., eds., 1973. Zirconium in Nuclear Applications. No. 551 in ASTM Special Technical Publication. 137 [99] Holt, R., 2008. _In-reactor deformation of cold-worked Zr-2.5nb pressure tubes_. Journal of Nuclear Materials, 372(2-3), pp. 182_214. 137 [100] Banchik, A. D., Bianchi, R. D., Vizcaíno, P., Flores, A., Szieber, W. C., Galeta, L. J., and Gómez, A. G., 2009. Tecnología de Fabricación de Componentes Estructurales del Núcleo base Circonio para Reactores Nucleares de Potencia. Technical Report CNEA DD-ATN40MF-001, CNEA. 137 [101] Vicente Alvarez, M., Santisteban, J., Vizcaino, P., Flores, A., Banchik, A., and Almer, J., 2012. _Hydride reorientation in Zr2.5nb studied by synchrotron X-ray diffraction. Acta Materialia, 60(20), pp. 6892_6906. 138 [102] Santisteban, J. R., Malamud, F., Vizcaíno, P., Li, M. J., Vogel, S., Liaw, P. K., and Sumin, V. I., 2014. Preliminary round robin on the determination of crystallographic texture of Zr components by neutron diffraction. Technical document, IAEA, Vienna, Austria. En prensa. 138 216 Bibliografía [103] Vicente Alvarez, M., Santisteban, J., Domizzi, G., and Almer, J., 2011. _Phase and texture analysis of a hydride blister in a Zr_2.5%Nb tube by synchrotron X-ray diffraction. Acta Materialia, 59(5), Mar., pp. 2210_2220. 138, 170 [104] Holt, R., and Aldridge, S., 1985. _Effect of extrusion variables on crystallographic texture of Zr-2.5 wt% Nb_. Journal of Nuclear Materials, 135(2_3), Oct., pp. 246_259. 138 [105] Fitzpatrick, M. E., and Lodini, A., 2003. Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation. CRC Press, Sept. 146 [106] Bouchard, P., George, D., Santisteban, J., Bruno, G., Dutta, M., Edwards, L., Kingston, E., and Smith, D., 2005. _Measurement of the residual stresses in a stainless steel pipe girth weld containing long and short repairs_. International Journal of Pressure Vessels and Piping, 82(4), pp. 299_310. 146 [107] Allen, A., Hutchings, M., Windsor, C., and Andreani, C., 1985. _Neutron diffraction methods for the study of residual stress fields. Advances in Physics, 34(4), pp. 445_473. 146 [108] Hutchings, M. T., Withers, P. J., Holden, T. M., and Lorentzen, T., 2004. Introduction to the Characterization of Residual Stress by Neutron Diffraction . CRC Press, Mar. 146 [109] Brokmeier, H.-G., Gan, W., Randau, C., Völler, M., Rebelo-Kornmeier, J., and Hofmann, M., 2011. _Texture analysis at neutron di_ractometer STRESS-SPEC_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 642(1), June, pp. 87_92. 146 [110] Wenk, H.-R., Lutterotti, L., and Vogel, S., 2003. _Texture analysis with the new HIPPO TOF di_ractometer_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 515(3), pp. 575_588. 146 [111] Kockelmann, W., Chapon, L., and Radaelli, P., 2006. _Neutron texture analysis on GEM at ISIS_. Physica B: Condensed Matter, 385-386, Nov., pp. 639_643. 146, 155 [112] Wang, X. L., Holden, T. M., Rennich, G. Q., Stoica, A. D., Liaw, P. K., Choo, H., and Hubbard, C. R., 2006. _VULCAN_The engineering di_ractometer at the SNS_. Physica B: Condensed Matter, 385_386, Part 1, Nov., pp. 673_675. [113] Suzuki, H., Harjo, S., Abe, J., Xu, P., Aizawa, K., and Akita, K., 2013. _Effects of gauge volume on pseudo-strain induced in strain measurement using time-of-_light neutron diffraction_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 715, July, pp. 28_38. 147 [114] Walther, K., Schefizük, C., and Frischbutter, A., 2000. _Neutron time-of-_light di_ractometer epsilon for strain measurements: layout and _rst results_. Physica B: Condensed Matter, 276_278, Mar., pp. 130_131. 147 [115] Kearns, J., and Woods, C., 1966. _Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate_. Journal of Nuclear Materials, 20(3), Sept., pp. 241_261. 150, 153 [116] Kockelmann, W., Chapon, L. C., Engels, R., Schelten, J., Neelmeijer, C., Walcha, H.-M., Artioli, G., Shalev, S., Perelli-Cippo, E., Tardocchi, M., Gorini, G., and Radaelli, P. G., 2006. _Neutrons in cultural heritage research_. Journal of Neutron Research, 14(1), Mar., pp. 37_42. 154 [117] Kockelmann, W., Kirfel, A., and Hähnel, E., 2001. _Non-destructive Phase Analysis of Archaeological Ceramics using TOF Neutron Diffraction_. Journal of Archaeological Science, 28(2), Feb., pp. 213_222. 154 [118] Hannon, A. C., 2005. _Results on disordered materials from the General Materials di_ractometer, GEM, at ISIS_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 551(1), Oct., pp. 88_107. 155 [119] Matthies, S., Lutteroti, L., andWenk, H. R., 1997. _Advances in Texture Analysis from Diffraction Spectra_. Journal of Applied Crystallography, 30(1), pp. 31_42. 155 [120] Whitewright, J., Satchell, J., Nayling, N., Northover, P., Northover, S., Malamud, F., Kelleher, J., James, J., and Simpson, P., 2014. _Alum Bay 1: HMS Pomone (1805-1811)_. In The Maritime Archaeology of Alum Bay, no. 2 in The Maritime Archaeology Trust Monograph Series. 158 [121] Ganguly, S., 2004. _Non-destructive measurement of residual stresses in welded aluminium 2024 airframe alloy_. Ph.D., Open University. 167 [122] Ganguly, S., Stelmukh, V., Edwards, L., and Fitzpatrick, M., 2008. _Analysis of residual stress in metal-inert-gas-welded Al-2024 using neutron and synchrotron X-ray diffraction_. Materials Science and Engineering: A, 491(1_2), Sept., pp. 248_257. 168 [123] Holt, R., and Zhao, P., 2004. _Micro-texture of extruded Zr_2.5nb tubes_. Journal of Nuclear Materials, 335(3), Dec., pp. 520_528. 170 [124] Gruber, J., Brown, S., and Lucadamo, G., 2011. _Generalized Kearns texture factors and orientation texture measurement_. Journal of Nuclear Materials, 408(2), Jan., pp. 176_182. 172 [125] Ullemeyer, K., Spaltho_, P., Heinitz, J., Isakov, N. N., Nikitin, A. N., and Weber, K., 1998. _The SKAT texture diffractometer at the pulsed reactor IBR-2 at Dubna: experimental layout and _rst measurements_. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 412(1), June, pp. 80_88. 172 [126] Brule, A., and Kirstein, O., 2006. _Residual stress di_ractometer KOWARI at the Australian research reactor OPAL: Status of the project_. Physica B: Condensed Matter, 385-386, Part 2, Nov., pp. 1040_1042. 172 [127] Moras, K., Fischer, A. H., Klein, H., and Bunge, H. J., 2000. _Experimental determination of the instrumental transparency function of texture goniometers_. Journal of Applied Crystallography, 33(4), pp. 1162_1174. 175 [128] Matthies, S., Pehl, J., Wenk, H.-R., Lutterotti, L., and Vogel, S. C., 2005. _Quantitative texture analysis with the HIPPO neutron TOF di_ractometer_. Journal of Applied Crystallography, 38(3), May, pp. 462_475. 176 [129] Matthies, S., and Wenk, H. R., 1992. _Optimization of Texture Measurements by Pole Figure Coverage with Hexagonal Grids_. Physica Status Solidi B, 133(2), pp. 253_257. 177 [130] Malamud, F., Santisteban, J. R., Alvarez, V., Bolmaro, R., Kelleher, J., Kabra, S., and Kockelmann, W., 2014. _Texture analysis with a time-of-_light neutron strain scanner_. Journal of Applied Crystallography, 47(4), pp. 1337_1354. 177 [131] Beckurts, K. H., and Wirtz, K., 1939. Neutron Physics. Springer-Verlag. 219 [132] Sears, V. F., and Shelley, S. A., 1991. _Debye-Waller factor for elemental crystals _. Acta Crystallographica Section A: Foundations of Crystallography, 47(4), pp. 441_446. 228 [133] Placzek, G., 1952. _The Scattering of Neutrons by Systems of Heavy Nuclei_. Physical Review, 86(3), pp. 377_388. 228
Materias:Física
Física > Física nuclear
Divisiones:Energía nuclear > Ingeniería nuclear > Física de neutrones
Código ID:550
Depositado Por:USUARIO INVÁLIDO
Depositado En:26 Aug 2016 14:54
Última Modificación:26 Aug 2016 14:54

Personal del repositorio solamente: página de control del documento