Trasporte eléctrico y magnetismo en sistemas electrodo - aislante - electrodo: hacia el desarrollo de dispositivos del tipo juntura tunel. / Electronic transport and magnetism in electrode - insulator - electrode systems: to the development of tunnel junctions devices.

Avilés Félix, Luis S. (2016) Trasporte eléctrico y magnetismo en sistemas electrodo - aislante - electrodo: hacia el desarrollo de dispositivos del tipo juntura tunel. / Electronic transport and magnetism in electrode - insulator - electrode systems: to the development of tunnel junctions devices. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis) - Versión publicada
Español
18Mb

Resumen en español

La presente tesis es un estudio dedicado a la optimización y desarrollo de sistemas del tipo juntura túnel. La metodología utilizada para la realización de la tesis consistió, en primer lugar, en la optimización de las componentes independientes de la juntura túnel: electrodo y barrera aislante. Posteriormente se optimizaron los procesos de fabricación para el desarrollo y caracterización de dispositivos del tipo juntura túnel en su forma final. En la primera parte de la tesis se analizan detalladamente los resultados obtenidos de la caracterización eléctrica y topografica de barreras aislantes en sistemas electrodo - barrera. Los sistemas bicapas estudiados, GdBa_2Cu_3_7/SrTiO_3, Nb/Ba_0,05Sr_0,95TiO_3 y YBa_2Cu_3O_7/SrTiO_3, fueron caracterizados utilizando un microscopio de fuerza atómica en modo conductor. Se propuso un modelo fenomenológico basado en los resultados experimentales, que permitió la obtención de parámetros críticos para el desarrollo de dispositivos del tipo juntura túnel con nuevas funcionalidades. La información obtenida de la caracterización de los sistemas bicapas (homogeneidad de crecimiento, baja densidad de defectos y de pinholes) indican un muy buen control de los parámetros de crecimiento de las barreras. Por otro lado, se obtuvo un buen comportamiento aislante para espesores mayores a 2 nm sin la presencia de pinholes en la barrera. La similitud en la estequiometría de las barreras (SrTiO_3) permitió comparar los distintos sistemas estudiados en términos de conductividad eléctrica. Se verificó que el modelo fenomenológico permite comparar la conductividad eléctrica de los sistemas mediante uno de los parámetros definidos en el modelo fenomenológico (obtenido de los ajustes lineales de las curvas I(V)). De los 3 sistemas estudiados, las bicapas GdBa_2Cu_3O_7/SrTiO_3 presentaron un mayor valor de longitud de atenuación de los portadores de carga a través de la barrera y una muy baja densidad de defectos superficiales. Las bicapas YBa_2Cu_3O_7/SrTiO_3 y Nb/Ba_0,05Sr_0,95TiO_3 permitieron validar el modelo fenomenológico propuesto para el análisis de la respuesta corriente - voltaje obtenida con el microscopio de fuerza atómica en modo conductor. La segunda parte de la tesis abarca conceptos de magnetismo y microfabricación para el desarrollo de junturas túnel magnéticas. Durante la caracterización de las películas ferromagnéticas individuales de Co_90Fe_10 (CoFe) se logró aumentar valor del campo coercitivo de films de 10 nm de espesor al incrementar la temperatura de depósito. Esto se debe a un aumento del tamaño de grano de los films. El aumento de la temperatura del sustrato durante el crecimiento influye en la morfología y las propiedades magnéticas de los films de CoFe favoreciendo la formación de granos y la pérdida del eje preferencial de magnetización. Estos resultados permitieron la fabricación de sistemas Co_90Fe_10/M_gO/Co_90Fe_10 con distintas orientaciones relativas accesibles con campo magnético para el estudio del acople magnético entre los films de CoFe. La caracterización eléctrica de estos sistemas, particularmente la respuesta corriente - voltaje obtenida con el microscopio de fuerza atómica en modo conductor, indicó que las propiedades de transporte eléctrico de las junturas presentan un alto grado de reproducibilidad. Se analizó además la inuencia del sustrato utilizado en la corriente túnel que atraviesa la barrera aislante. Por otro lado, se discuten los fenómenos relacionados a la optimización de las propiedades magnéticas de electrodos ferromagnéticos para la fabricación de junturas túnel Co_90Fe_10/MgO/Co_90Fe_10 y Co_90Fe_10/MgO /Fe_20Ni_80. En particular, se estudió el acople magnético entre capas ferromagnéticas y la inuencia del sustrato utilizado para el crecimiento de las tricapas. La optimización de los electrodos magnéticos involucró el análisis de la inuencia de la presencia de un aislante entre dos capas magnéticas en el acople de los electrodos. Se logró el desacople de films de 10 nm de Co_90Fe_10 y Fe_20Ni_80 separados por un espaciador de MgO de 2 nm. Finalmente se detallan los pasos para la fabricación de una red de junturas túnel magnéticas y su caracterización eléctrica a bajas temperaturas. El sistema estudiado fue la tricapa Co_90Fe_10 (10 nm)/M_gO (8 nm)/ Fe_20Ni_80 (10 nm) crecido sobre un sustrato de M_gO. La caracterización eléctrica confirmó la buena calidad de la junturas fabricadas. Las junturas obtenidas presentaron un comportamiento altamente resistivo (~ MΩ). Las mediciones de la corriente túnel en función de la temperatura permitieron descartar la presencia de pinholes en la barrera. El transporte de los portadores de carga es por efecto túnel a través de la barrera aislante. Las curvas de conductancia diferencial permitieron calcular el valor medio de la altura de la barrera de potencial (φ = 3.1 eV) a partir del modelo de Brinkman. Los resultados obtenidos en cada uno de los capítulos se complementan y son relevantes para la optimización de junturas túnel, debido a que brindan información crítica para su correcto funcionamiento. En la presente tesis se lograron obtener los primeros avances para la fabricación de arreglos de junturas túnel que permitan el desarrollo de dispositivos.

Resumen en inglés

This thesis is focused on the optimization and characterization of tunnel junction like-devices. The methodology used in the present work, involves the independent optimization of two components: the insulating barrier and the two electrically conducting films (electrodes). Subsequently, the microfabrication process was optimized for the study of the electrical properties of an array of tunnel junctions. In the first part of the thesis, we studied the electrical and topographical properties of ultra thin insulating barriers in bilayers systems. The bilayers GdBa_2Cu_3O_7/SrTiO_3, Nb/Ba_0,05Sr_0,95TiO_3 and YBa_2Cu_3O_7/SrTiO_3 were characterized with a Conducting Atomic Force Microscope (CAFM). A phenomenological model was proposed in order to obtain critical parameters required for the development of tunnel junctions with improved functionalities, such as ferroelectric tunnel junctions and Josephson junctions. The results related to the growth homogeneity, density of defects and pinholes indicate a good control of the insulating barrier growth parameters. The high quality of the barriers allowed us to obtain a complete insulation of the electrodes for thicknesses above 1 nm without the presence of pinholes. The similar stoichiometry of the insulating spacers, allowed us to compare different systems in terms of its electrical conductivity. Applying a phenomenological model to the I(V) response of the bilayers we veriffied that the GdBa_2Cu_3O_7/SrTiO_3 system presents the larger attenuation length and a very low density of defects. Results in YBa_2Cu_3O_7/SrTiO_3 and Nb/Ba_0,05Sr_0,95TiO_3 bilayers validate the phenomenological model for the analysis of I(V) curves obtained with the CAFM. The second part of the thesis discusses magnetism and microfabrication concepts for the development of magnetic tunnel junctions. The magnetic order of the structures, the magnetic anisotropy and the interlayer exchange coupling were characterized by magnetization measurements. We achieved an increase of the coercivity of 10 nm Co_90Fe_10 (CoFe) films by increasing the substrate temperature during growth, with a very good control in the coercive field. Substrate temperature during growth of the films influences the morphology and magnetic properties of single Co_90Fe_10 films favoring grain growth and the loss of the magnetization preferential axis. These results allowed the fabrication of CoFe/M_gO/CoFe trilayers systems for the study of their electrical properties and the interlayer magnetic coupling between CoFe thin films. I(V) curves obtained with conducting atomic force microscopy of the patterned junctions at room temperature show a very high degree of reproducibility of the transport properties of the insulating barrier. A more insulting behavior was obtained for magnetic tunnel junctions grown on Si(100) substrates with a decrease of the current density (~ 600%) compared to junctions CoFe/M_gO/CoFe junctions grown on M_gO(100) substrates. On the other hand, the interlayer magnetic coupling in FM-M_gO-FM (FM = Co_90Fe_10 Fe_20Ni_80) systems is discussed considering the in uence of the substrate. We obtained ferromagnetic electrodes of Co_90Fe_10 and Fe_20Ni_80 completely decoupled down to 2 nm of the M_gO insulating barrier, for the trilayers grown on M_gO substrates. Finally, we present the fabrication process of a micro-sized magnetic tunnel junction array and the characterization of its electrical properties. We confirmed the good quality of the fabricated junctions, with a highly resistive behavior of the insulating barriers (~ MΩ). Tunneling current measurements as a function of temperature strongly suggest the homogeneity of the barrier without the presence of pinholes. The transport mechanism of the charge carriers is due to tunneling through the M_gO spacer, according to the resistance vs. temperature measurements. The barrier height was calculated from I(V) curves using Brinkman's model. The results obtained in each chapter of this thesis are complementary and relevant for the fabrication of tunnel junctions. We consider that these results represent important steps for the development of tunnel junction devices.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Información Adicional:Área Temática: Materia Condensada
Palabras Clave:Tunnel junctions; Junturas túnel; Electric conductivity; Conductividad eléctrica; Atomic force microscopy; Microscopía de fuerza atómica; Magnetism; Magnetismo;[ Multilayers; Multicapas; Development devices; Desarrollo de dispositivos]
Referencias:1] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett., 61, 2472-2475, Nov 1988. 2 [2] Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39, 4828-4830, Mar 1989. 2 [3] Julliere, M. Tunneling between ferromagnetic flms. Physics Letters A, 54 (3), 225-226, 1975. 3, 4 [4] Ashcroft, N., Mermin, N. Solid State Physics. Harcourt Asia, 2001. 5, 21 [5] Moodera, J. S., Kinder, L. R., Wong, T. M., Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett., 74, 3273-3276, Apr 1995. 6 [6] Miyazaki, T., Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of Magnetism and Magnetic Materials, 139, L231-L234, 1995. 6 [7] Mathon, J., Umerski, a. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Physical Review B, 63 (22), 220403, mayo 2001. 6, 146 [8] Butler, W., Zhang, X.-G., Schulthess, T., MacLaren, J. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Physical Review B, 63 (5), 054416, ene. 2001. 6, 146 [9] Coey, J. Magnetism and Magnetic Materials. Cambridge University Press, 2004. 6, 26, 116, 119, 124, 127 [10] De Teresa, J. M., Barth_el_emy, A., Fert, A., Contour, J. P., Lyonnet, R., Montaigne, F., et al. Inverse Tunnel Magnetoresistance in Co/SrTiO_3/La_0,7Sr_0,3MnO_3: New Ideas on Spin-Polarized Tunneling. Phys. Rev. Lett., 82, 4288{4291, May 1999. 6, 7 [11] De Teresa, J. M. Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic Tunnel Junctions. Science, 286 (5439), 507-509, oct. 1999. 6 [12] Parkin, S. S. P., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature materials, 3 (12), 862-7, dic. 2004. 7, 112, 116, 146 [13] Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K. Giant roomtemperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature materials, 3 (12), 868-71, dic. 2004. 7, 146 [14] Josephson, B. Possible new effects in superconductive tunnelling. Physics Letters, 1 (7), 251 - 253, 1962. 7, 8 [15] Kresin, V.,Wolf, S. Fundamentals of Superconductivity. The Language of Science Series. Springer, 1990. 8 [16] Anderson, P. W., Rowell, J. M. Probable observation of the josephson superconducting tunneling effect. Phys. Rev. Lett., 10, 230-232, Mar 1963. 8 [17] Tesche, C., Clarke, J. dc squid: Noise and optimization. Journal of Low Temperature Physics, 29 (3-4), 301-331, 1977. 10 [18] de Waal, V., Schrijner, P., Llurba, R. Simulation and optimization of a dc squid With finite capacitance. Journal of Low Temperature Physics, 54 (3-4), 215-232, 1984. [19] Lockhart, J., Muhlfelder, B., Gutt, G., Luo, M., Clappier, R., McGinnis, T., et al. Optimization of a squid system for space. Applied Superconductivity, IEEE Transactions on, 7 (2), 2534-2537, June 1997. 10 [20] Hassel, J., Sepä, H., Grönberg, L., Suni, I. Optimization of a josephson voltage array based on frequency dependently damped superconductorinsulator superconductor junctions. Review of Scientific Instruments, 74 (7), 3510-3515, 2003. 10 [21] Cybart, S. a., Anton, S. M., Wu, S. M., Clarke, J., Dynes, R. C. Very large scale integration of nanopatterned YBa2Cu3O7-delta Josephson junctions in a two-dimensional array. Nano letters, 9 (10), 3581-5, oct. 2009. 10 [22] Bergeal, N., Grison, X., Lesueur, J., Faini, G., Aprili, M., Contour, J. P. Highquality planar high-T[sub c] Josephson junctions. Applied Physics Letters, 87 (10), 102502, 2005. 10 [23] Bergeal, N., Lesueur, J., Sirena, M., Faini, G., Aprili, M., Contour, J. P., et al. Using ion irradiation to make high-T[sub c] Josephson junctions. Journal of Applied Physics, 102 (8), 083903, 2007. 10 [24] Pantel, D., Goetze, S., Hesse, D., Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat Mater, 11 (4), 289-293, abr. 2012. 10 [25] Tsymbal, E., Gruverman, a., Garcia, V., Bibes, M., Barth_el_emy, a. Ferroelectric and multiferroic tunnel junctions. MRS Bulletin, 37 (02), 138-143, feb. 2012. 10, 34 [26] Barone, A., Paterno, G. Physics and applications of the Josephson effect. Wiley, 1982. 11 [27] C, F. J., M, S. M. Doped Josephson tunneling junction for use in a sensitive IR detector, sep. 16 1975. US Patent 3,906,231. 11 [28] Ohring, M. Materials Science of Thin Films. Academic Press London, 2002. 15, 17 [29] Wasa, K., Kitabatake, M., Adachi, H. Thin Film Materials Technology. William Andrew, 2004. 15 [30] Frans, M. P., feb. 1935. US Patent 2,146,025. 16 [31] Davidse, P. D., Maissel, L. I. Dielectric thin films through rf sputtering. Journal of Applied Physics, 37 (2), 574-579, 1966. 17 [32] Kay, E. Magnetic field effects on an abnormal truncated glow discharge and their relation to sputtered thin film growth. Journal of Applied Physics, 34 (4), 760-768, 1963. 17 [33] Hayakawa, S., Wasa, K. Discharges between coaxial cylinders in a magnetic field. Journal of the Physical Society of Japan, 20 (9), 1692-1698, 1965. 17 [34] Kelly, P., Arnell, R. Magnetron sputtering: a review of recent developments and applications. Vacuum, 56 (3), 159 - 172, 2000. 18 [35] Smith, H. M., Turner, A. F. Vacuum deposited thin films using a ruby laser. Appl. Opt., 4 (1), 147-148, Jan 1965. 20 [36] Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., et al. Preparation of y-ba-cu oxide superconductor thin films using pulsed laser evaporation from high tc bulk material. Applied Physics Letters, 51 (8), 619-621, 1987. 20 [37] Binnig, G., Quate, C. F., Gerber, C. Atomic force microscope. Phys. Rev. Lett., 56, 930-933, Mar 1986. 21, 33 [38] Binnig, G., Rohrer, H., Gerber, C., Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49, 57-61, Jul 1982. 21, 36 [39] Kittel, C. Introduction to solid state physics. Wiley, 1996. 21 [40] Bhushan, B. Springer Handbook of Nanotechnology. No v. 1 en Springer Handbook of Nanotechnology. Springer-Verlag, 2004. 21, 22 [41] Liu, Y., Sellmyer, D., Shindo, D. Handbook of Advanced Magnetic Materials: Vol 1. Nanostructural Effects. Vol 2. Characterization and Simulation. Vol 3. Fabrication and Processing. Vol 4. Properties and Applications. No v. 1 en Developments in Hydrobiology S. Springer, 2005. 22, 23 [42] Martin, Y., Williams, C., Wickramasinghe, H. Atomic force microscope-force mapping and profiling on a sub 100 a scale. Journal of Applied Physics, 61 (10), 4723-4729, May 1987. 23 [43] Martin, Y., Wickramasinghe, H. K. Magnetic imaging by force microscopy with 1000 a resolution. Applied Physics Letters, 50 (20), 1455-1457, 1987. 24 [44] Foner, S. Versatile and sensitive vibrating sample magnetometer. Review of Scienti_c Instruments, 30 (7), 548-557, 1959. 25 [45] Yalçin, O. Ferromagnetic Resonance - Theory and Applications. InTech, 2013. 27, 28 [46] Morita, S., Ishizaka, T., Sugawara, Y., Okada, T., Mishima, S., Imai, S., et al. Surface conductance of metal surfaces in air studied with a force microscope. Japanese Journal of Applied Physics, 28 (Part 2, No. 9), L1634-L1636, 1989. 33 [47] Shafai, C., Thomson, D. J., Simard-Normandin, M., Mattiussi, G., Scanlon, P. J. Delineation of semiconductor doping by scanning resistance microscopy. Applied Physics Letters, 64 (3), 342-344, 1994. 33 [48] Houzé, F., Meyer, R., Schneegans, O., Boyer, L. Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes. Applied Physics Letters, 69 (13), 1975-1977, 1996. 34 [49] Bardou, F. Rare events in quantum tunneling. EPL (Europhysics Letters), 39 (3), 239, 1997. 34, 42, 44, 63, 71, 84 [50] Da Costa, V., Bardou, F., Béal, C., Henry, Y., Bucher, J. P., Ounadjela, K. Nanometric cartography of tunnel current in metal - oxide junctions. Journal of Applied Physics, 83 (11), 6703-6705, 1998. 34, 44, 65 [51] Olbrich, A., Ebersberger, B., Boit, C. Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2. Applied Physics Letters, 73 (21), 3114-3116, 1998. 34 [52] Da Costa, V., Tiusan, C., Dimopoulos, T., Ounadjela, K. Tunneling phenomena as a probe to investigate atomic scale uctuations in metal/oxide/metal magnetic tunnel junctions. Phys. Rev. Lett., 85, 876-879, Jul 2000. 34, 45, 66 [53] Ando, Y., Kameda, H., Kubota, H., Miyazaki, T. Local current distribution in a ferromagnetic tunnel junction measured using conducting atomic force microscopy. Journal of Applied Physics, 87 (9), 5206-5208, 2000. 34, 45 [54] Hu, Z. J., Yan, Y. D., Zhao, X. S., Gao, D. W., Wei, Y. Y., Wang, J. H. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system. The Review of scientific instruments, 82 (12), 125102, dic. 2011. 34 [55] Bouzehouane, K., Fusil, S., Bibes, M., Carrey, J., Blon, T., Le D^u, M., et al. Nanolithography Based on Real-Time Electrically Controlled Indentation with an Atomic Force Microscope for Nanocontact Elaboration. Nano Letters, 3, 1599-1602, 2003. 34 [56] Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N. D., Barthelemy, A., et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 460 (7251), 81-84, jul. 2009. 34 [57] Yan-Wu, X., Y, H. H. Tuning the electrons at the LaAlO_3/SrTiO_3 interface: From growth to beyond growth. Chinese Physics B, 22 (12), 127301, 2013. 34 [58] Chen, Y. Z., Zhao, J. L., Sun, J. R., Pryds, N., Shen, B. G. Resistance switching at the interface of LaAlO_3/SrTiO_3. Applied Physics Letters, 97 (12), 123102, 2010. 34 [59] Lee, M. H., Song, H. Charge transport in metal-molecule-metal junctions probed by conducting atomic force microscopy. Bulletin of the Korean Chemical Society, 34 (7), 1959-1960, 2013. 34 [60] Song, H., Lee, C., Kang, Y., Lee, T. Electronic transport and tip-loading force e_ect in self-assembled monolayer studied by conducting atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 284 - 285 (0), 583 { 588, 2006. A selection of papers from the 11th International Conference on Organized Molecular Films (LB11), June 26-30, 2005, Sapporo. 34 [61] Bailon, M., Salinas, P., Arboleda, J. Application of conductive afm on the electrical characterization of single-bit marginal failure. IEEE Transactions on Device and Materials Reliability, 6, 2006. 35 [62] Sommerfeld, A., Bethe, H. Handbuch der Physik von Geiger und Scheel. v. 24/2. Julius Springer, 1933. 36 [63] Holm, R. The electric tunnel effect across thin insulator films in contacts. Journal of Applied Physics, 22 (5), 569-574, 1951. 36 [64] Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. Journal of Applied Physics, 34 (6), 1793-1803, 1963. 36, 39, 40, 41, 72, 90, 91, 110 [65] Griffiths, D. Introduction to Quantum Mechanics. Pearson international edition. Pearson Prentice Hall, 2005. 37 [66] Coutts, T. Electrical conduction in thin metal films. Elsevier Scientific Pub. Co., 1974. 38 [67] Simmons, J. G. Low voltage current voltage relationship of tunnel junctions. Journal of Applied Physics, 34 (1), 238-239, 1963. 40 [68] Fisher, J. C., Giaever, I. Tunneling through thin insulating layers. Journal of Applied Physics, 32 (2), 172-177, 1961. 41 [69] Costa, V. D., Henry, Y., Bardou, F., Romeo, M., Ounadjela, K. Experimental evidence and consequences of rare events in quantum tunneling. The European Physical Journal B, 13 (2), 297-303, 2000. 42 [70] Olbrich, A., Ebersberger, B., Boit, C., Vancea, J., Ho_mann, H., Altmann, H., et al. Oxide thickness mapping of ultrathin Al_2O_3 at nanometer scale with conducting atomic force microscopy. Applied Physics Letters, 78 (19), 2934-2936, 2001. 45 [71] Dimopoulos, T., Da Costa, V., Tiusan, C., Ounadjela, K., van den Berg, H. A. M. Local investigation of thin insulating barriers incorporated in magnetic tunnel junctions. Journal of Applied Physics, 89 (11), 7371-7373, 2001. [72] Luo, E. Z., Wong, S. K., Pakhomov, A. B., Xu, J. B., Wilson, I. H., Wong, C. Y. Tunneling current and thickness inhomogeneities of ultrathin aluminum oxide films in magnetic tunneling junctions. Journal of Applied Physics, 90 (10), 5202-5207, 2001. 45 [73] Lang, K. M., Hite, D. A., Simmonds, R. W., McDermott, R., Pappas, D. P., Martinis, J. M. Conducting atomic force microscopy for nanoscale tunnel barrier characterization. Review of Scientific Instruments, 75 (8), 2726-2731, 2004. 45 [74] Sánchez, J. C. R. Efectos combinados de carga y espín en semiconductores. Tesis Doctoral, Instituto Balseiro, 2010. 45 [75] Granada, M. Transporte polarizado en espín en nanoestructuras artificiales a base de manganitas. Tesis Doctoral, Instituo Balseiro, 1 2007. 45 [76] Sirena, M., Kaul, E., Pedreros, M. B., Rodriguez, C. A., Guimpel, J., Steren, L. B. Structural, magnetic and electrical properties of ferromagnetic/ferroelectric multilayers. Journal of Applied Physics, 109 (12), 123920, 2011. 48, 50, 51 [77] Haeni, J. H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y. L., et al. Roomtemperature ferroelectricity in strained SrTiO3. Nature, 430 (7001), 758-761, 2004. 56 [78] Warusawithana, M. P., Cen, C., Sleasman, C. R., Woicik, J. C., Li, Y., Kourkoutis, L. F., et al. A ferroelectric oxide made directly on silicon. Science (New York, N.Y.), 324 (5925), 367-370, 2009. 56 [79] Biegalski, M. D., Jia, Y., Schlom, D. G., Trolier-McKinstry, S., Streiffer, S. K., Sherman, V., et al. Relaxor ferroelectricity in strained epitaxial SrTiO[sub 3] thin films on DyScO[sub 3] substrates. Applied Physics Letters, 88 (19), 192907, 2006. 56 [80] Avilés-Félix, L., Sirena, M., Guzmán, L. A. A., Sutter, J. G., Vargas, S. P., Steren, L. B., et al. Structural and electrical characterization of ultra-thin SrTiO_3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions. Nanotechnology, 23 (49), 495715, 2012. 59, 68, 71, 115 [81] Sirena, M. Roughness inuence in the barrier quality of ferroelectric/ ferromagnetic tunnel junctions, model, and experiments. Journal of Applied Physics, 110 (6), 063923, 2011. 60, 71, 72, 86 [82] van Benthem, K., Elsasser, C., French, R. H. Bulk electronic structure of SrTiO_3: Experiment and theory. Journal of Applied Physics, 90 (12), 6156-6164, 2001. 61 [83] Skakle, J. Crystal chemical substitutions and doping of fYBa_2Cu_3O_xg and related superconductors. Materials Science and Engineering: R: Reports, 23 (1), 1 - 40, 1998. 61 [84] Costa, V. D., Romeo, M., Bardou, F. Statistical properties of currents owing through tunnel junctions. Journal of Magnetism and Magnetic Materials, 258- 259 (0), 90 - 95, 2003. Second Moscow International Symposium on Magnetism. 63, 65 [85] Gilles, B., Fettar, F., Pillet, J., Marty, A., Ernult, F., Monso, S., et al. Local current measurements of an insulating layer using an fUHVg atomic force microscope in contact mode. Journal of Magnetism and Magnetic Materials, 242 - 245, Part 2, 1261 - 1263, 2002. Proceedings of the Joint European Magnetic Symposia (JEMS'01). 67 [86] Bhutta, K., Schmalhorst, J., Reiss, G. Study of MgO tunnel barriers with conducting atomic force microscopy. Journal of Magnetism and Magnetic Materials, 321 (20), 3384 - 3390, 2009. 115 [87] Foerster, M., Rigato, F., Bouzehouane, K., Fontcuberta, J. Tunnel transport through cofe 2 o 4 barriers investigated by conducting atomic force microscopy. Journal of Physics D: Applied Physics, 43 (29), 295001, 2010. 67 [88] Gerra, G., Tagantsev, A. K., Setter, N., Parlinski, K. Ionic Polarizability of Conductive Metal Oxides and Critical Thickness for Ferroelectricity in BaTiO3. Phys. Rev. Lett., 96, 107603, Mar 2006. 67 [89] Takahashi, K. S., Gabay, M., Jaccard, D., Shibuya, K., Ohnishi, T., Lippmaa, M., et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature, 441 (7090), 195-198, 2006. 70 [90] Ahn, C. H., Gariglio, S., Paruch, P., Tybell, T., Antognazza, L., Triscone, J. M. Electrostatic Modulation of Superconductivity in Ultrathin GdBa_2Cu_3O_7-x Films. Science, 284 (5417), 1152-1155, 1999. [91] Crassous, A., Bernard, R., Fusil, S., Bouzehouane, K., Le Bourdais, D., Enouz- Vedrenne, S., et al. Nanoscale Electrostatic Manipulation of Magnetic Flux Quanta in Ferroelectric/Superconductor BiFeO_3/YBa_2Cu_3O_7-δ Heterostructures. Physical Review Letters, 107 (24), 247002, 2011. 70 [92] Peotta, S., Di Ventra, M. Superconducting Memristors. Physical Review Applied, 2 (3), 034011, sep. 2014. 70 [93] Chanthbouala, A., Garcia, V., Cheriff, R. O., Bouzehouane, K., Fusil, S., Moya, X., et al. A ferroelectric memristor. Nature Materials, 11 (10), 860-864, sep. 2012. 70 [94] Fix, T., Da Costa, V., Ulhaq-Bouillet, C., Colis, S., Dinia, A., Bouzehouane, K., et al. High quality SrTiO3 tunnel barrier obtained by pulsed laser deposition. Applied Physics Letters, 91 (8), 083104, 2007. 71, 74, 86 [95] Infante, I. C., Snchez, F., Laukhin, V., Prez del Pino, A., Fontcuberta, J., Bouzehouane, K., et al. Functional characterization of srtio3 tunnel barriers by conducting atomic force microscopy. Applied Physics Letters, 89 (17), 172506, 2006. 74, 86 [96] Rabson, D. A., Jhonsson-_Akerman, B. J., Romero, a. H., Escudero, R., Leighton, C., Kim, S., et al. Pinholes may mimic tunneling. Journal of Applied Physics, 89 (5), 2786-2790, 2001. 75, 155 [97] Anders, S., Blamire, M., Buchholz, F.-I., Crété, D.-G., Cristiano, R., Febvre, P., et al. European roadmap on superconductive electronics status and perspectives. Physica C: Superconductivity, 470 (23-24), 2079-2126, dic. 2010. 77 [98] Benz, S. P., Hamilton, C. A., Burroughs, C. J., Harvey, T. E., Christian, L. A. Stable 1 volt programmable voltage standard. Applied Physics Letters, 71 (13), 1866-1868, 1997. 77 [99] Adachi, S., Tsukamoto, A., Oshikubo, Y., Hato, T., Tanabe, K. Fabrication of integrated hts-squid magnetometers having multiturn input coils with different sizes. Physica C: Superconductivity, 471 (2122), 1258 - 1262, 2011. The 23rd International Symposium on Superconductivity. 77 [100] Nakamura, Y., Terai, H., Inomata, K., Yamamoto, T., Qiu, W., Wang, Z. Superconducting qubits consisting of epitaxially grown nbn/aln/nbn josephson junctions. Applied Physics Letters, 99 (21), 212502, 2011. 77 [101] Hassel, J., Helistu, P., Seppa, H., Kunert, J., Fritzsch, L., Meyer, H.-G. Rapid single ux quantum devices with selective dissipation for quantum information processing. Applied Physics Letters, 89 (18), 182514, 2006. 77 [102] Wu, M., Ashburn, J., Torng, C., Hor, P., Meng, R., Gao, L., et al. Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system at ambient pressure. Phys. Rev. Lett., 58, 908{910, Mar 1987. 77 [103] Benzi, P., Bottizzo, E., Rizzi, N. Oxygen determination from cell dimensions in fYBCOg superconductors. Journal of Crystal Growth, 269 (2-4), 625 - 629, 2004. 77 [104] Zhai, H. Y., Chu, W. K. Effect of interfacial strain on critical temperature of {fYBa_2Cu_3O_7} thin films. Applied Physics Letters, 76 (23), 3469-3471, 2000. 77, 78 [105] Bernard, R. Dynamique des réseaux de vortex dans des films minces supraconducteurs a haute temperature critique en vue de l'optimisation d'un transformateur a ux de vortex. Tesis Doctoral, Universite Paris XI Orsay, 6 2006. 81 [106] Frank, F. C., Merwe, J. H. v. d. One-dimensional dislocations. i. static theory. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 198 (1053), pp. 205-216, 1949. 83 [107] Volmer, M., Weber, A. Zeitschrift fur Physikalische Chemie, pág. 277, 1926. 83 [108] Stranski, I. N., Krastanow, V. L. Akad. Wiss. Lit. Mainz Abh. Math. Naturwiss. Kl., 146, 797, 1939. 84 [109] Sirena, M., Avilés Félix, L., Carvacho Vera, G. a., Navarro Fernández, H. L., Steren, L. B., Bernard, R., et al. Structural and transport characterization of ultra thin Ba_0,05Sr_0,95TiO_3 layers grown over Nb electrodes for the development of Josephson junctions. Applied Physics Letters, 100 (1), 012602, 2012. 86 [110] Pallecchi, I., Grassano, G., Marr_e, D., Pellegrino, L., Putti, M., Siri, A. S. Srtio3- based metal-insulator-semiconductor heterostructures. Applied Physics Letters, 78 (15), 2244-2246, 2001. 89 [111] Calvani, P., Capizzi, M., Donato, F., Lupi, S., Maselli, P., Peschiaroli, D. Observation of a midinfrared band in srtio_3y . Phys. Rev. B, 47, 8917-8922, Apr 1993. 89 [112] Kao, P.-C., Chu, S.-Y., Zhan, C.-Y., Hsu, L.-C., Liao, W.-C. Fabrication of the patterned exible oleds using a combined roller imprinting and photolithography method. En: Nanotechnology, 2005. 5th IEEE Conference on, pags. 693{695 vol. 2. 2005. 95 [113] Suslik, L., Pudis, D., Skriniarova, J., Martincek, I., Kubicova, I., Kovac, J. 2d photonic structures for optoelectronic devices prepared by interference lithography. Physics Procedia, 32 (0), 807 { 813, 2012. The 18th International Vacuum Congress (IVC-18). 95 [114] Wang, Z., Xing, R., Yu, X., Han, Y. Adhesive lithography for fabricating organic electronic and optoelectronics devices. Nanoscale, 3, 2663-2678, 2011. 95 [115] Antonio, D., Dolz, M., Pastoriza, H. Micromechanical magnetometer using an all-silicon nonlinear torsional resonator. Applied Physics Letters, 95 (13), 133505- 133505-3, Sep 2009. 95 [116] Ogando, K., Forgia, N. L., Zárate, J., Pastoriza, H. Design and characterization of a fully compliant out-of-plane thermal actuator. Sensors and Actuators A: Physical, 183 (0), 95 - 100, 2012. 95 [117] Morhell, N., Pastoriza, H. Capillary microviscometer, ago. 7 2014. US Patent App. 14/130,676. 95 [118] Wu, P., Zhang, C. Low-cost, high-throughput fabrication of cloth-based microuidic devices using a photolithographical patterning technique. Lab Chip, pags.-, 2015. 95 [119] Whitlow, H. J., Ng, M. L., Auzelyte, V., Maximov, I., Montelius, L., van Kan, J. A., et al. Lithography of high spatial density biosensor structures with sub- 100nm spacing by mev proton beam writing with minimal proximity effect. Nanotechnology, 15 (1), 223, 2004. 95 [120] vanWees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett., 60, 848-850, Feb 1988. 95 [121] Klitzing, K. v., Dorda, G., Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45, 494-497, Aug 1980. 95 [122] Madou, M. Fundamentals of Microfabrication: The Science of Miniaturization, Second Edition. Taylor & Francis, 2002. 97, 98 [123] Cui, Z. Micro-Nanofabrication: Technologies and Applications. Springer, 2010. 97 [124] Sirena, M., Aviles Felix, L., Haberkorn, N. High transition temperature superconductor/ insulator bilayers for the development of ultra-fast electronics. Applied Physics Letters, 103 (5), 052902, 2013. 103 [125] Schneegans, O., Chretien, P., Caristan, E., Houze, F., Degardin, A., Kreisler, A. J. First observations of YBaCuO thin films by atomic force microscopy with conducting tips. Proc. SPIE, 3481, 265-273, 1998. 103 [126] Oepts, W., Verhagen, H. J., de Jonge, W. J. M., Coehoorn, R. Dielectric breakdown of ferromagnetic tunnel junctions. Applied Physics Letters, 73 (16), 2363- 2365, 1998. 111 [127] Oepts, W., Verhagen, H. J., Coehoorn, R., de Jonge, W. J. M. Analysis of breakdown in ferromagnetic tunnel junctions. Journal of Applied Physics, 86 (7), 3863-3872, 1999. 111 [128] Buravikhin, V., Litvintsev, V., Didovich, Y., Kazakov, V., Ushakov, A. Magnetic and electrical properties of co-rich cobalt-iron films. Czechoslovak Journal of Physics B, 24 (6), 636-641, 1974. 111 [129] Pureur, P., Kunzler, J. V., Schreiner, W. H., Brando, D. E. Electrical resistivity of the cobalt-rich co-fe alloys. physica status solidi (a), 70 (1), 11-15, 1982. 111 [130] Glushko, O., Meisels, R., Kuchar, F., Danzer, R. Numerical and experimental investigations of surface roughness in 1D photonic crystals. Journal of Physics: Condensed Matter, 20 (45), 454220, nov 2008. 112 [131] Abram, R., Jaros, M., Division, N. A. T. O. S. A. Band Structure Engineering in Semiconductor Microstructures. NATO ASI Series: Physics. Plenum Press, 1989. 112 [132] Evarts, E. R., Cao, L., Ricketts, D. S., Rizzo, N. D., Bain, J. A., Majetich, S. A. Characterization of Conducting Atomic Force Microscopy for Use With Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 46 (6), 1741{1744, 2010. 116 [133] Lee, S., Han, Y., Bae, T., Hong, J., Shim, J., Kim, E., et al. On-_film tunneling resistance measurements of unpatterned magnetic tunnel junctions. Journal of Applied Physics, 108 (9), 093902, 2010. 116 [134] Shu, M.-F., Canizo-Cabrera, a., Hsu, C.-C., Chen, C., Wu, J., Yang, C.-C., et al. The magnetoresistance ratio of an MTJ device and the inuence of ramping DC bias voltage rate measured by conducting atomic force microscope. Journal of Magnetism and Magnetic Materials, 304 (1), e294{e296, sep. 2006. 116 [135] Djayaprawira, D. D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., et al. 230% room-temperature magnetoresistance in CoFeB - MgO - CoFeB magnetic tunnel junctions. Applied Physics Letters, 86 (9), 092502, 2005. 116 [136] Cullity, B., Graham, C. Introduction to Magnetic Materials. Wiley, 2009. 116 [137] Getzla_, M. Fundamentals of Magnetism. Springer Berlin Heidelberg, 2007. 118, 129 [138] Heinrich, B., Bland, J. Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties. Ultrathin Magnetic Structures. Springer, 2004. 121 [139] Bland, J., Heinrich, B. Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism. Ultrathin Magnetic Structures. Springer, 2005. 121, 122 [140] Kools, J. C. S., Kula, W., Mauri, D., Lin, T. Effect of finite magnetic film thickness on Neel coupling in spin valves. Journal of Applied Physics, 85 (8), 4466, 1999. 123 [141] Fuller, H. W., Sullivan, D. L. Magnetostatic interactions between thin magnetic films. Journal of Applied Physics, 33 (3), 1063-1064, 1962. 123 [142] Fuller, H. W., Lakin, L. R. Wall-wall interaction between thin magnetic films. Journal of Applied Physics, 34 (4), 1069-1070, 1963. 123 [143] Michely, T., Comsa, G. Generation and nucleation of adatoms during ion bombardment of Pt(111). Physical Review B, 44 (15), 8411-8414, oct. 1991. 126 [144] Vopsaroiu, M., Georgieva, M., Grundy, P. J., Vallejo Fernandez, G., Manzoor, S., Thwaites, M. J., et al. Preparation of high moment CoFe films with controlled grain size and coercivity. Journal of Applied Physics, 97 (10), 10N303, 2005. 127 [145] Herzer, G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Transactions on Magnetics, 26 (5), 1397-1402, 1990. 127 [146] Faure-Vincent, J., Tiusan, C., Bellouard, C., Popova, E., Hehn, M., Montaigne, F., et al. Interlayer Magnetic Coupling Interactions of Two Ferromagnetic Layers by Spin Polarized Tunneling. Physical Review Letters, 89 (10), 107206, ago. 2002. 133, 142 [147] Ohtake, M., Tanaka, T., Matsubara, K., Kirino, F., Futamoto, M. Epitaxial growth of permalloy thin films on mgo single-crystal substrates. Journal of Physics: Conference Series, 303 (1), 012015, 2011. 137 [148] Bruno, P. Theory of interlayer magnetic coupling. Physical Review B, 52 (1), 411, 1995. 142 [149] Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B, 39, 6995-7002, Apr 1989. 142 [150] Guo, D. W., Cardoso, F. a., Ferreira, R., Paz, E., Cardoso, S., Freitas, P. P. MgO-based magnetic tunnel junction sensors array for non-destructive testing applications. Journal of Applied Physics, 115 (17), 17E513, mayo 2014. 146 [151] Kubota, H., Yakushiji, K., Fukushima, A., Tamaru, S., Konoto, M., Nozaki, T., et al. Spin-Torque Oscillator Based on Magnetic Tunnel Junction with a Perpendicularly Magnetized Free Layer and In-Plane Magnetized Polarizer. Applied Physics Express, 6 (10), 103003, oct. 2013. 146 [152] Konishi, K., Dixit, D. K., Tulapurkar, a. a., Miwa, S., Nozaki, T., Kubota, H., et al. Radio-frequency amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance. Applied Physics Letters, 102 (16), 162409, 2013. 146 [153] Teixeira, J. M., Ventura, J., Carpinteiro, F., Araujo, J. P., Sousa, J. B., Wisniowski, P., et al. The effect of pinhole formation/growth on the tunnel magnetoresistance of MgO-based magnetic tunnel junctions. Journal of Applied Physics, 106 (7), 073707, 2009. 146 [154] Yoshikawa, M., Kitagawa, E., Nagase, T., Daibou, T., Nagamine, M., Nishiyama, K., et al. Tunnel Magnetoresistance Over 100% in MgO-Based Magnetic Tunnel Junction Films With Perpendicular Magnetic L1 0 -FePt Electrodes. IEEE Transactions on Magnetics, 44 (11), 2573-2576, 2008. 146 [155] Jhonsson-Akerman, B. J., Escudero, R., Leighton, C., Kim, S., Schuller, I. K., Rabson, D. A. Reliability of normal-state current-voltage characteristics as an indicator of tunnel-junction barrier quality. Applied Physics Letters, 77 (12), 1870, 2000. 151, 155 [156] Bian, J. M., Li, X. M., Chen, T. L., Gao, X. D., Yu, W. D. Preparation of high quality MgO thin films by ultrasonic spray pyrolysis. Applied Surface Science, 228 (1-4), 297-301, abr. 2004. 154 [157] Jambois, O., Carreras, P., Antony, A., Bertomeu, J., Martinez-Boubeta, C. Resistance switching in transparent magnetic MgO films. Solid State Communications, 151 (24), 1856-1859, dic. 2011. 154 [158] Akerman, J. J., Slaughter, J. M., Dave, R. W., Schuller, I. K. Tunneling criteria for magnetic-insulator-magnetic structures. Applied Physics Letters, 79 (19), 3104, 2001. 155 [159] García, N. Conducting ballistic magnetoresistance and tunneling magnetoresistance: Pinholes and tunnel barriers. Applied Physics Letters, 77 (9), 1351, 2000. 155 [160] Platt, C. L., Dieny, B., Berkowitz, A. E. Spin polarized tunneling in reactively sputtered tunnel junctions. Journal of Applied Physics, 81 (8), 5523, 1997. 156 [161] Brinkman, W. F., Dynes, R. C., Rowell, J. M. Tunneling Conductance of Asymmetrical Barriers. Journal of Applied Physics, 41 (5), 1915, 1970. 156, 157 [162] Nahagama, T., Moodera, J. S. Magnetic Tunnel Junctions with Magnesium Oxide Barriers. Journal of Magnetics, 11 (4), 170, 2006. 157 [163] Miller, C. W., Li, Z.-P., Schuller, I. K., Dave, R. W., Slaughter, J. M., Akerman, J. Dynamic Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions. Physical Review Letters, 99 (4), 047206, jul. 2007. 157 [
Materias:Física
Física > Electromagnetismo
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:552
Depositado Por:USUARIO INVÁLIDO
Depositado En:30 Aug 2016 12:33
Última Modificación:30 Aug 2016 12:44

Personal del repositorio solamente: página de control del documento