Puesta en servicio de las modalidades terapéuticas de IMRT y VMAT en acelerador lineal con colimador multiláminas. / IMRT and VMAT commissioning for an Elekta LINAC with multileaf collimator.

Brezán, Rocío (2017) Puesta en servicio de las modalidades terapéuticas de IMRT y VMAT en acelerador lineal con colimador multiláminas. / IMRT and VMAT commissioning for an Elekta LINAC with multileaf collimator. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
16Mb

Resumen en español

En este trabajo se realizó la puesta en servicio de la técnica de Radioterapia de Intensidad Modulada (IMRT, del inglés Intensity Modulated Radiation Therapy), en el acelerador lineal Elekta Synergy del Centro Integral de Medicina Nuclear y Radioterapia de Bariloche, cuya gestión es llevada a cabo por la Fundación INTECNUS. Para esto, se realizaron pruebas end to end en la modalidad Step and Shoot y Terapia en Arco Modulada Volumetricamente (VMAT, del ingles Volumetric Modulated Arc Therapy) sobre un fantoma sólido, y en Step and Shoot, Sliding Window y VMAT sobre un fantoma antropomórfico de tórax. Se efectuaron mediciones durante tales pruebas con una cámara de ionización, películas radiocrómicas y un arreglo de detectores 2D que fueron comparadas con datos calculados en el Sistema de Plani- cación de Tratamiento (TPS, del ingles Treatment Planning System) mediante el ndice gamma con criterio de aceptación 3 %/3mm. Por otro lado, se analizaron las funciones de costo que el TPS utiliza para representar las dosis deseadas en el blanco tumoral y las dosis toleradas en los órganos de riesgo, mediante un análisis cualitativo de histogramas dosis-volumen entre dos planes de un mismo tratamiento, uno realizado a partir de modelos biológicos y otro a partir de parámetros físicos. Ademas, se llevo a cabo la caracterización del escáner para lectura de películas radiocrómicas. Se encontraron resultados satisfactorios en los análisis realizados, principalmente en aquellos implementados en Step and Shoot, y se estableció que el arreglo de detectores 2D es apto para realizar controles de calidad paciente-específico en tratamientos de IMRT. Se plantearon las variables que deben continuar investigandose en trabajos futuros para complementar este estudio.

Resumen en inglés

The aim of this work was to perform the commissioning of the Intensity Modulated Radiation Therapy (IMRT) technique, on an Elekta Synergy linear accelerator, available in the radiotherapy service of the \Centro Integral de Medicina Nuclear y Radioterapia de Bariloche", managed by \Fundacion INTECNUS". In order to achieve this goal, end-to-end tests were conducted in both Stepand- Shoot and Volumetric Modulated Arc Therapy (VMAT) techniques on a solid phantom, as well as tests in Step-and-Shoot, Sliding Window and VMAT techniques for an anthropomorphic thoracic phantom. During the course of such tests, measurements using an ionization chamber, radiochromic lms and a 2D detector array were obtained and compared against Treatment Planning System (TPS) calculations, by means of the gamma index with acceptance criteria of 3 %/3mm. On the other hand, the cost functions used by the TPS to represent the desired doses on the target, as well as the tolerated doses on risk organs, were analyzed using dose-volume histograms to compare two plans for the same treatment, one of them using biological models and the other based on physical parameters. In addition to this, the characterization of the scanner used to read the radiochromic lms was performed. Results obtained from these analyses were deemed satisfactory, specially those using a Step-and-Shoot technique. We concluded that the 2D detector array was suitable for performing patient-specic quality controls on IMRT. Finally, other variables that would require further investigation in order to complement this work were identified.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Linear accelerators; Aceleradores lineales; Thorax; Pecho; Collimators; Colimadores; [INTECNUS; Intensity modulated radiation therapy; Radioterapia de intensidad modulada; Solid phantom; Fantoma sólido; Anthropomorphic thoracic phantom; Fantoma antropomórfico]
Referencias:[1] Organización Internacional de la Salud, datos y cifras sobre el cáncer en el mundo. http://www.who.int/mediacentre/factsheets/fs297/es/ Acceso noviembre 2017 [2] International Agency for Research on Cancer. Estimated age-standardized rates (World) of incident cases, both sexes, all cancers excluding non-melanoma skin cancer, worldwide in 2012. https://gco.iarc.fr/today/online-analysismap? projection=globe. Acceso agosto 2017. [3] International Atomic Energy Agency, Radiotherapy in cancer care: facing the global challenge, Vienna (2017). [4] Sociedad Espa~nola de Fsica Medica, Fundamentos de Fsica Medica, Volumen 3 (2012). [5] Palma, D., Verbakel, W., et al., New developments in arc radiation therapy: A review,Cancer Treatment Reviews, Elsevier, 36 P393-399 (2010). [6] Elith, C., Dempsey, S., et al., An Introduction to the Intensity-modulated Radiation Therapy (IMRT) Techniques, Tomotherapy, and VMAT, Journal of Medical Imaging and Radiation Sciences, Elsevier, 42 P37-43 (2011). [7] Gutierrez-Ibarluzea, I., Gutierrez Iglesias, A., et al., Evaluacion de radioterapia conformada con haces de intensidad modulada. IMRT, Ministerio de Sanidad, Servicios Sociales e Igualdad.Servicio de Evaluacion de Tecnologas Sanitarias del Pas Vasco; (2014). [8] Ezzell, G., Burmeister, J., et al., IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119, Med. Phys. 36 (11) P5359-5373 (2009). [9] Podgorsak, E. B., Radiation Oncology Physics: A Handbook for Teachers and Students,International Atomic Energy Agency, Vienna, (2005) [10] Boyer, A., Biggs, P., et al., Basic applications of multileaf collimator, Report of Task Group No. 50, American Association of Physicists in Medicine Report No. 72 (2001). [11] Solberg Timothy D., Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues, 44th AAPM Annual Meeting (2002). [12] Deng, J., Pawlicki, T., et al., The MLC Tongue-and-groove Eect on IMRT Dose Distributions, Proceedings of the 22nd Annual EMBS International Conference, Chicago.(2000). [13] Alarcon A., Modelado de colimadores multilamina en un sistema de planicaci on de radioterapia con haces externos de fotones, Tesis de Maestra en Fsica Medica, Instituto Balseiro (2016). [14] Ezzell, G., Galvin, J., et al., Guidance document on delivery, treatment planning, and clinicalimplementation of IMRT: Report of the IMRT subcommitteeof the AAPM radiation therapy committee, Med. Phys. 30 (8) P2089-2115 (2003). [15] Cobos A., Dosis periferica en Radioterapia de Intensidad Modulada (IMRT) y su implicancia en proteccion radiologica Tesis de Maestra en Fsica Medica, Instituto Balseiro (2011). [16] Wang, J., Allen, X., et al., Impact of prolonged fraction delivery times on tumor control: a note of caution for Intensity-Modulated Radiation Therapy (IMRT), Int. J. Radiation Oncology Biol. Phys. 57 (2) P543-552 (2003). [17] Khan, F., Gibbons, J., et al., The Physics of RadiaTion TheRaPy, 5th Edition, (2014). [18] Yu, C., Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy, Phys. Med. Biol. 40 P1435-1449 (1995). [19] Otto Karl, Volumetric modulated arc therapy: IMRT in a single gantry arc, Med. Phys. 35 (1) P310-317 (2008). [20] 6 Qiuwen Wu, Radhe Mohan, Algorithms and functionality of an intensity modulated radiotherapy optimization system, Med. Phys. 27 (4) P701-711 (2000). [21] Alber, M., Reemtsen, R., Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method, Optimization Methods and Software 22 (3) P391-411 (2006). [22] Allen, X., Alber, M., et al., The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM, Med. Phys. 39 (3) P1386-1409 (2012). [23] Andrzej Niemierko, Reporting and analyzing dose distributions: A concept of equivalent uniform dose, Med. Phys. 24 (1) P103-110 (1997). [24] Galvin James, The Multileaf Collimator: A complete guide, Thomas Jeerson University Hospital, Philadelphia, PA. [25] Chen, Y., Boyer, A., et al., Calculation of x-ray transmission through a multileaf collimator, Med. Phys. 27 (8) P1717-1726 (2000). [26] Low, D., Moran, J., et al., Dosimetry tools and techniques for IMRT, Med. Phys. 38 (3) P1313-1338 (2011). [27] Agility multileaf collimator http://www.elekta.co.jp Acceso noviembre 2017 [28] IBA Dosimetry, FC65-G Ionization Chamber User?s Guide. [29] Jason, E., Brent, C., et al., Evaluation of a commercial atbed document scanner and radiographic lm scanner for radiochromic EBT lm dosimetry, Journal of Applied Clinical Medical Physics 11 (2) P198-208 (2010). [30] Azam Niroomand-Rad Chair, Charles Robert Blackwell, et al., Radiochromic lm dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55, Med. Phys. 25 (11) P2093-2115 (1998). [31] GAFCHROMIC EBT3 Dosimetry Film, http://www.gafchromic.com Acceso octubre 2017 [32] GAFCHROMIC EBT3 Ecient Protocols for Accurate Radiochromic Film Calibration and Dosimetry, http://www.gafchromic.com Acceso octubre 2017 [33] Alber, M., Broggi, S., et al., GUIDELINES FOR THE VERIFICATION OF IMRT, ESTRO Booklet N. 9 Belgium (2008). [34] Arthur J. Olch, Matthew L. Whitaker, Validation of a treatment plan-based calibration method for 2D detectors used for treatment delivery quality assurance, Med. Phys. 3 (08) P4485-4494 (2010) [35] Casanova Borca, V., Pasquino, M., et al., Dosimetric characterization and use of GAFCHROMIC EBT3 lm for IMRT dose verication,Journal of Applied Clinical Medical Physics, 14 (2) P158-171 (2013). [36] Alashrah, S., Kandaiya, S., et al., Characterization of a 2D ionization chamber array for IMRT plan verication, Nuclear Instruments and Methods in Physics Research 619 P181-185 (2010). [37] IBA Dosimetry, MatriXX Evolution System The Solution for Rotational Treatment QA, https://www.iba-dosimetry.com Acceso octubre 2017 [38] IMRT DOSE VERIFICATION PHANTOM, CIRS IMRT THORAX PHANTOM http://www.rpdinc.com/ Acceso octubre 2017 [39] Monaco Training Guide, IMPAC Medical Systems (2016) [40] Markus Albert, Ecient Outcomes-Driven IMRT Treatment Planning Using Commercial Treatment Planning Systems: CMS-Elekta Monaco http://www.aapm.org/meetings/amos2/pdf/49-14488-40068-105.pdf Acceso septiembre 2017 [41] Sujatha Pai, Indra J. Das, et al., TG-69: Radiographic lm for megavoltage beam dosimetry, Med. Phys. 34 (06) P2228-2258 (2007). [42] 1951 USAF resolution test chart https://upload.wikimedia.org/wikipedia/commo ns/f/fe/USAF-1951.svg Acceso noviembre 2017 [43] David Lewis, Maria F. Chan, et al., Correcting lateral response artifacts from atbed scanners for radiochromic lm dosimetry, Med. Phys. 42 (01) P416-429 (2015). [44] Klein E., Hanley J., et al., Task Group 142 report: Quality assurance of medical accelerators, Med. Phys. 36 (09) P4197-4212 (2009). [45] Chung, H., JiLow, H., et al., The Impact of Calculation Grid Size On the Accuracy of IMRT Dose Distribution, Med. Phys. 32 (6) P2168 (2005) [46] Organismo Internacional de Energa Atomica IAEA, Determinacion de la dosis absorbida en radioterapia con haces externos. Informe tecnico 398, Viena (2005). [47] Low, D., Harms, W., et al., A technique for the quantitative evaluation of dose distributions, Med. Phys. 25 (5) P1386-1409 (1998). [48] Wu, Q., Djajaputra, D., et al., Dose sculpting with generalized equivalent uniform dose, Med. Phys. 32 (5) P1387-1396 (2005). [49] Benjamin E. Nelms, Je A. Simon, A survey on planar IMRT QA analysis, Journal of Applied Clinical Medical Physics 8 (3) P1387-1396 (2007). [50] Ji-Hye Song, Min-Joo Kim, et al., Gamma analysis dependence on specied lowdose thresholds for VMAT QA, Journal of Applied Clinical Medical Physics 16 (6) P263-272 (2015). [51] Herzen, J., Todorovic, M., et al., Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine, Physics in Medicine and Biology (52) P1197-1208 (2007).
Materias:Medicina > Radioterapia
Divisiones:Gerencia Centro Integral de Medicina Nuclear y Radioterapia de Bariloche
Código ID:688
Depositado Por:Tamara Cárcamo
Depositado En:23 Aug 2018 13:27
Última Modificación:23 Aug 2018 13:27

Personal del repositorio solamente: página de control del documento