DISEÑO Y MODELADO DE FANTOMAS PARA MEDICINA NUCLEAR

Rodrigo Emanuel Gómez Portillo Funes

Autor

Director
Ing. Luis Rovere

Instituto Balseiro
Comisión Nacional de Energía Atómica
Universidad Nacional de Cuyo

Junio 2018
Índice general

Lista de abreviaturas iv

Resumen 1

Abstract 2

1. Introducción 3
 1.1. Tomografía computarizada (CT) .. 4
 1.1.1. Equipo de tomografía computarizada 4
 1.1.2. Obtención de imagen en un equipo CT 5
 1.1.3. Calidad de imagen ... 6
 1.1.3.1. Parámetros que definen la calidad de imagen ... 6
 1.2. Tomografía por emisión de positrones (PET) 7
 1.2.1. Equipo de PET .. 7
 1.2.2. Obtención de la imagen en un equipo de PET 7
 1.2.3. Tipos de eventos .. 8
 1.2.3.1. Coincidencias accidentales 9
 1.2.3.2. Coincidencias por scattering 9
 1.2.3.3. Múltiples coincidencias 10
 1.2.4. Rango del positrón y no linealidad 10
 1.3. Reconstrucción de imágenes .. 11
 1.4. Método Monte Carlo .. 12
 1.5. GATE 8.0 .. 12
 1.5.1. Bases de GATE ... 12
 1.5.1.1. Arquitectura ... 12
 1.5.1.2. Factor de reducción de varianza 13
 1.5.1.3. Sistemas .. 13
 1.5.1.4. Digitalización 13
 1.5.1.4.1. Detectores sensitivos 14
 1.5.1.4.2. Cadena de detectores 14
2. Materiales y Métodos 16
 2.1. Benchmark de GATE 16
 2.2. Modelado del CT 18
 2.2.1. Obtención de imágenes 18
 2.2.2. Modelado de tubo de rayos X y arreglo de cristales 18
 2.2.2.1. Tubo de rayos X 18
 2.2.2.2. Arreglo de cristales 19
 2.3. Modelado del Catphan 600 20
 2.3.1. Módulos del Catphan 600 20
 2.3.2. Módulo CTP404 20
 2.3.3. Módulo CTP591 23
 2.3.4. Módulo CTP528 24
 2.3.5. Módulo CTP515 24
 2.3.6. Módulo CTP486 25
 2.3.7. Tomografía real del Catphan 600 25
 2.4. Diseño de un fantoma para CT 26
 2.5. Modelado del Fantoma NEMA 27
 2.5.1. Reconstrucción de imagen 27
 2.5.2. Resolución espacial 28
 2.5.3. Fantoma NEMA para determinar la calidad de imagen PET y corrección por scattering 29
 2.6. Diseño de un fantoma para PET 32

3. Resultados 33
 3.1. Benchmark de GATE 33
 3.2. Modelado del CT 34
 3.3. Interfaz de GATE para CT 34
 3.3.1. Reescalado de las imágenes 34
 3.3.2. Análisis de velocidad de giro y factor de reducción de varianza 35
 3.3.3. Modelado del Catphan 600 38
 3.3.3.1. Módulo CTP404 38
 3.3.3.2. Módulo CTP528 39
 3.4. Diseño del fantoma 41
 3.4.1. Módulo para Determinar la Resolución de Alto Contraste 41
 3.4.1.1. Primer diseño del módulo 41
 3.4.1.2. Segundo diseño del módulo 43
 3.4.1.3. Análisis con un material de menor densidad 45
 3.4.2. Módulo para Determinar la Resolución de Bajo Contraste 46
 3.4.3. Módulo para Determinar la Resolución de Bajo Contraste y resolución espacial 49
 3.4.4. Módulo para Determinar la Simetría y Linealidad Espacial 51
 3.4.4.1. Diseño y análisis del módulo 51
ÍNDICE GENERAL

3.4.4.2. Análisis del comportamiento de las esferas a distinto diámetro y material ... 55
3.4.5. Módulo para Determinar Centrado y Ancho de Corte ... 58
3.4.6. Módulo para Determinar la Homogeneidad .. 60
3.4.7. Módulo para Determinar la Respuesta Puntual .. 62
 3.4.7.1. Diseño para determinar la mínima dimensión de inserto ... 62
 3.4.7.2. Diseño final del módulo ... 64
3.5. Modelado del PET ... 67
3.6. Interfaz de GATE para PET ... 67
 3.6.1. Resolución espacial .. 67
 3.6.2. Calidad de imagen .. 69
3.7. Diseño de un Fantoma para PET .. 71

4. Conclusiones .. 75
 4.1. Análisis de las simulaciones del CT ... 75
 4.2. Análisis de las simulaciones del PET .. 77

Bibliografía .. 78

Agradecimientos .. 79

Apéndice A ... 80

Apéndice B ... 81
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td>PET</td>
<td>Tomografía por emisión de positrones</td>
</tr>
<tr>
<td>INTECNUS</td>
<td>Instituto de tecnologías nucleares para la salud</td>
</tr>
<tr>
<td>FUESMEN</td>
<td>Fundación escuela de medicina nuclear</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>FWTM</td>
<td>Full width at tenth maximum</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
</tbody>
</table>
El objetivo de esta tesis es el modelado y diseño de un fantoma para ser usado en medicina nuclear. Este equipamiento médico está compuesto por geometrías y materiales específicos que se utilizan para calibrar y realizar controles de calidad diarios a los equipos de imágenes médicas. Las bases del diseño se obtuvieron estudiando las características funcionales básicas de fantomas genéricos para CT y PET. Con esto se realizó un diseño preliminar de un fantoma para CT y PET que pueda satisfacer las necesidades que tiene INTECNUS sobre este equipamiento.

En este proyecto se alcanzaron los siguientes objetivos:

- Usar GATE 8.0 como herramienta de cálculo para modelar y probar fantasmas con distintas geometrías y materiales.
- Obtener un espectro energético del tubo de rayos X que se utiliza en tomógrafos computarizados, y modelarlo en GATE.
- Diseñar y simular fantasmas que tengan la capacidad de caracterizar la calidad de imagen de CT y PET utilizando como modelos de referencia el Catphan 600 y los estándares NEMA.
- Conseguir sinogramas e imágenes reconstruidas de las simulaciones hechas tanto en PET como en CT.
- Adquirir experiencia sobre ambas técnicas de imágenes médicas para poder caracterizar los problemas y generar herramientas para la solución de los mismos. Todo esto limitado a la capacidad de cómputo con la que se contaba.
- Analizar los resultados en Octave y realizar análisis de sensibilidad para los resultados de las simulaciones de CT y PET.

Palabras claves: Fantoma, CT, PET, Imagen, GATE, Catphan, NEMA.
Abstract

The main objective of this thesis is the design and modeling of a phantom, i.e. an medicine equipment, with an specific geometry and material composition, used in nuclear medicine to calibrate and make diary control test of medical image equipment. Generic phantoms for CT and PET were studied to get the basis of the designing. With that information, a phantom preliminary design was made for CT and PET.

The project fulfilled the following goals:

- The use of GATE 8.0 as calculus tool to model and test phantoms with different geometries and materials densities.
- Simulate the X-ray energy spectrum that is used in computed tomographs on GATE.
- The design and simulation of phantoms that can characterize the image quality of CT and PET using the Catphan 600 and the NEMA standards as references.
- Obtaining of sinograms and reconstructed images from both CT and PET simulations.
- Gain experience on both medical imaging technics to characterize a problem and generate tools that lead to the solution of them. All these taking into account the computational capacity that was on our hands.
- Analyze the results on Octave and make the sensitivity analysis for the PET and CT simulations.

Key words: Phantom, CT, PET, Image, Gate, Catphan, NEMA.
Capítulo 1

Introducción

Las imágenes médicas son el resultado de técnicas que permiten visualizar el interior de un paciente. Con estos procesos podemos conseguir imágenes anatómicas o comportamientos fisiológicos, que permiten el diagnostico o definir el tratamiento de una enfermedad.

En el marco de este proyecto, realizado en INTECNUS, se trabajó con dos modalidades para la obtención de imágenes médicas. La primera fue la tomografía computarizada (CT) y la segunda fue la tomografía por emisión de positrones (PET).

La caracterización de la calidad de imagen y la calibración de estos equipos es fundamental para conocer al equipo y mantener el correcto funcionamiento de los mismos. Tanto la calidad de imagen como la calibración se obtienen utilizando fantomas diseñados con este propósito.

Un fantoma es un objeto con una geometría específica que tiene insertos o cavidades conocidas, dentro de su volumen. Estas se utilizan para poder analizar las imágenes asociadas a ellas. Actualmente los fantasmas son producidos por empresas extranjeras y comprados para los centros médicos del país a un alto costo.

La motivación de este proyecto integrador es diseñar y modelar un fantoma que pueda ser construido en el Centro Atómico Bariloche a un bajo costo. Para esto se evaluaron las capacidades necesarias para generar un diseño preliminar para el fantoma de INTECNUS. Se estudiaron las características geométricas y composición usando de modelos de referencia al Catphan 600 para CT y los estándares NEMA para PET. Esto permitió diseñar, modelar y evaluar un fantoma modular para CT y un segundo fantoma para PET. Estos fantasmas fueron diseñados a escala reducida de los modelos de referencia con el fin de conseguir simulaciones convergentes y realizar análisis de sensibilidad.

El objetivo de este nuevo equipamiento es poder alcanzar las mismas capacidades que poseen los fantasmas de referencia.

A continuación, se explicaron los principios del funcionamiento de CT y PET con el fin de introducir los detectores que se modelarán y los parámetros que
tendremos en cuenta a la hora de diseñar el fantoma.

1.1. Tomografía computarizada (CT)

1.1.1. Equipo de tomografía computarizada

En la Figura 1.1 se puede observar el interior de un escáner de tomografía computarizada. Este está compuesto por un tubo de rayos X (señalizado con la letra \(T \)), un arreglo de detectores tipo centelladores (señalizado con la letra \(D \)) y un gantry.

El gantry tiene un mecanismo de rotación con el cual hace girar el tubo de rayos X y al arreglo de detectores, este movimiento se hace de forma tal de que ambos se mantengan enfrentados durante el movimiento. Con la letra \(X \) se señala el haz de rayos X que son emitidos en dirección a \(D \).

Además, existe un sistema de adquisición, almacenamiento, procesamiento y visualización de la señal obtenida por el arreglo de detectores.
1.1.2. Obtención de imagen en un equipo CT

En la Figura 1.2 se puede observar un esquema de un estudio CT.

![Esquema del funcionamiento de un equipo CT. Imagen modificada de: Adlin López Díaz, 2013.](image)

El funcionamiento se basa en la obtención de múltiples proyecciones del paciente al cual se quiere obtener una imagen de su interior. El proceso comienza colocando al paciente en el centro del gantry. Al encender el tubo de rayos X, estos se atenuan al atravesar al paciente y son captados por el arreglo de detectores, produciendo una proyección del paciente. Como se observa en la Figura 1.2, el arreglo de detectores y el tubo de rayos X giran alrededor del paciente y van tomando las múltiples proyecciones que son almacenadas para luego realizar la reconstrucción de la imagen tomográfica. Esta corresponde a un corte de la sección transversal del paciente y representa un mapa 2D de la atenuación que sufrió el haz de rayos X. Por último, el movimiento transversal de la camilla a través del gantry permite tomar todos los cortes que forman una imagen tridimensional. Los movimientos de la camilla pueden ser discretos (en modo parada-adquisición para exploraciones axiales) o de forma continua (adquisición helicoidal), cada tipo de movimiento requiere el uso de diferentes algoritmos de reconstrucción de imagen.

Debido a que los coeficientes de atenuación de distintos materiales presentan diferencias muy pequeñas, sobre todo dentro del cuerpo humano, surge la unidad Hounsfield (HU), o número CT, que se definen como:

\[
\text{Número}_{\text{CT}} = \frac{\mu_{\text{tejido}} - \mu_{\text{agua}}}{\mu_{\text{agua}}} \times 100
\]

(1.1.1)

De esta manera el número CT del agua es 0 HU, el número CT del aire es -1000

5
HU y el número CT del hueso 1000 HU, aproximadamente. Estos números son empleados para la obtención de imágenes CT y permiten conseguir una imagen con mejor contraste [1].

1.1.3. Calidad de imagen

1.1.3.1. Parámetros que definen la calidad de imagen

Un parámetro importante es la resolución de bajo contraste (RBC). Esta es la capacidad del equipo de detectar estructuras que ofrecen diferencias pequeñas entre sus HU. La RBC depende de la tensión del tubo de rayos X, de la filtración del haz, del algoritmo de reconstrucción y principalmente del ruido. Este último se puede disminuir aumentando la corriente del tubo de rayos X, lo que aumentaría la dosis sobre el paciente, o aumentando el grosor del corte a expensas de la resolución espacial.

Se puede evaluar la RBC con fantomas formados por insertos de bajo contraste de diferentes tamaños. Esta evaluación puede ser subjetiva, dependiendo de la visibilidad de los insertos en la imagen obtenida, o objetiva mediante el cálculo de la relación señal-ruido de la medición.

La resolución espacial o de alto contraste es la nitidez que se obtiene al observar objetos pequeños en el volumen explorado. La detección de estos objetos será fácil siempre y cuando tengan un número CT que sea muy diferente al de su entorno. El tamaño del pixel se utiliza a menudo como una medida de la resolución espacial, pero hay que tener en cuenta que un tamaño menor de pixel no implica necesariamente una mejor resolución espacial. Preferentemente, se expresa la resolución espacial como la respuesta a una función δ, con la función de dispersión de punto (PSF) para caracterizar la resolución espacial en el plano axial. La resolución espacial está limitada principalmente por la geometría de adquisición del escáner, el algoritmo de reconstrucción y el grosor del corte reconstruido. La respuesta se suele cuantificar como la FWHM. La función de transferencia de modulación (MTF) proporciona información útil sobre la calidad de imagen en función de la frecuencia espacial. La resolución espacial está limitada principalmente por la geometría de adquisición del escáner, el algoritmo de reconstrucción y el grosor del corte reconstruido [1][2].

La resolución temporal es la capacidad de obtener buenas imágenes de objetos en movimiento rápido. Una buena resolución temporal evita cualquier problema de la imagen que sea inducido por el movimiento. Para lograr una buena resolución temporal se requiere de un equipo de adquisición rápido y buenos algoritmos de reconstrucción de imagen. No se dispone en la actualidad un método sencillo para determinar la resolución temporal de un equipo de CT [2].
1.2. Tomografía por emisión de positrones (PET)

1.2.1. Equipo de PET

En la Figura 1.3 se puede observar un esquema de un tomógrafo por emisión de positrones.

Este tipo de tomógrafos cuentan con un gantry el cual tiene un arreglo de detectores, tipo centelladores, dispuesto de forma cilíndrica. A diferencia del escáner de CT, en este caso el arreglo de detectores se mantiene en una posición fija. Para el funcionamiento de este tipo de equipos se utilizan fuentes de positrones que son administradas al paciente, el cual es colocado en una camilla que se mueve transversalmente por el eje central del gantry.

1.2.2. Obtención de la imagen en un equipo de PET

Con el decaimiento β^+ del radioisótopo administrado al paciente, el positrón viaja depositando energía en el medio, hasta acoplarlo con un electrón libre. Esto da lugar a la aniquilación del par iónico, dando como resultado dos fotones. Ambos fotones de 511 keV viajan a 180° uno del otro, aproximadamente. Aprovechando este fenómeno y gracias a la estructura cilíndrica del escáner del PET, se puede detectar ambos fotones y establecer una línea que conecte ambos detectores como se observa en la Figura 1.4. Este proceso, llamado detección por coincidencia, permite trazar esta línea denominada línea de respuesta o LOR [3].

La selección de coincidencias tiene como criterio que ambos fotones detectados sean de la misma energía con el fin de poder descartar aquellos fotones que hayan
interactuado antes de llegar al detector.

Teniendo en cuenta que no todas las aniquilaciones se producen en el centro del anillo de detectores, la detección de coincidencias se realiza dentro de una ventana temporal. Esto es porque la distancia recorrida por cada fotón para llegar a los detectores, no será la misma. Este fenómeno se puede observar en la Figura 1.4.

Figura 1.4: Esquema simplificado de la detección de coincidencia donde la aniquilación del positrón no se produce en el centro. Imagen obtenida de: Simon R. Cherry y Magnus Dahlbom, 2004.

Sabiendo esto, los dos detectores que ven la coincidencia y que están asociados al circuito del escáner deben generar simultáneamente el pulso lógico que da a conocer la línea de respuesta. Sin embargo, se pueden generar algunos retrasos en la señal de detección de un fotón, llevando al ensanchamiento de la ventana temporal. Este tipo de incertezas en la resolución temporal se deben principalmente al tiempo de decaimiento del cristal centellador usado en los detectores. Es importante mantener la ventana temporal lo más angosta posible con el fin de no detectar eventos no relacionados [3].

Para reconstruir la imagen de un corte completo del paciente, se toma una gran cantidad de datos adquiridos de distintas líneas de respuesta que fueron tomadas en distintos ángulos y con distintos centros de emisión. Una vez teniendo estos datos se construye un mapa, denominado sinograma, al cual se le van a aplicar los algoritmos de reconstrucción de imagen para obtener la visualización del corte. Este último permitirá observar el proceso biológico del radionucleido administrado [3].

1.2.3. Tipos de eventos

La detección de coincidencias verdaderas requiere circunstancias ideales, donde ninguno de los dos fotones haya cambiado de dirección o de antes de interactuar con los detectores. Sin embargo, la medición de coincidencias se ve contaminada con eventos indeseables que serán explicados a continuación.
1.2.3.1. Coincidencias accidentales

Estos eventos están relacionados a eventos accidentales o aleatorios que provienen del decaimiento de dos átomos distintos que no aportan información sobre la actividad espacial verdadera y generan eventos de fondo que debe corregirse para obtener imágenes más nítidas. Este es el caso de aquellos eventos que a causa de la resolución temporal de los detectores, se pueden detectar dos fotones que no están relacionados entre sí. Este tipo de fenómenos se pueden observar gráficamente en la Figura 1.5 en forma esquemática [4].

![Figura 1.5: Esquema de un evento accidental o aleatorio. Imagen obtenida de: Simon R. Cherry y Magnus Dahlbom, 2004.](image)

1.2.3.2. Coincidencias por scattering

Este tipo de eventos lleva a una verdadera detección de coincidencias, pero que no genera una LOR correcta. Este efecto se debe a que alguno de los fotones hizo scattering antes de llegar al detector y cambio su dirección original. Este tipo de eventos se puede observar esquemáticamente en la Figura 1.6 [4].

![Figura 1.6: Esquema de una coincidencia por scattering. Imagen obtenida de: Simon R. Cherry y Magnus Dahlbom, 2004.](image)
1.2.3.3. Múltiples coincidencias

Este tipo de eventos se produce cuando, los fotones interactúan con tres o más detectores dentro de una ventana temporal. Esto hace que sea imposible obtener una LOR, ya que de esos tres eventos o más no se puede discriminar cuáles están conectados. Este tipo de eventos se pueden observar en la Figura 1.7 [4].

![Figura 1.7: Esquema de un evento de múltiples coincidencias. Imagen obtenida de: Simon R. Cherry y Magnus Dahlbom, 2004.](image)

1.2.4. Rango del positrón y no linealidad

Este tipo de efectos llevan a errores al determinar una LOR. Esto limita la resolución espacial manifestando borrosidad en la imagen reconstruida. El primero de estos efectos es el rango del positrón, este fenómeno se puede observar en la Figura 1.8.

![Figura 1.8: Esquema del efecto del rango de los positrones al producirse el decaimiento. Imagen obtenida de: Simon R. Cherry y Magnus Dahlbom, 2004.](image)

Este proceso existe debido a que se genera una distancia entre el decaimiento del radioisótopo y la aniquilación del positrón, debido a que este último viaja hasta
depositar toda su energía. Este efecto lleva a que se pierda la información de donde se encuentra exactamente en el origen del decaimiento.

El segundo efecto es la no linealidad de la aniquilación del positrón, esto se puede observar en la Figura 1.9.

![Esquema del efecto de no linealidad en la aniquilación del positrón](Figura 1.9: Esquema del efecto de no linealidad en la aniquilación del positrón. Imagen modificada de: Simon R. Cherry y Magnus Dahlbom, 2004.

El hecho de que tanto el electrón como el positrón no se encuentran en reposo en el momento de la aniquilación lleva a que el ángulo entre los dos fotones no sea exactamente de 180°. Esto se produce como resultado de la conservación del momento lineal y da como resultado una distribución angular gaussiana alrededor de los 180°. Como resultado final, se obtiene un pequeño error al trazar la LOR que une a los dos fotones, dando una borrosidad en la imagen final [3].

1.3. Reconstrucción de imágenes

Los métodos matemáticos en los cuales se basa la tomografía axial computarizada plantean el problema de reconstruir una función f si se conocen sus integrales sobre rectas arbitrarias. Si la ecuación normal de una recta es \(p = x \cos \varphi + y \sin \varphi \), la integral sobre la recta de \(-\infty\) a \(+\infty\) da como resultado una proyección F en una dimensión de la función f a un ángulo \(\varphi \).

Si se conoce esta F para todo ángulo \(\varphi \), entonces corresponde a la transformada de Radon bidimensional de la función f. Así, a partir del conocimiento de todas las proyecciones F(p,\(\varphi \)) es posible encontrar la inversión de la transformada de Radon o la antitransformada de Radon para obtener la solución al problema [8].

En el marco de este proyecto se resolvió la antitransformada de Radon programando una función de Octave. Este software no normaliza de forma automática los números CT con la atenuación lineal del agua. Por lo que, en este proyecto, se hizo uso de números CT* al realizar los gráficos para no re-normalizar las imágenes.
1.4. Método Monte Carlo

Teniendo en cuenta estos dos mecanismos de adquisición de imágenes médicas descriptos previamente, se concluye que los procesos fundamentales a emplear se contemplan en la física de fotones. Por lo que en este trabajo se utilizaron herramientas que modelan el transporte de los fotones en la materia.

Debido a que las geometrías que se pretenden modelar suelen ser muy complejas, una solución analítica no sería posible. Por este motivo se utilizó el método Monte Carlo para el modelado de la física de estos procedimientos.

En términos generales el método Monte Carlo nos permite obtener una solución numérica a un problema que puede ser descripto como una evolución temporal de elementos que interactúan con el medio. Busca representar a la naturaleza modelando su aleatoriedad microscópica hasta conseguir una convergencia que permita describir los comportamientos macroscópicos.

Este método transporta espacialmente cada partícula generada, así como también sus correspondientes interacciones, permitiendo obtener una distribución espacial detallada y registrar todos los eventos en alguna geometría de interés. Sin embargo, para poder analizar comportamientos y tendencias de un sistema, es necesaria una buena precisión estadística, requiriendo mucho poder de cómputo [5].

1.5. GATE 8.0

Para aplicar el método Monte Carlo se utilizó GATE 8.0. Esta es una aplicación de distribución abierta diseñada para tomografías que permite modelar condiciones complejas con una interfaz amigable para el usuario. Además, es una herramienta optimizada para CT y PET que permite el modelado de fenómenos dependientes del tiempo como pueden ser detectores en movimiento o el decaimiento de fuentes radioactivas. En este proyecto el equipo utilizado para realizar las simulaciones fue una computadora de escritorio que contaba con un procesador Intel core i7 de ocho núcleos con un clock de 2.6 MHz y 16 Gb de RAM que ejecutaba sin paralelizar los cálculos.

1.5.1. Bases de GATE

1.5.1.1. Arquitectura

GATE posee una arquitectura en forma de capas. El núcleo se encuentra programado en C++ y está basado en librerías de Geant4, desarrolladas por el CERN. La siguiente capa se llama capa de aplicación y está desarrollada en el mismo lenguaje, permitiendo alojar al núcleo de GATE. Por último, la capa superficial es la del usuario y utiliza un lenguaje de scripts, permitiendo una abstracción total del
lenguaje C++. En la Figura 1.10 se esquematiza el comportamiento de capas de GATE [6].

Las capas de desarrollo de GATE disponen de reglas claras que definen los límites y la aplicabilidad de cualquier cambio que se le quiera hacer a la capa de desarrollador [6].

1.5.1.2. Factor de reducción de varianza

GATE tiene la opción de configurar un factor de reducción de varianza como un número n, que permite aumentar la población de fotones a un menor costo computacional. Este parámetro de la simulación multiplica en n la cantidad de fotones producida en una interacción. Esto permite mejorar la estadística, pero puede aumentar el ruido en la señal si se usa de manera abusiva [7].

1.5.1.3. Sistemas

En GATE, se deben definir sistemas que representan niveles jerárquicos del modelo. El detector, por ejemplo, está compuesto por elementos ordenados en subsistemas jerárquicos que le permiten a Geant4 realizar una optimización del sistema [6].

1.5.1.4. Digitalización

La digitalización es la instancia donde se contabilizan las respuestas electrónicas existentes dentro del detector del escáner. Todo esto involucra la conversión de interacciones de partículas cargadas o fotones en señales, detección de posición y/o coincidencias.
1.5.1.4.1. Detectores sensitivos
Los detectores sensitivos son usados para almacenar la información sobre la interacción de las partículas dentro del volumen. GATE solo almacena las interacciones en aquellos detectores declarados. Dos tipos de detectores pueden ser definidos, uno es el cristal sensitivo (crystalSD) que es usado para generar las interacciones dentro de la porción de detectores que hay dentro del escáner. El otro es el fantoma sensitivo (phantomSD) que es usado para detectar y contar los eventos de scattering que ocurren dentro del campo de visión del escáner. En la Figura 1.11 se puede ver esquemáticamente la diferencia entre un detector sensitivo y otro que no lo es.

1.5.1.4.2. Cadena de detectores
La cadena de detectores pretende desarrollar un proceso real de detección por medio de la construcción de parámetros físicos de cada evento detectado. Estos son energía, posición y tiempo de interacción. De esta manera, el digitalizador se conforma de una cadena de procesos modulares que lleva las interacciones en el detector a pulsos. Los elementos claves para esta cadena son:

- **Almacenamiento de interacciones**
 Una partícula que entra al detector puede tener sucesivas interacciones. Estas se suman por el almacenador de interacciones con el fin de conformar un pulso. La posición de este se calcula por el centroide de peso energético de las interacciones, mientras que el tiempo del pulso es calculado desde la primera interacción.
Lector de pulso

Este módulo se encarga de agrupar pulsos de un cierto grupo de detectores sensitivos especificado. Esto permite posicionar el pulso en un solo detector según donde haya sido depositada la mayor cantidad de energía. Esto se puede ver esquemáticamente en la figura 1.12.

![Esquema del sistema modular de digitalización. Imagen modificada de: S. Jan, G. Satin, D. Strul, S. Staenlens, K.Assié, 2004.](image)

Módulos de usuario

Los módulos restantes de la cadena de digitalización transforman los pulsos en datos observables del escáner. Estos módulos son:

- Resolución energética
- Ventana Energética
- Resolución espacial
- Resolución temporal
- Tiempo muerto
- Detección de coincidencias
Capítulo 2
Materiales y Métodos

2.1. Benchmark de GATE

Para garantizar un correcto modelado del tomógrafo computarizado se corrió un ejemplo que se encuentra en el manual de usuario de GATE, con el fin de verificar la correcta instalación de la aplicación y el funcionamiento del algoritmo de reconstrucción de imágenes.

Este ejemplo define un tomógrafo compuesto por un arreglo de 100x100 cristales de silicio. Cada cristal tiene una superficie de 0.5x0.5 \(\text{mm}^2 \) y una profundidad de 1 mm.

El tubo de rayos X es modelado como una fuente de fotones, evitando la simulación de los electrones. Con esto se logra reducir drásticamente el tiempo de simulación, sin afectar el resultado de la tomografía. Esta fuente cuenta con una geometría plana de dimensiones 0.025x0.025 \(\text{mm}^2 \), con una simulación de 350000 fotones por segundo desde la misma, agrupada como el espectro de la Figura 2.1, cubriendo el rango de 10 a 40 keV. Además, tiene una emisión angular tipo cónica que cubre toda la extensión del arreglo de cristales y el fantoma.

Cabe aclarar que el término correcto es historias de fuente por segundo y no fotones por segundo al realizar simulaciones Monte Carlo. De todas formas se continuó utilizando fotones por segundo por comodidad y por ser esta la unidad que se utiliza en los scripts de GATE.

Tanto el arreglo de cristales como la fuente de fotones se encuentra a 15 cm del centro del gantry, encontrándose separados 30 cm el uno del otro.
El fantoma que se utilizó es un cilindro de agua de 8 mm de radio y 20 mm de largo. En el interior de este fantoma se tiene, de forma centrada, cuatro esferas. Una de PVC en la posición (4.67 mm, 2.75 mm), otra de médula ósea en la posición (-4.67 mm, 2.75 mm), otra de vidrio en la posición (-4.67 mm, -2.75 mm) y la última es de aluminio y se encuentra en la posición (4.67 mm, -2.75 mm). Esta geometría se puede observar en la Figura 2.2.

En la base de datos de GATE el PVC tiene una densidad de 1.65 g/cm³, la médula ósea de 1.42 g/cm³, el vidrio de 1.19 g/cm³ y el aluminio de 2.77 g/cm³.
El fantoma se lo hace rotar a una velocidad angular de 1 grado/seg alrededor del eje z para modelar el giro que tendría el tubo de rayos X y el arreglo de cristales. Por último, para el modelado del sistema de adquisición se hace almacenar las interacciones que ve cada cristal una vez por segundo, por 360 segundo con el fin de cubrir los 360 grados.

2.2. Modelado del CT

2.2.1. Obtención de imágenes

Todos los resultados de GATE fueron analizados con Octave. Cada proyección almacenada por el sistema de adquisición se guarda en un archivo binario. Se escribió un algoritmo en Octave que permite leer todos los archivos y transformarlos a una matriz que tiene por elementos la cantidad de interacciones almacenadas por cada cristal. Con esta matriz se construye un sinograma para poder obtener la información de un corte y aplicar la antitransformada de Radon. Este proceso permite tener una imagen de cada uno de los cortes que componen al fantoma.

2.2.2. Modelado de tubo de rayos X y arreglo de cristales

2.2.2.1. Tubo de rayos X

El tubo de rayos X se modeló con la misma metodología y geometría que se utilizó en el ejemplo explicado anteriormente, pero utilizando un espectro más realista. Este fue simulado por medio de la herramienta *simulation of x-ray spectra* de SIEMENS con un parámetro de voltaje de 120 kVp, un ripple de 0.1 y un filtro de aluminio de 0.2 mm de espesor, para endurecer el espectro. El resultado de este espectro se observa en la Figura 2.3.

Este espectro se utilizó en todas las simulaciones ya que es el que mejor representa un tomógrafo SIEMENS.
CAPÍTULO 2. MATERIALES Y MÉTODOS

Figura 2.3: Espectro de rayos X simulado por simulation of x-ray spectra.

Si suponemos un tubo de rayos X como el que se usó para este modelado con 120 kVp, una corriente de unos 100 mA y un blanco de tungsteno, se puede estimar la cantidad de fotones por segundo que emitiría dicha fuente. Dada una cantidad de 1.6×10^{18} electrones liberados por segundo y conteniendo la eficiencia del tubo, dada por la siguiente ecuación [9]:

$$\varepsilon = (kV_p) \times Z \times 10^{-6}$$

Donde kV_p es el voltaje del tubo y Z el número atómico del blanco.

De esto se obtiene una eficiencia de 0.008, dando así una cantidad de 1.4×10^{16} fotones por segundo. Modelar esta cantidad de fotones supone un gran tiempo de cálculo y por esta razón se procedió a modelar menos fotones y compensar con tiempos de adquisición largos y velocidades de rotación bajas.

2.2.2.2. Arreglo de cristales

Se modelaron dos arreglos de cristales, ambos con una configuración de 512x16. El primero se modeló con cristales de 1x1x10 mm3. El segundo se hizo con la misma profundidad pero con una superficie de 0.5x0.5 mm2. En ambos casos se uso NaI como material centelleante.
2.3. Modelado del Catphan 600

Para mejorar el modelo es necesario tener datos experimentales que lo avale y permitan comparar resultados. Por esto, se modeló en GATE un fantoma estándar que se encuentra actualmente en INTECNUS, con el fin de hacer diseños y modelos a los cuales se los pueda comparar con una tomografía real de los mismos, este fantoma es el Catphan 600. El objetivo de modelar este fantoma fue conseguir tomografías del modelo y compararlas con las reales. Además, este fantoma fue un buen punto de partida para saber el tipo de geometrías que permiten caracterizar al equipo y adaptarlas a las dificultades constructivas que se tendrían en nuestro caso. Este fantoma se puede observar en la Figura 2.4.

Figura 2.4: Esquema del Catphan 600. Imagen modificada de: The Phantom Laboratory, Catphan 500 and 600 Manual.

A su vez, el modelado del fantoma supone un problema ya que las dimensiones y posiciones de los elementos insertos del mismo no se encuentran especificadas en el manual. Para poder tener un modelado relativamente fiel del fantoma se obtuvieron las dimensiones de los volúmenes internos por relación de aspecto en la imágenes del manual.

A continuación se introducirá el Catphan 600 con una descripción del objetivo general del fantoma y cada uno de sus módulos.

2.3.1. Módulos del Catphan 600
2.3.2. Módulo CTP404

Este módulo permite evaluar el centrado del fantoma respecto del gantry del tomógrafo. Esto lo hace por medio de 4 cables que se encuentran a 23 grados
medidos de un eje que va desde la base del módulo hasta el fin del mismo. Si la imagen de estos cables se encuentra alineada, se puede concluir la alineación del fantoma. Además, estos cables permiten evaluar el ancho del corte midiendo el FWHM de cualquiera de los cables y multiplicándolo por 0.42, siendo esta la tangente de 23°. Este módulo se puede observar en la Figura 2.5 y 2.7.

Figura 2.5: Esquema del módulo CTP404 con todos los elementos internos. Imagen modificada de: *The Phantom Laboratory, Catphan 500 and 600 Manual.*
CAPÍTULO 2. MATERIALES Y MÉTODOS

Figura 2.6: Esquema simplificado del mismo módulo donde se detalla el diámetro del fantoma y las distancias de las esferas espaciadas 50 mm que determinan la simetría circular y la linealidad espacial. Imagen modificada de: The Phantom Laboratory, Catphan 500 and 600 Manual.

Figura 2.7: Esquema para determinar el ancho de corte con los cables a 23 grados. Imagen modificada de: The Phantom Laboratory, Catphan 500 and 600 Manual.
Por último, estos cables a 23 grados también permiten determinar el incremento entre cortes multiplicando por 0.42 al FWMH, que se obtiene como se observa en la Figura 2.7.

Las esferas de teflón espaciadas 50 mm, que se ven en la Figura 2.5 y 2.6, junto con la forma cilíndrica del fantoma sirven para probar la simetría circular de la imagen. Esto se detecta gracias a que en la imagen se vería una desproporción entre las medidas en X y en Y. Estas esferas también permiten determinar el tamaño de pixel y la linealidad espacial.

Por otro lado, las cinco esferas de acrílico que van disminuyendo su radio en función del ángulo, como se observan en la Figura 2.5, permiten evaluar la capacidad de generar una imagen de pequeños volúmenes de bajo contraste.

Por último, los ocho cilindros de la corona externa permiten medir la resolución de bajo contraste con rangos que van desde los 1000 HU hasta los -1000 HU.

2.3.3. Módulo CTP591

Este módulo tiene tres pares de líneas de esferas dispuestas de forma opuesta entre ellas. Además, hay dos esferas individuales y un cable de tungsteno que atraviesa el módulo como se ve en la Figura 2.8.

Figura 2.8: Esquema del módulo 591, con sus dimensiones y la disposición de los elementos internos. Imagen modificada de: *The Phantom Laboratory, Catphan 500 and 600 Manual*.

El cable de tungsteno y las esferas individuales pueden ser usadas para calcular la función de transferencia de modulación. Por último, las líneas de esferas
permiten calcular el ancho del corte.

2.3.4. Módulo CTP528

Este módulo está compuesto por 21 arreglos cuadrados de alto contraste y dos esferas de tungsteno separadas del centro del módulo que funcionan como fuentes impulso dentro del material uniforme, como se observa en la Figura 2.9. Con estas esferas se puede estimar la respuesta a la función de fuente puntual que tiene el sistema del CT. Con los 21 arreglos cuadrados se puede determinar la resolución espacial de alto contraste que tiene el equipo.

2.3.5. Módulo CTP515

Este módulo cuenta con cilindros de distintas densidades y tamaños, como se observa en la Figura 2.10. los cilindros que se encuentran más cerca del centro del fantoma son de menor largo que aquellos que están cerca de la superficie del fantoma.
Con esto se puede determinar la resolución de bajo contraste y cómo esta se ve afectada por los cambios de tamaño tanto de diámetro como de espesor.

Figura 2.10: Esquema del módulo 515, con su corona externa con cilindros de distinto diámetro y densidad, y su corona interna con cilindros de una misma densidad, pero con distinto espesor y diámetros. Imagen modificada de: The Phantom Laboratory, Catphan 500 and 600 Manual.

2.3.6. Módulo CTP486

Este módulo no posee ningún elemento dentro de él. Se compone de un material homogéneo en toda su geometría.

Se utiliza principalmente para determinar la uniformidad espacial de la imagen, el número CT medio de la sección y el valor del ruido.

2.3.7. Tomografía real del Catphan 600

Se presenta una tomografía real de los módulos CTP404, CTP515, CTP486 y CTP528 en la Figura 2.11.
2.4. Diseño de un fantoma para CT

Una de las grandes dificultades de modelar el Catphan radica en su tamaño, requiriendo una población fotónica muy grande. Dado que se contaba una capacidad de cómputo escasa para poder modelar el Catphan o cualquier fantoma con esas dimensiones. Por lo tanto se procedió a diseñar un fantoma reducido en tamaño, garantizando resultados coherentes y reduciendo los tiempos de simulación para ser adaptables a la capacidad de cálculo con la que se contaba y con los tiempos de este Proyecto Integrador. Este diseño plantea la posibilidad de cumplir con las mismas funciones que tiene el Catphan 600. Este diseño se realizó de manera modular como esta conformado el Catphan 600.

Al diseñar una fantoma de menor tamaño que el Catphan, se presenta la posibilidad de realizar un análisis paramétrico de algunas variables que ofrece GATE y como estas repercuten en la imagen reconstruida.

Cabe destacar, que el uso de un cluster de CPUs podría haber sido provechoso para modelar poblaciones fotónicas más grandes para obtener mejores resultados en el modelado en un menor tiempo de cálculo.
CAPÍTULO 2. MATERIALES Y MÉTODOS

2.5. Modelado del Fantoma NEMA

Para el modelado del tomógrafo por emisión de positrones se utilizó como punto de partida el equipo PET que se encuentra en la FUESMEN, Mendoza.

El modelado del arreglo de cristales se hizo utilizando como referencia el PET Discovery ST. Los datos de este equipo fueron obtenidos en FUESMEN, donde se obtuvo información específica como están constituidos los bloques de cristales y las dimensiones del gantry [11].

Con estos datos se modeló un anillo de 881 mm de diámetro, con 70 bloques de detección a lo largo de la circunferencia. Cada bloque de detección tiene un arreglo cuadrado de 6x6 de cristales de LSO conectados a un fotomultiplicador común. Cada cristal tiene una superficie de 6.3x6.3 mm2 y un espesor de 30 mm, haciendo que cada bloque tenga una dimensión final de 38x38 mm2. El equipo real tiene cuatro de estos bloques dispuestos en la dirección axial, pero se modeló uno solo con el fin simplificar el algoritmo de reconstrucción de imagen [11].

El sistema de digitalización de la señal está compuesto por un límite mínimo de energía establecido en 350 keV y una ventana temporal de 10 ns entre la detección de coincidencias.

Por otro lado, el modelado del fantoma se hizo tomando como referencia los estándares NEMA para la caracterización de imágenes.

2.5.1. Reconstrucción de imagen

La salida que se obtiene de una simulación de PET en GATE, es una serie de datos sobre las interacciones que tienen los fotones durante el tiempo de adquisición configurado.

Para la construcción del sinograma se utilizó los datos de aquellos fotones que fueron detectados como coincidencias. De estos datos, se buscó el vector que da la coordenada de interacción del primer fotón y del segundo fotón detectado, correspondientes a la coincidencia. De la diferencia de estos dos vectores coordenada se obtuvo el ángulo de la línea de respuesta que conecta ambos detectores. Estos ángulos conforman el sinograma de la imagen. Cada ángulo tiene una incerteza que depende del tamaño del bloque de detección como cota máxima. Ésta resulta de 5,14°, resultado de dividir los 360 grados en los 70 bloques de detección. Por último, una vez asignado el ángulo que forma la línea de respuesta, queda asignar el cristal que detecta el primer fotón de la coincidencia. Para esto se obtuvo la distancia normal entre la línea de respuesta y el eje X, obteniendo por resultado una proyección para cada ángulo. Como límite espacial para la asignación del cristal de detección se utilizó el FOV del equipo PET que tienen en FUESMEN, siendo este de 70 cm [12].

Para poder asignarle un número de filas al sinograma que discretizó el FOV del PET con una longitud constante en cada intervalo. De esta manera se puede saber
cuantas filas tiene el sinograma y cual es la longitud acumulada de cada una. Con esta información, la distancia normal a la línea de respuesta y el ángulo de esta respecto al eje X, se asigna el índice de fila y columna y se finaliza la construcción del sinograma. Esto se esquematiza en la Figura 2.12

Figura 2.12: Esquema del proceso de reconstrucción de imagen. Imagen modificada de: Timothy G. Turkington, *PET Imaging Basics*

Este proceso se automatizó para todas las coincidencias por medio de un algoritmo realizado en Octave para obtener el sinograma completo y la imagen a partir de la antitransformada de Radon.

2.5.2. **Resolución espacial**

Para determinar la resolución espacial del equipo PET hecho en GATE se modeló la distribución de fuentes que recomienda el estándar NEMA como se muestra la Figura 2.13.

Cada una de las fuentes está contenida en una esfera de vidrio de 1 mm de diámetro interno y 2 mm de diámetro externo y están dispuestas en seis esferas en las posiciones

\[(0,1) \text{ cm}, (0,10) \text{ cm}, (10,0) \text{ cm}, (0,1,1/4 \text{ FOV}) \text{ cm}, (0,10,1/4 \text{ FOV}) \text{ cm}, (10,0,1/4 \text{ FOV}) \text{ cm} \]

Se recomienda utilizar una fuente de positrones de \(^{18}\text{F}\).

Debido a que se está utilizando un solo bloque axial las esferas de las posiciones \((0,1,1/4 \text{ FOV}) \text{ cm}, (0,10,1/4 \text{ FOV}) \text{ cm}, (10,0,1/4 \text{ FOV}) \text{ cm}\) no se modelaron y solo se utilizó las centradas.

En la ejecución se consideró una cantidad de fotones equivalentes a aquellos emitidos en 10 segundos con una actividad de 10000 Bq.

Con el resultado de esta simulación se calibró la conversión pixel a milímetro, identificando el pixel donde ocurre el pico máximo de cada esfera y convirtiéndolo a milímetro sabiendo su posición modelada. Esto se hizo para las 3 esferas y se tomó el promedio de los resultados.

2.5.3. Fantoma NEMA para determinar la calidad de imagen PET y corrección por scattering

Para determinar la calidad de imagen existe un fantoma diseñado por NEMA que se puede observar en la Figura 2.14.

A una distancia de 68 mm de la tapa del fantoma se ubican esferas distribuidas alrededor del centro del mismo. Tanto las esferas como el fantoma son huecos. La geometría en la que están dispuestas las esferas se detallan en la Figura 2.15.
En la imagen se puede observar 6 esferas huecas. El fantoma también posee una agujero cilíndrico central que cruza todo el fantoma, y tiene un diámetro de 50 mm y se encuentra abierto al aire.

Para realizar este estudio se llena la cavidad grande del fantoma con una actividad específica de 5.3 kBq/cc como fondo y una actividad específica de cuatro a ocho veces mayor para las esferas calientes. El isótopo utilizado es 18F. Las dos esferas más grandes son llenadas con agua como lesiones frías y las restantes se llenan con el radioisótopo como lesión caliente. El tiempo recomendado en una tomografía real es de 60 minutos para tomar 100 cm de imagen axial.

Una vez conseguida la imagen NEMA recomienda obtener el porcentaje de contraste para cada esfera caliente con la siguiente ecuación:

$$Q_{H,j} = \frac{C_{H,j}}{a_H} - \frac{C_{B,j}}{a_B} - 100$$

Donde $C_{H,j}$ es la media de cuentas en la esfera caliente j, $C_{B,j}$ es la media de cuentas de fondo tomadas de doce lugares distintos con el diámetro de la esfera j, a_H es la concentración de actividad de las esferas calientes y a_B es la concentración de actividad del fondo.

Para el caso de las esferas frías se toma el porcentaje de contraste como:
\[Q_{C,j} = (1 - \frac{C_{C,j}}{C_{B,j}})100 \]

Donde \(C_{C,j} \) es la media de cuentas en la esfera fría \(j \).

El error en los porcentajes de contraste se calcula en cada caso como la desviación estándar del fondo sobre la media del fondo, para los 60 valores que se obtuvieron del mismo.

Por último, se recomienda calcular la corrección por scattering con la siguiente ecuación:

\[\Delta C_{\text{lung},j} = \frac{C_{\text{lung},j}}{C_{B,j}}100 \]

Donde \(C_{\text{lung},j} \) es el valor medio de cuentas en el espacio del agujero cilíndrico central.

2.6. Diseño de un fantoma para PET

Por la misma razón por la que no se logró obtener una simulación de buena convergencia para el Catphan 600, no es posible simular el fantoma de NEMA para determinar la calidad de imagen. Por lo tanto se procedió a diseñar un fantoma reducido en tamaño y en cantidad de cavidades internas, garantizando resultados coherentes y reduciendo los tiempos de simulación para ser adaptables a la capacidad de cálculo con la que se contaba y con los tiempos de este Proyecto Integrador.

Los parámetros de contraste y corrección de scattering fueron calculados para este fantoma y comparados con la tomografía real.
Capítulo 3

Resultados

3.1. Benchmark de GATE

En la imagen obtenida del centro del fantoma (Figura 3.1) se observan las cuatro esferas y dada la relación de densidades.

Figura 3.1: Tomografía simulada con los parámetros del ejemplo que se encuentra en la página de GATE.

Habiendo obtenido una imagen nítida del fantoma y contemplando los test internos que GATE realiza durante la instalación, se concluye que la instalación se realizó de forma satisfactoria.
3.2. Modelado del CT

3.3. Interfaz de GATE para CT

GATE provee un interfaz gráfica que resulta de gran utilidad, ya que nos da visualización de los volúmenes modelados y de las fuentes que hayamos colocado. En la Figura 3.2 se encuentra la imagen de la interfaz del modelo ejemplo que tiene el manual de usuario.

Figura 3.2: Imagen de la interfaz de GATE sobre el modelado del ejemplo de CT.

3.3.1. Reescalado de las imágenes

La reconstrucción de imagen que otorga Ocatave está en píxeles, por lo que se tuvo que reescalar para todos los casos la imagen para que tenga dimensiones en milímetros. Este proceso se realizó trazando una recta por el centro del fantoma y graficando los números CT que entrega la reconstrucción de la imagen en función de los píxeles. Contabilizando la cantidad de píxeles entre los picos extremos se definió el tamaño de cada pixel. Este proceso se ve a continuación, en la Figura 3.3.
CAPÍTULO 3. RESULTADOS

Se observa un salto en la intensidad de la señal, representado por el interior y exterior del fantoma.

Con esto se tuvo para el caso de dimensiones de 1x1 mm\(^2\) de cristal el reescalado dio que el tamaño de pixel para el caso del Catphan 600 fue de 0.44 mm y para el caso del fantoma diseñado que posee un diámetro de 60 mm el tamaño de pixel fue de 0.51 mm. Para el caso del cristal de 0.5x0.5 mm\(^2\), que se utilizó solamente para el fantoma de 60 mm de diámetro, el tamaño de pixel fue de 0.25 mm.

En todos los casos se graficó con números CT*, ya que el algoritmo de Octave no normaliza correctamente con respecto a la atenuación lineal del agua.

3.3.2. Análisis de velocidad de giro y factor de reducción de varianza

Para este caso se modeló un arreglo de cristales de silicio de 512x16 donde cada cristal tiene una superficie de 1x1 mm\(^2\) y una profundidad de 10 mm.

El fantoma que se utilizó es un cilindro de agua con 30 mm de radio y 40 mm de largo. Además tiene de forma centrada cuatro esferas de 5 mm de radio, una de PVC en la posición (10 mm, 10 mm), otra de vidrio en la posición (-10 mm, 10 mm), otra de médula ósea en la posición (-10 mm, -10 mm) y la última es de aluminio y se encuentra en la posición (10 mm, -10 mm). Esta geometría se puede observar en la Figura 3.4. Las densidades de los materiales son las mismas que se especificaron anteriormente.
Se hicieron cuatro simulaciones de este modelo, con el mismo fantoma. Todas tuvieron fuentes de 10^6 fotones por segundo, el mismo arreglo de cristales y configuración de la fuente. Para el caso de la primera simulación (Figura 3.5a) se afectó con factor de reducción de varianza de 30.

La segunda ejecución (Figura 3.5b) se realizó llevando el factor de reducción de varianza a 150.

En la tercera simulación (Figura 3.5c) se mantuvo el factor de reducción de varianza en 30 y se modificó la velocidad de rotación del fantoma al doble, haciendo que este gire a 2 grados/seg. Con esto se tiene, a una proyección por segundo, 180 proyecciones para generar un corte de una vuelta completa.

Por último, en el caso de la cuarta simulación (Figura 3.5d) se duplicó la cantidad de ángulos haciendo que el fantoma rote a la mitad de velocidad que se tenía en la primera simulación. Con esto se logró tener 720 proyecciones para un mismo corte.
Figura 3.5: En la Figura 3.5a se representó la imagen CT del centro del fantoma de la Figura 3.4 con 30 mm de diámetro y la fuente de \(10^6\) fotones por segundo, en la Figura 3.5b se representó la imagen CT del centro del mismo fantoma con un factor de reducción de varianza de 150, en la Figura 3.5c se representó la imagen CT del mismo fantoma con el doble de velocidad de rotación y la mitad de proyecciones por corte y en la Figura 3.5d se representó la imagen CT del mismo fantoma con la mitad de velocidad de rotación y el doble de proyecciones por corte. Ninguna de las imágenes se encuentran normalizadas.

La imagen reconstruida de la Figura 3.5a presenta menor rango de intensidades que la imagen de la Figura 3.5b haciendo que se obtenga mejor resolución de bajo contraste en una escala de colores sin normalizar. También se puede observar a simple vista que la imagen de la Figura 3.5c tiene menor resolución que la Figura 3.5d, siendo esta última la que mejor calidad de imagen tiene entre las 4. Esto se
debido a que al tener más ángulos se tiene más información sobre la geometría del fantoma y permite una mejor reconstrucción.

3.3.3. Modelado del Catphan 600

3.3.3.1. Módulo CTP404

Se modeló el módulo CTP404 y se realizó una tomografía de este con el mismo arreglo de cristales y fuente que se utilizó para el fantoma de la Figura 3.5a con una fuente de 10^6 fotones por segundo y a una velocidad de rotación de 1 grado/seg tomando una proyección por segundo durante 360 segundos. La fuente de rayos X se modeló de la misma manera que se hizo con las tomografías anteriores, como un haz cónico que tiene en abertura un ángulo de 35 grados con respecto de la normal a la superficie de la fuente para abarcar la totalidad de la geometría. Los materiales utilizados para modelar este módulo fueron los que se especificaban en el manual del Catphan 600 para el caso de los volúmenes internos y se utilizó agua como material del cilindro que contiene los insertos. Los resultados de la ejecución de este modelado se pueden observar en la Figura 3.6.

![Imagen 1](image1.png)

Figura 3.6: En la Figura 3.6a se graficó el sinograma del módulo CTP404 del Catphan 600 y en la Figura 3.6b la imagen reconstruida. El modelado se realizó con una fuente de 10^6 fotones por segundo y una rotación de 1 grado/seg durante 360 segundos a un ritmo de una proyección por segundo.

Se observa en la Figura 3.6a que no se obtiene una cantidad apreciable de cuentas en los detectores y por ende, es razonable no haber podido observar los insertos en la reconstrucción de la imagen que se observa en la Figura 3.6b. Esto se debió a que la fuente utilizada de 10^6 fotones por segundo no presenta la intensidad...
suficiente para que los fotones puedan atravesar la geometría, ser detectados y generar un sinograma que permita reconstruir una imagen. De hecho se puede hacer un cálculo estimativo para poder justificar esta conclusión. Teniendo un coeficiente de atenuación lineal en el agua aproximadamente de 0.18 cm^{-1} para una energía de 80 keV, sabiendo que el grosor del fantoma es de 15 cm y que la eficiencia geométrica del arreglo de cristales es cercana al 4% debido a la configuración del modelado, se obtiene, utilizando la ley exponencial de disminución de intensidad, que solo el 0.2% de los fotones cruzan el fantoma y llegan a los cristales. Si además tenemos en cuenta que el arreglo de cristales es de 512X16, podemos decir por medio de este cálculo que llegan menos de 0.5 fotones por detector por proyección.

Los tubos de rayos X que se utilizan en el equipo real de tomografías generan una cantidad de fotones ordenes de magnitud mayor que lo utilizado para este modelo, como se mostró en el capítulo anterior.

3.3.3.2. Módulo CTP528

Modelar la cantidad de fotones que producen los equipos reales de rayos X requeriría de mucho tiempo de cálculo. Por lo cual se modeló el módulo CTP528 y se realizó una tomografía de este con una fuente 10^8 fotones por segundo. Esto se realizó con el fin de comprobar si el aumento de la cantidad fotones permite generar una imagen de mejor calidad. Por otro lado, se eligió el módulo CTP528 debido a que los materiales que se utilizan en sus geometrías internas tienen mayor atenuación lineal, lo cual genera una respuesta de mayor contraste. La configuración utilizada fue la misma que se usó para el módulo CTP404. Además, se continuó utilizando agua como material del cilindro que contiene los insertos. El resultado de esta ejecución se puede observar en la Figura 3.7.
Figura 3.7: En la Figura 3.7a se graficó el sinograma del módulo CTP528 del Catphan 600 y en la Figura 3.7b la imagen reconstruida. La simulación se realizó con una fuente de 10^8 fotones por segundo y una rotación de 1 grado/seg durante 360 segundo a un ritmo de una proyección por segundo.

El sinograma de la Figura 3.7a presenta una cantidad de cuentas detectadas por los cristales más apreciable que en el caso anterior. De hecho, se puede observar la presencia de los volúmenes internos de este módulo. La reconstrucción de la imagen que se observa en la Figura 3.7b representa estos insertos de manera muy tenue con respecto al fondo de agua y además no permite distinguir las distintas geometrías.

Teniendo en cuenta que el tiempo de simulación Monte Carlo resultó mayor a 300 hs de cpu y que el método de reconstrucción de imágenes empleado no permite generar una respuesta nítida de geometrías complejas, se descarta el poder modelar el Catphan 600 con la capacidad de cálculo que se tuvo en este proyecto. Sin embargo, como se anticipó en la explicación del modelado, este fantoma se utilizó como base teórica para comenzar una etapa de diseño de una fantoma más simple que pueda ser modelado y construido.
3.4. Diseño del fantoma

3.4.1. Módulo para Determinar la Resolución de Alto Contraste

3.4.1.1. Primer diseño del módulo

Se diseñó un módulo para determinar la resolución de alto contraste usando como ejemplo el que tiene el Catphan 600 en su módulo CTP528. El plano de este diseño se puede observar en la Figura 3.8 con sus respectivas medidas. Este corte del fantoma corresponde al centro axial del módulo. El cuerpo principal está hecho de agua.

Este módulo posee un largo de 40 mm.

Si bien el fantoma resulta más pequeño, el objetivo es tener buenos resultados en GATE. Luego el sistema puede ser escalable utilizando un factor para cada variable y así construir un fantoma de tamaño similar al Catphan 600.

Las dimensiones de cada volumen interno se pueden observar en la Tabla 3.1. Estos volúmenes son paralelepípedos y se especifican las medidas de la base, el alto y el espesor en milímetros. El material utilizado para los mismos fue plomo que presenta una densidad de 11.4 gr/cm3.

Figura 3.8: Plano del diseño del módulo para determinar la resolución de alto contraste. Las medidas están en milímetros y grados.
CAPÍTULO 3. RESULTADOS

Tabla 3.1: Medidas de los insertos del módulo para determinar la resolución de alto contraste

<table>
<thead>
<tr>
<th>Número de volumen</th>
<th>Dimensiones Base (mm) X Alto (mm) X Espesor (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00 X 6 X 2.5</td>
</tr>
<tr>
<td>2</td>
<td>1.67 X 6 X 2.5</td>
</tr>
<tr>
<td>3</td>
<td>1.00 X 6 X 2.5</td>
</tr>
<tr>
<td>4</td>
<td>0.71 X 6 X 2.5</td>
</tr>
<tr>
<td>5</td>
<td>0.56 X 6 X 2.5</td>
</tr>
<tr>
<td>6</td>
<td>0.45 X 6 X 2.5</td>
</tr>
<tr>
<td>7</td>
<td>0.38 X 6 X 2.5</td>
</tr>
<tr>
<td>8</td>
<td>0.33 X 6 X 2.5</td>
</tr>
<tr>
<td>9</td>
<td>0.29 X 6 X 2.5</td>
</tr>
<tr>
<td>10</td>
<td>0.27 X 6 X 2.5</td>
</tr>
<tr>
<td>11</td>
<td>0.24 X 6 X 2.5</td>
</tr>
</tbody>
</table>

Para este módulo se realizó una tomografía sobre el centro del fantoma con cristales de superficie 1x1 \(mm^2\). El único cambio que se hizo sobre esta configuración fue una disminución del ángulo del haz cónico de la fuente, pasando de 35 grados a 15 grados. Este cambio se hizo para mejorar la eficiencia geométrica del sistema de detección y para disminuir la cantidad de fotones modelados que no van a interactuar con el fantoma antes de llegar al arreglo de detectores. En la Tabla 3.2 se colocaron los valores de fotones modelados en la fuente, la velocidad de giro y el número de proyecciones. Esta configuración es la que se usó en todas las simulaciones del fantoma diseñado.

Tabla 3.2: Valores configurados para la simulación

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuente</td>
<td>(2 \times 10^6) fotones/s</td>
</tr>
<tr>
<td>Velocidad de rotación</td>
<td>0.4 grados/s</td>
</tr>
<tr>
<td>Número de proyecciones</td>
<td>900</td>
</tr>
<tr>
<td>Tiempo entre proyecciones</td>
<td>1 segundo</td>
</tr>
</tbody>
</table>

Se eligió tener muchos ángulos en el sinograma para conseguir una reconstrucción de imagen más nítida, sin embargo, no se modificó la velocidad en la que se adquieren las proyecciones para poder seguir teniendo un nivel de conteo de fotones apreciable en los cristales. Cabe aclarar que si bien se busca tener la mayor cantidad de ángulos posibles, la velocidad de 0.4 grados/seg resultó una velocidad
límite impuesto al producirse un error en la simulación a velocidades menores. Esta configuración de tubo de rayos X y sistema de adquisición es la que se usó en todos los diseños realizados.

En el resultado de la tomografía (Figura 3.9) se observa el sinograma y la reconstrucción de la imagen.

![Sinograma](image1)

![Imagen reconstruida](image2)

Figura 3.9: En la Figura 3.9a se graficó el sinograma del módulo para determinar la resolución de alto contraste diseñado y en la Figura 3.9b la imagen reconstruida.

El sinograma logra captar todos los volúmenes, aun así la geometría sigue siendo compleja y no se pueden diferenciar a simple vista todos los insertos del fantoma en la reconstrucción de la imagen como se ve en la Figura 3.9b. Esto podría deberse a que la alta atenuación lineal que tiene los insertos del módulo.

3.4.1.2. Segundo diseño del módulo

Teniendo en cuenta que no fue posible diferenciar correctamente las geometrías internas, se procedió a modelar un diseño más sencillo, como el observado en la Figura 3.10.
CAPÍTULO 3. RESULTADOS

Figura 3.10: Plano del diseño del módulo para determinar la resolución de alto contraste simplificado. Las medidas están en milímetros y grados.

Se aumentó la distancia angular entre cada geometría para poder ver una separación en las mismas en la imagen reconstruida. Por último, se disminuyó el radio al cual están colocadas todas estas piezas.

Las medidas de las geometrías internas de este fantoma se encuentran detalladas en la Tabla 3.3. Estos elementos son paralelepípedos y se especifican las medidas de la base, el alto y el espesor.

Tabla 3.3: Medidas de los volúmenes internos del módulo para determinar la resolución de alto contraste simplificado

<table>
<thead>
<tr>
<th>Número de volumen</th>
<th>Dimensiones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base (mm) X Alto (mm) X Espesor (mm)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.00 X 6 X 2.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.67 X 6 X 2.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.00 X 6 X 2.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.56 X 6 X 2.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.33 X 6 X 2.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.24 X 6 X 2.5</td>
<td></td>
</tr>
</tbody>
</table>

Para este módulo, se realizó una tomografía donde se cambió el arreglo de cristales utilizado. Se pasó de cristales de 1x1 mm2 a 0.5x0.5 mm2, haciendo que por cada imagen tengamos más píxeles del fantoma, teniendo mejor resolución. No se realizó un modelado de este diseño con cristales de 1x1 mm2 porque se supuso que sucedería lo mismo que el caso anterior, ya que no se cambió las dimensiones ni el material de los insertos. Se utilizó la fuente de haz cónico con la misma cantidad.
de fotones. La velocidad de rotación del fantoma y los tiempos de adquisición fueron los mismos que se utilizaron en modelado anterior.

En el resultado de la tomografía (Figura 3.11) se muestra el sinograma y la imagen reconstruida.

Figura 3.11: En la Figura 3.11a se graficó el sinograma del modulo para determinar la resolución de alto contraste simplificado y en la Figura 3.11b la imagen reconstruida.

En la Figura 3.11b, la imagen reconstruida permite diferenciar un elemento de otro, pero tiene problemas al reconstruir los vértices de cada paralelepípedo. También se puede observar, como se esperaba, una imagen con mayor cantidad de píxeles.

Si bien en el modelado no se diferencian correctamente los distintos volúmenes, se espera de que al construirse este módulo y efectuar una tomografía real si se puedan ver, ya que estos equipos cuentan con métodos de reconstrucción más sofisticados y mayor adquisición de proyecciones. Además, el diseño está basado en el módulo CTP528 del Catphan 600, por lo que se espera que pueda cumplir la misma función.

3.4.1.3. Análisis con un material de menor densidad

Se realizó una última simulación de este módulo utilizando la misma configuración de arreglo de cristales y fuente de rayos X, pero se cambió el material de los insertos de plomo a aluminio. Este tiene una densidad de 2.7 gr/cm3 en GATE. El resultado de esto se puede observar en la Figura 3.12.
El sinograma de la Figura 3.12a representa los elementos internos del fantoma con menor contraste que el que se tuvo con plomo. En este caso podría obtenerse una mejor comparación entre ambos casos si se normalizaran a una misma escala de colores. Esto es debido a que el plomo tiene mayor atenuación que el aluminio, haciendo que el contaje en las proyecciones donde está el plomo sea muy cercano a cero y en aluminio no haya tanta diferencia con el número de cuentas que se tiene gracias a esos fotones que atravesaron agua y aluminio de los que atravesaron solo agua.

Además, en la imagen reconstruida de la Figura 3.12b se observan los paralelepípedos bien reconstruidos, si bien los de menor tamaño no se alcanzan a diferenciar del ruido de fondo. La imagen tiene mejor calidad que lo que se encontraba utilizando plomo. Por esto es preferible utilizar materiales de menor densidad para el modelado del CT.

3.4.2. Módulo para Determinar la Resolución de Bajo Contraste

Se diseñó un módulo para determinar la resolución de bajo contraste usando como ejemplo el que tiene el Catphan 600 en su módulo CTP515. El plano de este diseño se puede observar en la Figura 3.13 con sus respectivas medidas en milímetros y grados. Este corte del fantoma corresponde al centro axial del módulo.
Las circunferencias son cilindros de radios: 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2 mm, 1.5 mm y 1 mm. Dichos cilindros tienen el mismo espesor que el módulo, el cual es de 40 mm. Los cilindros marcados con 1 en la Figura 3.13 tienen una densidad de 0.357 gr/cm3, los marcados con el número 2 tienen una densidad de 0.595 gr/cm3, y por último los que tienen el número 3 tienen una densidad de 1.19 gr/cm3. Estas densidades se decidieron en base a las variaciones porcentuales que se observan en el plano del módulo CTP515 del Catphan. Para la construcción de este módulo, estos materiales podrían ser obtenidos por medio de una impresora 3D.

En la tomografía modelada que se realizó de este fantoma se utilizó cristales de 1X1 mm2 y la misma configuración de fuente y adquisición anterior. El resultado de esta tomografía modelada se puede observar en la Figura 3.14 donde se encuentra la imagen reconstruida.
Los cilindros marcados con el 1 y 2 en el plano se pueden ver, mientras los cilindros marcados con tres no logran ser diferenciados del entorno de agua. Esto se debe a que los tres grupos de cilindros son materiales de un mismo número atómico pero el grupo de cilindros 1 varía en un 40,5 % su densidad con respecto al agua y el grupo 3 varía solo en un 19 % haciendo que sea indistinguible del fondo de agua.

También se realizó una tomografía modelada de este mismo fantoma utilizando la configuración de cristales de 0,5x0,5 mm^2. El resultado de esta tomografía modelada se puede observar en la Figura 3.15 donde se encuentra la imagen reconstructida.
CAPÍTULO 3. RESULTADOS

En este caso, vuelve a ocurrir lo mismo que que sucedió en la Figura 3.14, pero con una imagen de mejor resolución gracias al cambio en la configuración de cristales.

Tanto para la tomografía de la Figura 3.14 como para la de la Figura 3.15 se saco la media y la desviación estándar de los cilindros de mayor diámetro y del fondo de agua en la imagen reconstruida. Estos resultados se encuentran detallados en la Tabla 3.4.

Tabla 3.4: Medias y desviaciones estándar de los cilindros y el fondo obtenidas a partir de los valores de unidades CT que otorga la reconstrucción de imagen de Octave. Se calcularon para la tomografía de la Figura 3.14 y la Figura 3.15.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Tomografía con cristal 1x1 mm2 (Media ± Desviación Estándar)</th>
<th>Tomografía con cristal 0.5x0.5 mm2 (Media ± Desviación Estándar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro 1</td>
<td>-1.49 ± 4.95</td>
<td>-0.33 ± 1.77</td>
</tr>
<tr>
<td>Cilindro 2</td>
<td>-3.50 ± 4.42</td>
<td>-0.49 ± 1.64</td>
</tr>
<tr>
<td>Cilindro 3</td>
<td>-7.57 ± 3.35</td>
<td>-0.81 ± 1.57</td>
</tr>
<tr>
<td>Fondo</td>
<td>-4.19 ± 3.00</td>
<td>-0.55 ± 1.53</td>
</tr>
</tbody>
</table>

Las desviaciones estándar son más grandes que el propio valor de media. Esto se debe a poca calidad de los datos, lo cual podría solucionarse aumentando la cantidad de fotones modelados.

3.4.3. Módulo para Determinar la Resolución de Bajo Contraste y resolución espacial

Se diseñó un módulo para determinar la resolución de bajo contraste y además la resolución espacial usando como ejemplo el que tiene el Catphan 600 en su módulo CTP404. El plano de este diseño se puede observar en la Figura 3.16 con sus respectivas medidas en milímetros y grados. Este corte del fantoma corresponde al centro axial del módulo.
Las esferas del fantoma están hechas de PVC con una densidad de 1.65 gr/cm3 y respetan un ángulo de 72° entre ellas.

En la tomografía modelada que se realizó de este fantoma se utilizó cristales de 1x1 mm2. El resultado de esta tomografía modelada se puede observar en la Figura 3.17 donde se encuentra la imagen reconstruida.

En esta imagen se pueden ver claramente las cinco esferas de PVC. La esfera de 2mm de diámetro puede visualizarse correctamente dado que se encuentra en el límite de detección del tomógrafo simulado.
También se realizó una tomografía modelada de este mismo fantoma con cristales de 0.5x0.5 mm2. El resultado de esta tomografía modelada se puede observar en la Figura 3.18 donde se encuentra la imagen reconstruida.

![Figura 3.18: En la Figura 3.17a se representó la imagen reconstruida del diseño del módulo para determinar la resolución de bajo contraste y resolución espacial con cristales de mitad de tamaño y en la Figura 3.17b un zoom sobre la esfera de 2 mm de diámetro.](image)

En este caso la esfera de 2mm de diámetro puede visualizarse con mayor fidelidad. Sin embargo al haber achicado el tamaño de pixel la imagen resulta más tenue, lo cual podría solucionarse aumentado la cantidad de fotones simulados de la fuente o el factor de reducción de varianza.

Este módulo permite determinar el tamaño de los elementos internos en la imagen reconstruida y comprarlo con los tamaños reales. Con este análisis se puede establecer los errores asociados a determinar las dimensiones para distintos tamaños de volúmenes de bajo contraste.

3.4.4. Módulo para Determinar la Simetría y Linealidad Espacial

3.4.4.1. Diseño y análisis del módulo

Se diseñó un módulo para determinar la simetría y linealidad espacial usando como ejemplo el que tiene el Catphan 600 en su módulo CTP404 con las cuatro esferas de teflón que se encuentran separadas 50 mm entre ellas. El plano de este diseño se puede observar en la Figura 3.19 con sus respectivas medidas en milímetros y grados. Este corte del fantoma corresponde al centro axial del módulo.
En las cuatro esferas se utilizó plomo como material con una densidad de 11.4 \(\text{gr/cm}^3 \).

En la tomografía modelada que se realizó de este módulo se utilizó cristales de 1\(\times \)1 \(\text{mm}^2 \). El resultado de esta tomografía modelada se puede observar en la Figura 3.20 donde se encuentra la imagen reconstruida.

Para la determinación de la linealidad espacial se trazó una recta por la diagonal de la imagen de tal forma de que cruze por la esfera que están en la posición (-20,20) \(\text{mm} \) y (20,-20) \(\text{mm} \). En la posición donde se encuentran ambas esferas se procedió a obtener los valores de diámetro como la respuesta espacial que generan estas para luego comprar estos valores con sus dimensiones reales. La dimensión
se obtiene sacando el ancho a la altura de la mitad del pico de mayor altura que compone la respuesta de la esfera. La recta que se trazó se puede observar en la Figura 3.21 donde se especifican las líneas que marcan las alturas a las que se toma el diámetro de las esferas. Los valores en el eje de las unidades CT* fueron cambiadas de signo por razones de comodidad para el análisis.

Debido a que los valores a un décimo del valor máximo caen a la altura del ruido de fondo no fueron tenidos en cuenta en este análisis ni en los posteriores.

![Figura 3.21: Gráfica de unidades CT* en función de la posición de la diagonal que cruza por las esferas ubicadas en la posición (-20,20) mm y (20,-20) mm. La gráfica tiene los valores con signo cambiado de los originales.](image)

Los resultados del análisis se muestran en la Tabla 3.5.

Tabla 3.5: Resultados de diámetros a mitad de altura y un décimo de altura para cada esfera utilizando para la tomografía con cristales de 1x1 mm².

<table>
<thead>
<tr>
<th>Posición (mm)</th>
<th>Diámetro a mitad de altura (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-20,20)</td>
<td>2.83</td>
</tr>
<tr>
<td>(20,-20)</td>
<td>3.22</td>
</tr>
</tbody>
</table>

Los valores a un décimo del valor máximo caen a la altura del ruido de fondo, por lo cual no fueron tenidos en cuenta en análisis posteriores.

También se procedió a realizar una tomografía de este módulo con los cristales de 0.5x0.5 mm². El resultado de esto se encuentra en la imagen reconstruida de la Figura 3.22.
En la Figura 3.22 los volúmenes esféricos se ven algo deformados, como sucedía en la imagen reconstruida del módulo de alto contraste. Esto puede deberse a que al achicar el tamaño del cristal, los cristales que ven los contornos de las esferas en las proyecciones reciben algo de información, pero aquellos que ven el centro de la esfera no ven fotones. Esto último hace que el proceso de reconstrucción de imagen no pueda recrear este volumen correctamente. Esto no sucedió al utilizar cristales de 1x1 mm2 porque al ser más grandes reciben información de las esferas como un todo sin poder diferenciar la información del contorno con la que viene del centro. Una forma de solucionar esto sería aumentar la cantidad de fotones modelados o elegir un material de menor densidad que la del plomo.

Para esta imagen reconstruida también se analizaron los tamaños de las esferas trazando una línea diagonal como se hizo anteriormente. Esto se puede observar en la Figura 3.23.
CAPÍTULO 3. RESULTADOS

Figura 3.23: Gráfica de unidades CT* en función de la posición de la diagonal que cruza por las esferas ubicadas en la posición (-20,20) mm y (20,-20) mm, para el caso de cristales de mitad de tamaño. La gráfica tiene el signo cambiado de los valores originales.

El resultado de este análisis se muestra en la Tabla 3.6. No se realizó el análisis a una altura de un décimo del máximo pico ya que resultó poco representativo de la dimensión original cuando se calculó para el caso anterior. El promedio de los dos valores fue de 3.065 mm de diámetro, apartándose del valor real en un 2.2%. Se puede observar que para ambos casos las dimensiones son correspondientes a la realidad modelada.

Tabla 3.6: Resultados de diámetros a mitad de altura y un décimo de altura para cada esfera utilizando para la tomografía con cristales de 1x1 mm2.

<table>
<thead>
<tr>
<th>Posición (mm)</th>
<th>Diámetro a mitad de altura (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-20,20)</td>
<td>2.99</td>
</tr>
<tr>
<td>(20,-20)</td>
<td>3.14</td>
</tr>
</tbody>
</table>

3.4.4.2. Análisis del comportamiento de las esferas a distinto diámetro y material

Para probar el comportamiento de las esferas de plomo se procedió a cambiar el diseño del fantoma haciendo que las esferas sean de 8 mm de diámetro para alejarnos de la mínima resolución espacial que tiene el sistema. Para esta simulación se utilizaron cristales de 0.5x0.5 mm2. El resultado de esta tomografía modelada se puede observar en la Figura 3.24 donde se encuentra la imagen reconstruida.
CAPÍTULO 3. RESULTADOS

Figura 3.24: Imagen reconstruida del módulo para determinar la simetría y resolución con cristales de un cuarto de tamaño.

La baja población de fotones que logra atravesar el centro las esferas indujo los artefactos visibles en la reconstrucción. De todas formas se procedió a realizar el mismo análisis que se realizó para la tomografía modelada de la Figura 3.19 y determinar los valores de diámetro a la mitad de altura del pico más alto que define la esfera para la respuesta espacial que generan las esferas. Esto se puede observar en la Figura 3.25.

Figura 3.25: Gráfica de unidades CT* en función de la posición de la diagonal que cruza por las esferas ubicadas en la posición (-20,20) mm y (20,-20) mm para la tomografía modelada con un cuarto de tamaño de cristal. La gráfica tiene el signo cambiado de los valores originales.

En el análisis se obtuvo que la esfera que se encuentra en la posición (-20,20) tiene un valor de diámetro a la mitad de altura del pico más alto de 7.73 mm. Por
otro lado la esfera ubicada en (20, -20) tiene un valor de diámetro a la mitad del pico más alto de 8.28. El promedio de ambos valores es de 8.005 mm que difiere en un 0.06% del valor real del diámetro de la esfera. Sin embargo cada caso particular difiere en una mayor proporción del diámetro real de las esferas.

Por último, para el módulo de simetría y linealidad espacial se cambio el material de los insertos de plomo a aluminio para ver como varía la imagen reconstruida. Se utilizó la misma geometría y la misma configuración de fuente de rayos X y cristales. El resultado de esto se puede observar en la Figura 3.26.

Figura 3.26: Imagen reconstruida del módulo para determinar la simetría y resolución con cristales de la mitad de tamaño y fantoma con insertos de aluminio.

Las geometrías se ven mejor reconstruidas que en el caso en que se usó plomo para modelar los elementos internos.

En la Figura 3.27 se puede ver la recta trazada en la diagonal de la imagen.
Figura 3.27: Gráfica de unidades CT* en función de la posición de la diagonal que cruza por las esferas ubicadas en la posición (-20,20) mm y (20,-20) mm para la tomografía modelada con la mitad de tamaño de cristal y el fantoma con insertos de aluminio. La gráfica tiene el signo cambiado de los valores originales.

No se puede identificar concretamente donde comienzan o terminan ambas esferas. Esto es porque no ve una diferencia apreciable en la cantidad de fotones que atraviesan el agua o el agua y el aluminio antes de llegar al cristal, haciendo que al reconstruir la imagen no haya una distinción notable entre los niveles. Esto podría solucionarse colocando un material más denso o aumentando la cantidad de fotones por segundo modelados de la fuente.

3.4.5. Módulo para Determinar Centrado y Ancho de Corte

Se diseñó un módulo para verificar que el fantoma se encuentre centrado respecto del gantry y para determinar el ancho del corte usando como ejemplo el que tiene el Catphan 600 en su módulo CTP404 con los cuatro alambres dispuestos a 23°. El plano de este diseño se puede observar en la Figura 3.28 con sus respectivas medidas en milímetros y grados. Este corte del fantoma corresponde al centro axial del mismo. El cuerpo principal del fantoma está hecho de agua.
Figura 3.28: Plano del diseño del módulo para verificar que el fantoma se encuentre centrado respecto del gantry del tomógrafo y para determinar el ancho del corte. Las medidas están en milímetros y grados.

De la misma manera como se mostró en la Figura 2.7 para el caso del módulo CTP404 del Catphan 600, el ancho de corte se toma como la FWHM del largo de cable que se mide en la imagen reconstruida multiplicado por un factor 0.42, sienta este la tangente de 23°. Por otro lado el centrado se determina si en la imagen se observa que los cables tiene simetría tanto en dirección Y como en X.

En la tomografía modelada que se realizó de este fantoma se utilizaron ambas configuraciones de cristales. La imagen reconstruida de ambas simulaciones se encuentra a continuación en la Figura 3.29.
CAPÍTULO 3. RESULTADOS

Figura 3.29: En la Figura 3.29a se representó la imagen reconstruida del diseño del módulo para verificar que el fantoma se encuentre centrado respecto del gantry del tomógrafo y para determinar el ancho del corte con cristales de $1\times1\ mm^2$ y en la Figura 3.29b es el mismo fantoma con una configuración de cristales de $0.5\times0.5\ mm^2$.

En ambas figura se observan los cuatro cables a 23°. El FWHM promedio que se midió para los cuatro cables de la Figura 3.29a fue de 2.349 mm y para la Figura 3.29b fue de 1.638 mm haciendo que el ancho de corte sea 0.985 mm y 0.687 mm respectivamente. Se puede observar que el ancho de corte para cada caso tiende a ser el tamaño de cristal de cada equipo.

3.4.6. Módulo para Determinar la Homogeneidad

Se diseñó un módulo para determinar el nivel de homogeneidad de la imagen obtenida usando como ejemplo el que tiene el Catphan 600 en su módulo CTP486.

La respectiva imagen reconstruida de este módulo es la que se observa en la Figura 3.30 habiendo usado ambas configuraciones de cristales
Figura 3.30: En la Figura 3.30a se representó la imagen reconstruida del diseño del módulo para determinar la homogeneidad con cristales de 1x1 mm^2 y en la Figura 3.30b es el mismo fantoma con una configuración de cristales de 0.5x0.5 mm^2.

Para analizar la homogeneidad de este fantoma se calculó la media y desviación estándar de los puntos internos al cilindro. Esto se hizo para las dos configuraciones de cristales que se muestran en la Figura 3.30 haciendo variar en cada caso la velocidad angular del fantoma. De esta manera se tiene por cada configuración una imagen que se generó con una velocidad angular de 0.4 grados/seg, otra de 1 grados/seg y otra de 2 grados/seg. Los resultados de estas simulaciones se detallan en la Tabla 3.7.

<table>
<thead>
<tr>
<th>Tamaño de cristales</th>
<th>Velocidad angular (grados/seg)</th>
<th>Media ± Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1 mm^2</td>
<td>0.4</td>
<td>-9.66 ± 3.37</td>
</tr>
<tr>
<td>1x1 mm^2</td>
<td>1.0</td>
<td>-9.85 ± 5.05</td>
</tr>
<tr>
<td>1x1 mm^2</td>
<td>2.0</td>
<td>-9.97 ± 6.70</td>
</tr>
<tr>
<td>0.5x0.5 mm^2</td>
<td>0.4</td>
<td>-0.60 ± 1.56</td>
</tr>
<tr>
<td>0.5x0.5 mm^2</td>
<td>1.0</td>
<td>-0.59 ± 2.45</td>
</tr>
<tr>
<td>0.5x0.5 mm^2</td>
<td>2.0</td>
<td>-0.61 ± 3.44</td>
</tr>
</tbody>
</table>

De la Tabla 3.7 se ve que hay una tendencia de bajar la desviación estándar a medida que se aumenta la cantidad de ángulos que tomamos de un corte. Además,
mientras menor sea el tamaño de cristal también tiende a disminuir la desviación estándar en el módulo de homogeneidad.

3.4.7. Módulo para Determinar la Respuesta Puntual

3.4.7.1. Diseño para determinar la mínima dimensión de inserto

Se diseñó un módulo para determinar la resolución de alto contraste usando como ejemplo el que tiene el Catphan 600 en su módulo CTP528 que tiene dos esferas de tungsteno de pequeño diámetro. El plano de este diseño se encuentra en la Figura 3.31 con sus respectivas medidas. Este corte del fantoma corresponde al centro axial del módulo.

![Figura 3.31: Plano del diseño del módulo para determinar la respuesta a la función pulso. Las medidas se encuentran en milímetros.](image)

Todas las esferas de este fantoma son de plomo con una densidad de 11.4 gr/cm3. El espesor del módulo es de 40 mm.

Este diseño se hizo para delimitar que dimensiones de esferas permiten generar una respuesta espacial visible en la reconstrucción de la imagen.

En la tomografía modelada que se realizó de este fantoma se utilizó cristales de 1x1 mm2. El resultado de esto se muestra en la Figura 3.32.
CAPÍTULO 3. RESULTADOS

Figura 3.32: Imagen reconstruida de la tomografía modelada del módulo que funciona para medir la respuesta puntual.

Para este caso se hizo en análisis de FWHM y FWTM de la esfera de 1 mm de diámetro que se observa señalizada en la Figura 3.32 trazando una recta en X=15 mm y a Y variable. Los resultados se pueden observar en la Figura 3.33

Figura 3.33: La Figura 3.33a es el análisis de la respuesta puntual al haber trazado una recta X=15 mm y a Y variable y la Figura 3.33b es un zoom del pico con los valores obtenidos en FWHM y FWTM. Las gráficas tienen el signo cambiado de los valores originales.

El valor obtenido a FWHM es de un diámetro de 1.42 mm y a FWTM es de 3.84 mm. Se ve que la esfera está cerca del valor de resolución espacial del equipo y por eso se ve más grande de lo que es en realidad.
3.4.7.2. Diseño final del módulo

Se procedió a usar un fantoma más simple con una sola esfera de plomo de 0.25 mm de radio como puede ver en el plano de la Figura 3.34. Esto se decidió ya que en el diseño anterior la esfera de 0.28 mm de diámetro no se llega a observar, por lo que se buscó algo intermedio a esa medida y la de 1 mm de diámetro.

Para el caso de este módulo, primero se realizó una tomografía con tamaño de cristales de 1x1 mm2. Para este caso se obtuvo la imagen reconstruida que se observa en la Figura 3.37.

Para esta imagen se procedió a realizar el mismo análisis efectuado anteriormente sobre el FWHM tanto en la dirección X y como en la dirección Y. Estos
resultados se observan en la Figura 3.36.

![Gráficas](image)

Figura 3.36: La Figura 3.38a es la recta en X=0 a Y variable y la Figura 3.38b es la recta a Y=15 a X variable. Las gráficas tienen el signo cambiado de los valores originales.

Para el caso de la Figura 3.36a se obtuvo que el valor del diámetro fue de 1.69 mm FWHM. Para el caso de la Figura 3.36b se obtuvo que el valor del diámetro fue de 1.9 mm para FWHM. De esta manera en promedio para el caso del FWHM se tiene que la esfera tiene un diámetro de 1.79 mm.

También se realizó una tomografía modelada utilizando la configuración con el tamaño de cristal de 0.5x0.5 mm2. Para este caso se obtuvo la imagen reconstruida que se observa en la Figura 3.37.
Figura 3.37: Imagen reconstruida de la tomografía modelada del módulo que funciona para medir la respuesta puntual con el diseño simplificado una configuración de cristales de 0.5x0.5 mm².

Para el caso de esta imagen se procedió a realizar el mismo análisis efectuado anteriormente sobre el FWHM tanto en la dirección X y como en la dirección Y. Estos resultados se observan en la Figura 3.38.

Figura 3.38: La Figura 3.38a es la recta en X=0 a Y variable y la Figura 3.38b es la recta a Y=15 a X variable. Las gráficas tienen el signo cambiado de los valores originales.

Para el caso de la Figura 3.38a se obtuvo que un valor del diámetro de 1.13 mm a FWHM. Para el caso de la Figura 3.38b se obtuvo que el valor del diámetro...
CAPÍTULO 3. RESULTADOS

a FWHM fue de 1.3 mm. De esta manera, el promedio para el caso del FWHM se tiene que la esfera tiene un diámetro de 1.21 mm.

Se ve que el valor del diámetro de la esfera se acerca a la dimensión correcta mientras menor sea el tamaño del cristal, haciendo mejor la resolución espacial del equipo de tomografía computarizada. El diámetro calculable a través de la reconstrucción es más exacto a medida que se reduce el tamaño de los cristales, observando los límites en la resolución espacial en el modelo de tomógrafo.

3.5. Modelado del PET

3.6. Interfaz de GATE para PET

En la Figura 3.39 se encuentra la imagen de la interfaz que se obtiene para el caso de PET. Se pueden apreciar el modelado de cada uno de los cristales del anillo y la fuente de positrones en líneas verdes que emergen del fantoma.

![Imagen de la interfaz de GATE sobre el modelado del PET.](image)

Figura 3.39: Imagen de la interfaz de GATE sobre el modelado del PET.

3.6.1. Resolución espacial

El resultado de esta simulación puede observar en la Figura 3.40 donde se encuentra el sinograma y la imagen reconstruida.
CAPÍTULO 3. RESULTADOS

Figura 3.40: En la Figura 3.40a se representó el sinograma de la de la ejecución del modelo de resolución espacial y en la Figura 3.40b la imagen reconstruida.

En la Figura 3.40 se pueden ver los 3 puntos correspondientes a la respuesta de la fuente puntual. Cabe aclarar que la discretización asigna el índice de la fila del sinograma, se ajustó de tal manera de obtener una imagen de 128 x 128 píxeles. Esta resolución corresponde a la que tiene la imagen PET del equipo de la FUESMEN.

Se puede determinar la resolución espacial de cada dirección como la FWHM en cada posición. La resolución espacial para la esfera colocada en la posición (0,1) cm en el perfil Y fue de 8.99 mm y para el perfil en la dirección X tuvo como resultado 10.46 mm. Para el caso de la esfera colocada en la posición (0,10) cm tuvo una resolución espacial en el perfil Y de 6.75 mm y para el perfil X de 8.99 mm. Por último, para la posición (10,0) la resolución espacial para el perfil en la dirección Y fue de 7.62 mm y para el X fue de 7.88 mm.

Con estos datos y procediendo bajo las recomendaciones NEMA, se puede calcular la resolución espacial transversal a un radio de 1 cm como el promedio de ambas resoluciones dando una resolución de 8.31 mm. De la misma manera se puede calcular la resolución espacial transversal radial a un radio de 10 cm. Esto se hace como el promedio de los datos obtenidos de las esferas ubicadas en (10,0) cm, para el perfil Y, y (0,10) cm, para el perfil X, resultando una resolución espacial de 7.32 mm. Y con el promedio de los datos restantes sin usar se obtiene la resolución espacial transversal en la dirección tangencial resultando de 8.31 mm.

Se puede ver en la Figura 3.41 dos gráficos de las respuestas a la fuente puntual. En la Figura 3.41a se observa la recta trazada a Y=0 y X variable y en la Figura 3.41b se encuentra la recta trazada a X=0 y a Y variable con sus respectivas líneas.
CAPÍTULO 3. RESULTADOS

trazadas a la mitad de pico.

Figura 3.41: En la Figura 3.41a se graficó la recta trazada a $Y=0$ y a X variable y en la Figura 3.41b se observa la recta trazada a $X=0$ y a Y variable.

Para todas las esferas la resolución espacial es siempre más grande que el tamaño de cristal que se encuentra dentro de cada bloque del anillo PET.

Con estos resultados podemos verificar que el proceso de modelado funciona correctamente para PET y además, la reconstrucción de imagen también tuvo un resultado satisfactorio.

3.6.2. Calidad de imagen

Se obtuvo una tomografía real gracias a la FUESMEN. La imagen reconstruida de un corte transversal de la misma se puede observar, a continuación, en la Figura 3.42. La misma utilizó una relación de concentraciones de actividad entre las esferas caliente y fondo de 4.
Figura 3.42: Tomografía real del fantoma NEMA para calidad de imagen en el equipo PET de FUESMEN.

En la Tabla 3.8 se encuentran los datos calculados de porcentaje de contraste, corrección por scattering y diámetro de cada esfera y cilindro de esta tomografía.

Tabla 3.8: Datos calculados de porcentaje de contraste, corrección por scattering y diámetro de cada esfera y cilindro de esta tomografía.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Valor</th>
<th>Diámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esfera d=10 mm</td>
<td>$Q_{H,j}=39\pm4$</td>
<td>12.34</td>
</tr>
<tr>
<td>Esfera d=13 mm</td>
<td>$Q_{H,j}=49\pm4$</td>
<td>18.51</td>
</tr>
<tr>
<td>Esfera d=17 mm</td>
<td>$Q_{H,j}=69\pm4$</td>
<td>21.37</td>
</tr>
<tr>
<td>Esfera d=22 mm</td>
<td>$Q_{H,j}=77\pm4$</td>
<td>28.27</td>
</tr>
<tr>
<td>Esfera d=28 mm</td>
<td>$Q_{C,j}=43\pm4$</td>
<td>34.91</td>
</tr>
<tr>
<td>Esfera d=37 mm</td>
<td>$Q_{C,j}=54\pm4$</td>
<td>37.53</td>
</tr>
<tr>
<td>Agujero central</td>
<td>$\Delta C_{lung,j}=44\pm1$</td>
<td>60.78</td>
</tr>
</tbody>
</table>

Se modeló el mismo fantoma en GATE, pero se realizó con un tiempo de ejecución de 15 segundos por razones de agotamiento del tiempo del presente Proyecto Integrador. El resultado del sinograma y la imagen reconstruida se encuentran en la Figura 3.43.
Figura 3.43: En la Figura 3.43a se graficó el sinograma de la tomografía modelada del fantasma para determinar la calidad de imagen recomendado por NEMA y en la Figura 3.43b la imagen reconstruida del correspondiente sinograma.

Solo 15 segundos de adquisición es muy poco para poder diferenciar el fondo, de las esferas calientes, o del medio circundante. Lo único que se alcanza a ver es la esfera caliente de mayor diámetro y el contorno del fantasma. Por esto, se realizó una simulación con 60 segundos de adquisición para ver si se pueden llegar a observar las otras esferas calientes, pero este aumento en el tiempo no tuvo un resultado muy diferente al mostrado en la Figura 3.43b.

3.7. Diseño de un Fantoma para PET

Dado los problemas que se tuvieron para obtener imágenes para el fantasma NEMA se diseñó uno más pequeño y con solo cuatro esferas. Este tiene un diámetro de 130 mm y un largo de 100 mm, posee dos esferas de 28 mm de diámetro una llena de aire y la otra llena de agua. Las otras dos esferas, una de 22 mm de diámetro con una actividad específica de 79.5 kBq/cc y la última, de 10 mm de diámetro con una actividad específica de 111.3 kBq/cc. Por último, el cuerpo del fantasma fue modelado con agua y una actividad específica de fondo de 15.9 kBq/cc. La adquisición se llevó a cabo con el mismo anillo PET durante un tiempo de 120 segundos. El plano de este fantasma se puede observar en la Figura 3.44 donde se especifican todas las medidas en milímetros y las actividades específicas asignadas a cada geometría.
Figura 3.44: Plano del fantoma para PET diseñado para ser comparado con lo obtenido del estudio NEMA.

El resultado de la simulación se puede ver en el sinograma y la imagen reconstruida de la Figura 3.45.

Figura 3.45: En la Figura 3.45a se graficó el sinograma de la tomografía modelada del fantoma para determinar la calidad de imagen diseñado en base a NEMA y en la Figura 3.45b la imagen reconstruida del correspondiente sinograma.

El análisis de datos que se hizo fue como el de la tomografía obtenida en

72
FUESMEN y se puede observar en la Tabla 3.9

Tabla 3.9: Datos calculados de porcentaje de contraste, corrección por scattering y diámetro de cada esfera y cilindro de esta tomografía para el fantoma diseñado.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Valor (%)</th>
<th>Diámetro (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esfera d=10 mm</td>
<td>$Q_{H,j} = 26 \pm 4$</td>
<td>11.0</td>
</tr>
<tr>
<td>Esfera d=22 mm</td>
<td>$Q_{H,j} = 98 \pm 4$</td>
<td>24.9</td>
</tr>
<tr>
<td>Agua</td>
<td>$Q_{C,j} = 31 \pm 4$</td>
<td>30.4</td>
</tr>
<tr>
<td>Aire</td>
<td>$\Delta_{C_{lung,j}} = 69 \pm 5$</td>
<td>30.4</td>
</tr>
</tbody>
</table>

En promedio, para la imagen reconstruida del fantoma NEMA, el error en diámetro es de 26 % y en la imagen reconstruida del fantoma diseñado fue de 11 %. También, se observan diferencias apreciables entre los porcentajes de contraste y la corrección por scattering.

Para tener más resultados con los que comparar, se realizó el mismo análisis anterior aumentando el vector normal a la hora de construir el sinograma. Se fijó este vector normal de manera que la resolución se ajuste a la cantidad de cristales que obtienen información del FOV de 70 cm. Esto llevó a un vector normal más grande y por ende a una imagen de menor resolución, siendo esta de 90x90. Los resultados de esto se muestran en la Tabla 3.10

Tabla 3.10: Datos calculados de porcentaje de contraste, corrección por scattering y diámetro de cada esfera y cilindro de esta tomografía para el fantoma diseñado, con una reconstrucción de imagen que utilizó una discretización más grande que el anterior.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Valor (%)</th>
<th>Diámetro (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esfera d=10 mm</td>
<td>$Q_{H,j} = 9.3 \pm 6$</td>
<td>15.4</td>
</tr>
<tr>
<td>Esfera d=22 mm</td>
<td>$Q_{H,j} = 42 \pm 6$</td>
<td>30.8</td>
</tr>
<tr>
<td>Agua</td>
<td>$Q_{C,j} = 79 \pm 6$</td>
<td>38.5</td>
</tr>
<tr>
<td>Aire</td>
<td>$\Delta_{C_{lung,j}} = 68 \pm 7$</td>
<td>38.5</td>
</tr>
</tbody>
</table>

Se puede ver que todos los valores cambiaron considerablemente. El error en diámetro en este caso aumentó a un 42 %.

De esto se puede decir dos cosas, la primera es que los valores calculados dependen del usuario que hace el análisis ya que en él queda la interpretación de cuáles son los contornos de cada geometría y la segunda es que al aumentar el tamaño de la discretización aumente el error en diámetro, ya que este hace que la imagen tenga menos resolución y sea más difícil determinar donde empieza o
CAPÍTULO 3. RESULTADOS

termina un volumen. Esto permite decir que el óptimo se encuentra en utilizar una discretización de tamaño intermedio al los que se utilizaron previamente. Con esto se podría obtener un error en diámetro similar al que se obtiene en la tomografía real. De esta manera la discretización óptima se encuentra entre una longitud de 0.38 mm y 0.55 mm.

Por otro lado los porcentajes de contraste son mejores para las esferas grandes que las pequeñas tanto en el modelo como lo analizado de la tomografía real. En la tomografía real se observaron mayor cantidad de coincidencias, esto se solucionaría con un tiempo de adquisición mayor. Si se hace esto se podría lograr igualar los valores de porcentaje de contraste entre lo modelado y la realidad.
Capítulo 4

Conclusiones

4.1. Análisis de las simulaciones del CT

Con este trabajo se definió un algoritmo de reconstrucción de imágenes CT a partir de las salidas del programa de cálculo GATE.

Se modeló en Catphan 600 y se encontró que para poder modelar fantomas con las dimensiones que habitualmente se utilizan para determinar la calidad de imagen en CT, se requiere simular un número de historias por corte tal que con la potencia de cómputo disponible y los tiempos de cálculo requeridos, excedían el tiempo disponible en este Proyecto Integrador. Esto lleva a la necesidad de utilizar un cluster de CPUs en vez de una computadora de escritorio para un posible trabajo futuro.

Se realizó un diseño preliminar de un fantoma utilizando como modelo el Catphan 600. Para esto se realizó un estudio de las geometrías y composiciones de este fantoma genérico, con el fin de evaluar las capacidades necesarias que tenía que poseer el diseño de este equipamiento para satisfacer las necesidades de INTEC-NUS.

Con esta información se diseñó un fantoma modular con dimensiones menores a las del Catphan y con geometrías internas más simples, con el objetivo de tener bien ajustadas las variables que ofrece GATE acotada a la capacidad de cálculo con la que se contaba.

Uno de los módulos fue para determinar la resolución de alto contraste. Este mostró tener problemas para ser simulado a causa de los materiales de alta atenuación lineal que se usaron para sus insertos. Esto podría solucionarse si se simulara una mayor cantidad de historias o si se utilizara materiales de menor densidad. De este módulo el segundo diseño sería más sencillo de construir.

El segundo módulo busca determinar la resolución de bajo contraste. Este permitió observar dos de los tres arreglos de cilindros que se pusieron como insertos. La construcción de este módulo se podría lograr utilizando una impresora 3D para
poder intervenir en las densidades de los insertos. Por otro lado, para trabajo futuro sería importante investigar o determinar una manera de obtener las diferencias de contraste entre los insertos y el fondo.

En la unidad del fantoma destinada a determinar la resolución de bajo contraste y resolución espacial no se tuvieron problemas de simulación. Pero para un análisis futuro de este fantoma, se podría calcular los errores asociados a determinar las dimensiones de los insertos de bajo contraste.

El módulo para determinar la simetría y linealidad espacial permitió observar los errores dimensionales que se obtienen de una imagen reconstruida de una simulación de CT. Se determinó que es más conveniente simular los insertos de alto contraste con dimensiones pequeñas, cercanas a los 3 mm de diámetro para disminuir los artefactos en la imagen. También sería posible simular insertos de mayor dimensión buscando densidades intermedias al plomo y al aluminio.

En la determinación del centrado y el ancho de corte no mostró problemas en la imagen reconstruida. Se observó que el ancho de corte está asociado al tamaño del cristal con el cual se modela la tomografía. Para un análisis futuro se podría modelar este módulo de forma descentrada con el fin de ver que se obtendría en la imagen reconstruida y si esto corresponde con los que anticipa el manual del Catphan.

El diseño para determinar la homogeneidad mostró que la desviación estándar tiende a disminuir a mediada que la simulación toma más ángulos de un mismo corte.

El módulo para determinar la respuesta puntual permitió obtener la resolución espacial de cada arreglo de cristales y observar que esta decrece al disminuir el tamaño de cristal. Para un análisis futuro se podría obtener la resolución espacial promediando resultados de más rectas, ya que en la primera simulación el inserto de 1 mm de diámetro mostraba una resolución espacial menor a la que se obtuvo con el inserto de 0.5 mm de diámetro, siendo que ambos casos se simularon con el mismo arreglo de cristales. Esto podría deberse a que el valor de resolución espacial cambie según el ángulo de la recta que se use para el análisis.

Para un trabajo a futuro, de darse el caso de contar con un cluster de CPUs, se podría hacer un diseño más ambicioso con dimensiones más cercanas a las que tendría el fantoma que se construya y con geometrías internas más complejas. Además, si se efectúa la construcción de un fantoma modelado se podría conseguir factores de escala que permitan asociar la simulación a la tomografía real y hacer cambios en la configuración del escáner para tener un tomógrafo modelado que represente la realidad con mayor fidelidad.

Por último, se conseguiría mejor contraste y se podrían hacer más comparaciones entre imágenes si se utilizaran imágenes normalizadas en escala de color. También, a trabajo futuro se podría pensar en aplicar filtros para mejorar la calidad de imagen.
4.2. Análisis de las simulaciones del PET

Se definió un algoritmo de reconstrucción de imágenes PET para las salidas de cálculo que otorga GATE. Este fue probado por medio de un estudio de resolución espacial recomendado por NEMA.

También, se modeló el fantoma que utiliza NEMA para determinar la calidad de imagen PET, pero sus dimensiones hacen que se necesite mucho tiempo de cálculo o utilizar un cluster de CPUs para obtener imágenes concluyentes. Por esto se diseñó y modeló un fantoma más pequeño para comprar los resultados entre la tomografía PET real y la de la simulación. El objetivo de este fantoma es que se convierta en un módulo más del diseño para CT.

El resultado de utilizar un fantoma más pequeño, dio una imagen que se correspondería a lo modelado. Con esto se pudo determinar una discretización que se utiliza en la reconstrucción de imágenes PET que permita obtener resultados similares a la realidad.

Los resultados del fantoma diseñado para determinar calidad de imagen en PET mostraron que se debería realizar más simulaciones, alterando los parámetros de GATE para poder acercarse a los valores que se obtuvieron en el análisis del fantoma NEMA.

Por último, se observó que los análisis hechos a imágenes PET llevan a resultados distintos según el criterio del usuario al determinar los contornos de las distintas geometrías.
Bibliografía

[8] Jesús Manuel García Ruiz, La transformada de Radón y su aplicación en la tomografía axial computarizada

[11] Operating Documentation, Discovery ST, STE, RX HP60 Service Methods, Version Date 2/13/07

[12] Timothy G. Turkington, PET Imaging Basics

Agradecimientos

En primer lugar, a mi familia, en especial a mis viejos, Victor y Silvia por enseñarme a enfrentar las adversidades. Y a mis hermanos Juan Manuel, María, Lucas, Ignacio por ser mis modelos a seguir.

En segundo lugar, a mí novia Paula, por acompañarme incondicionalmente durante estos tres años.

A mi amigo y compañero de estudio durante todo el este tiempo, Augusto.

En lo académico, le quiero agradecer a Diego por la infinita paciencia y por la predisposición constante ante todas las dudas que surgieron en todo este proceso. CNEA y al Instituto Balseiro por haberme dado la oportunidad de estudiar esta maravillosa carrera. Y a Luis, INTECNUS y la FUESMEN por brindarme todo el material necesario para poder concluir este proyecto.

En resumen, gracias a todos aquellos me forjaron y acompañan en largo camino del aprendizaje.

Dedicatoria: A mi viejo que le hubiera encantado estar en este momento. Te recuerdo hoy y siempre.
Apéndice A

Actividades relacionadas con la Práctica Profesional Supervisada

La Práctica Profesional Supervisada (PPS) se llevó a cabo en el Instituto de Tecnologías Nucleares para la Salud (INTECNUS) en el Centro Atómico Bariloche, Comisión Nacional de Energía Atómica durante el último año de la carrera de Ingeniería Nuclear.

Las actividades desarrolladas por el alumno durante la PPS fueron:

- Análisis de las técnicas de adquisición de imágenes médicas por tomografía computarizada (CT) y tomografía por emisión de positrones (PET). (capítulo 1)

- Modelado de fantomas para CT y PET en el software libre de cálculo Monte Carlo GATE 8.0. (capítulo 2 y 4)

- Diseño de fantomas que permitan caracterizar la calidad de imagen de estos equipos y que además sirvan como herramientas de calibración. (capítulo 3 y 5)

- Estudio paramétrico de estas dos técnicas en GATE. (capítulo 3 y 5)

- Informe final.
Apéndice B

Actividades de proyecto y diseño

Las actividades de Proyecto y Diseño realizadas para desarrollar el presente Proyecto Integrador, basadas en el empleo de las ciencias básicas y de la ingeniería adquiridas a lo largo de la carrera, fueron las siguientes:

- **Aprendizaje sobre:**
 - Las técnicas de adquisición de imágenes médicas por tomografía computarizada (CT) y tomografía por emisión de positrones (PET)
 - Técnicas de cálculo Monte Carlo para modelado de fotones
 - Técnicas de reconstrucción de imágenes
 - Uso de GATE 8.0 (Software libre de cálculo para física médica). (90 hs)

- **Búsqueda bibliográfica:** se investigó acerca de la forma de modelar estos mecanismos de adquisición de imágenes médicas. (25 hs)

- **Modelado y análisis de resultados de ambos mecanismos.** (capítulo 3 y 5) (200 hs)