Almacenamiento de hidrógeno basado en materiales formadores de hidruro para generadores de avalanchas de nieve. / Hydrogen storage in metal hydride materials for snow avalanches generator.

Gentile, Mauro A. (2018) Almacenamiento de hidrógeno basado en materiales formadores de hidruro para generadores de avalanchas de nieve. / Hydrogen storage in metal hydride materials for snow avalanches generator. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
4Mb

Resumen en español

Presentamos la selección, síntesis y caracterización de materiales formadores de hidruro (MFH) capaces de almacenar hidrógeno de manera reversible a temperaturas sub cero, para utilizarlo en la producción de explosiones que deriven en la generación de avalanchas de nieve. La generación de avalanchas intencionales es un mecanismo efectivo que previene ocurrencia de eventos fortuitos, asegurando áreas de interés como: centros de deportes invernales, zonas mineras o caminos. Para ello, se propone originar una onda de presión a partir de la combustión de hidrógeno y oxígeno que, a diferencia de otros agentes detonantes, es inocuo y constituye un combustible renovable. El almacenamiento de hidrógeno en MFH requiere menor volumen y presión de almacenaje que la opción gaseosa, significando una propuesta novedosa. Se determinaron las condiciones de contorno para la protección de un área durante una temporada invernal, en conjunto con el concesionario del centro de esquí del Cerro Catedral. Siendo necesarias 30 detonaciones, operando a una temperatura de −15 °𝐶. Se expandió el intervalo de temperatura estudiado para materiales potencialmente adecuados para esta aplicación, MFH de la familia 𝐴𝐵_5: 𝐿𝑎𝑁𝑖_5, 𝑀𝑚𝑁𝑖_5, 𝑀𝑚_0.5𝐿𝑎_0.5𝑁𝑖_5 y 𝑀𝑚𝑁_𝑖5−𝑥𝑆𝑛_𝑥 (Mm: mischmetal), determinando capacidades de almacenamiento, propiedades de equilibrio y cinética de reacción de absorción y desorción de 𝐻_2, y los valores correspondientes a los cambios de entalpía 𝛥𝐻 y entropía 𝛥𝑆. Se diseñaron los procesos de suministro de 𝐻_2 en escenarios donde exista provisión de energía eléctrica y donde no. En el primer caso, la propuesta es almacenar el hidrógeno en el compuesto 𝑀𝑚_0.5𝐿𝑎_0.5𝑁𝑖_5 y en el segundo, en el compuesto 𝑀𝑚𝑁𝑖_4.9𝑆𝑛_0.1 que, con un 37% adicional de MFH aseguraría condiciones de provisión. Se estudiaron soluciones para la recarga de hidrógeno in situ en base a la generación del mismo utilizando un electrolizador comercial y un dispositivo para elevar la presión.

Resumen en inglés

We present the selection, synthesis and characterization of hydride forming materials (HFM) capable of reversibly storing hydrogen at subzero temperatures, for use in the production of explosions that result in the generation of snow avalanches. The generation of intentional avalanches is an effective mechanism that prevents the occurrence of fortuitous events, ensuring areas of interest such as: winter sports centers, mining areas or roads. For this, it is proposed to originate a pressure wave from the combustion of hydrogen and oxygen that, unlike other detonating agents, is harmless and constitutes a renewable fuel. The storage of hydrogen in HFM requires less volume and storage pressure than the gaseous option, meaning a novel proposal. Contour conditions were determined for the protection of an area during a winter season, in conjunction with the concessionaire of the Ski Center of Cerro Catedral. In which 30 detonations are required, operating at a temperature of −15 ° 𝐶. We expanded the temperature range studied was for materials potentially suitable for this application, HFM of the family 𝐴𝐵_5: 𝐿𝑎𝑁𝑖_5, 𝑀𝑚𝑁𝑖_5, 𝑀𝑚_0.5𝐿𝑎_0.5𝑁𝑖_5 and 𝑀𝑚𝑁𝑖_5−𝑥𝑆𝑛_𝑥 (Mm: mischmetal), determining storage capacities, equilibrium properties and reaction kinetics of absorption and desorption of 𝐻_2, and the values corresponding to the enthalpy changes 𝛥𝐻 and entropy 𝛥𝑆. The 𝐻_2 supply processes were designed, in scenarios where there is electricity supply and where is not. In the first case, the proposal is to store hydrogen in the compound 𝑀𝑚_0.5𝐿𝑎_0.5𝑁𝑖_5 and in the second, in the compound 𝑀𝑚𝑁𝑖_4.9𝑆𝑛_0.1 which, with an additional 37% of HFM would ensure supply conditions. Solutions for hydrogen recharge in situ were studied based on its generation using a commercial electrolyzer and a device to raise the pressure.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Hydrogen; Hidrógeno; Snow; Nieve; Technology applications; [Metal hydrides; Hidruros metálicos; Technological applications; Aplicaciones tecnológicas; Renewable energies; Energías renovables]
Referencias:[1] “Dos muertos en una avalancha,” La Nación, Buenos Aires, 02-Jul-2000. [2] “Tragedia en el Cerro Ventana,” Río Negro, 11-Jun-2003. [3] “Una avalancha arrasó con una confitería en el Cerro Catedral,” Río Negro, 03- Sep-2008. [4] “Avalancha en el Cerro Catedral,” Página12, 04-Aug-2008. [5] E. Thibert et al., “The full-scale avalanche test-site at Lautaret Pass (French Alps),” Cold Reg. Sci. Technol., vol. 115, pp. 30–41, 2015. [6] A. Kogelnig and S. Wyssen, “Proceedings, International Snow Science Workshop, Banff, 2014,” pp. 1094–1101, 2014. [7] H. Gubler, S. Wyssen, and A. Kogelnig, Guidelines for Artificial Release of Avalanches. Reichenbach: Wyssen Avalanche Control AG (unpublished), 2012. [8] C. Ancey, “Snow Avalanches,” in Geomorphological Fluid Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 319–338. [9] J. Heierli, P. Gumbsch, and M. Zaiser, “Anticrack Nucleation as Triggering Mechanism for Snow Slab Avalanches,” Science (80-. )., vol. 321, no. 5886, pp. 240–243, 2008. [10] J. Heierli and M. Zaiser, “Failure initiation in snow stratifications containing weak layers: Nucleation of whumpfs and slab avalanches,” Cold Reg. Sci. Technol., vol. 52, no. 3, pp. 385–400, May 2008. [11] R. Perla, “Slab avalanche measurements,” Can. Geotech. J., vol. 14, no. 2, pp. 206–213, May 1977. [12] J. Schweizer and M. Lütschg, “Characteristics of human-triggered avalanches,” Cold Reg. Sci. Technol., vol. 33, no. 2–3, pp. 147–162, Dec. 2001. [13] A. Ganju and A. P. Dimri, “Prevention and mitigation of avalanche disasters in Western Himalayan Region,” Nat. Hazards, vol. 31, no. 2, pp. 357–371, Feb. 2004. [14] P. Berthet-Rambaud, L. Noel, B. Farizy, J.-M. Neuville, S. Constant, and P. Roux, “Development of an Helicopter-Borne Gas Device for Avalanche Preventive Release,” p. 8099, 2008. [15] P. Berthet-Rambaud, B. Farizy, A. Juge, X. Gallot-lavalle, and E. Bassetti, “A new environment-friendly device for avalanche preventive release,” 2010 Int. Snow Sci. Work., 2010. [16] L. Schlapbach and a Züttel, “Hydrogen-storage materials for mobile applications.,” Nature, vol. 414, no. 6861, pp. 353–358, 2001. [17] C. J. (Carl-J. Winter and J. (Joachim) Nitsch, Hydrogen as an Energy Carrier : Technologies, Systems, Economy. Springer Berlin Heidelberg, 1988. [18] G. Sandrock, “Panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd., vol. 293, pp. 877–888, 1999. [19] E. M. Borzone, “Separación de hidrógeno mediante hidruros metálicos,” Instituto Balseiro, Universidad Nacional de Cuyo, 2016. [20] R. Balasubramaniam, “Hysteresis in metal–hydrogen systems,” J. Alloys Compd., vol. 253–254, pp. 203–206, May 1997. [21] L. Schlapbach, Hydrogen in intermetallic compounds II : surface and dynamic properties, applications. Springer Berlin Heidelberg, 1992. [22] M. H. Mendelsohn, D. M. Gruen, and A. E. Dwight, “LaNi5-xAlx is a versatile alloy system for metal hydride applications,” Nature, vol. 269, no. 5623, pp. 45– 47, Sep. 1977. [23] Portland State Aerospace Society, “A Quick Derivation relating altitude to air pressure,” Portl. State Aerosp. Soc., pp. 1–4, 2004. [24] K. B. Lopes, “Analysis of the Effects of Explosion of a Hydrogen Cylinder on the Transfer of Radioactive Liquid Wastes At Nuclear Power Stations,” 2011. [25] A. Züttel, “Materials for hydrogen storage,” Mater. Today, vol. 6, no. 9, pp. 24– 33, Sep. 2003. [26] C. Dhanesh, C. Wen-Ming, and T. Anjali, “Metal Hydrides for NiMH Battery Applications,” Material Matters, pp. 48–53, 2011. [27] V. Z. Mordkovich, Y. K. Baichtok, N. V. Dudakova, E. I. Mazus, and V. P. Mordovin, “Equilibria in the hydrogen-intermetallics systems with high dissociation pressure,” J. Alloys Compd., vol. 231, no. 1–2, pp. 498–502, 1995. [28] S. N. Klyamkin, V. N. Verbetsky, and A. A. Karih, “Thermodynamic particularities of some CeNi5-based metal hydride systems with high dissociation pressure,” J. Alloys Compd., vol. 231, no. 1–2, pp. 479–482, 1995. [29] E. M. Borzone, A. Baruj, M. V. Blanco, and G. O. Meyer, “Dynamic measurements of hydrogen reaction with LaNi5-xSn x alloys,” Int. J. Hydrogen Energy, vol. 38, no. 18, pp. 7335–7343, 2013. [30] S. Luo, C. N. Park, and T. B. Flanagan, “Analysis of sloping plateaux in alloys and intermetallic hydrides II. Real systems,” J. Alloys Compd., vol. 384, no. 1–2, pp. 208–216, 2004. [31] M. V. Blanco, E. M. Borzone, and A. Baruj, “Determinación de propiedades formadores de hidruro termodinámicas de,” in Congreso; 14o Congreso Internacional en Ciencia y Tecnología de Metalurgia y Materiales SAM/CONAMET, Iberomat XIII, XIII Simposio Materia; 2014, 2014, pp. 1–5. [32] I. G. Fernández, G. O. Meyer, and F. C. Gennari, “Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling,” J. Alloys Compd., vol. 464, no. 1–2, pp. 111–117, Sep. 2008. [33] B. N. Pianciola, “Tesis carrera de doctorado en física,” 2015. [34] E. M. Gray, T. P. Blach, M. P. Pitt, and D. J. Cookson, “Mechanism of the α-to-β phase transformation in the LaNi 5-H2 system,” J. Alloys Compd., vol. 509, no. 5, pp. 1630–1635, Feb. 2011. [35] J. Cieslik, P. Kula, and R. Sato, “Performance of containers with hydrogen storage alloys for hydrogen compression in heat treatment facilities,” J. Alloys Compd., vol. 509, no. 9, pp. 3972–3977, Mar. 2011. [36] M. J. Ardito Batista, “Estudio de dispocitivos almacenadores de hidrógeno con la técnica de neutrografía,” Instituto Balseiro, Universidad Naiconal de Cuyo, 2013. [37] J. H. N. Van VUCHT, F. A. KUlJPERS, and H. C. A. M. BRUNING, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen By Intermetallic Compounds,” Philips Res. Repts, vol. 25, pp. 133–140, 1970. [38] S. Ono, K. Nomura, E. Akiba, and H. Uruno, “Phase transformations of the LaNi5- H2 system,” J. Less-Common Met., vol. 113, no. 1, pp. 113–117, 1985. [39] M. V. Blanco, “Captura y separación de hidrógeno en la producción de radiofármacos,” Instituto Balseiro, Universidad Nacional de Cuyo, 2015. [40] X. H. An, L. G. Li, J. Y. Zhang, and Q. Li, “Comparison of dehydriding kinetics between pure LaNi5 and its substituted systems,” J. Alloys Compd., vol. 511, no. 1, pp. 154–158, 2012. [41] R. Ngameni, N. Mbemba, S. A. Grigoriev, and P. Millet, “Comparative analysis of the hydriding kinetics of LaNi5, La 0.8Nd0.2Ni5 and La0.7Ce 0.3Ni5 compounds,” Int. J. Hydrogen Energy, vol. 36, no. 6, pp. 4178–4184, Mar. 2011. [42] A. Andreasen, T. Vegge, and A. S. Pedersen, “Compensation effect in the hydrogenation/dehydrogenation kinetics of metal hydrides,” J. Phys. Chem. B, vol. 109, no. 8, pp. 3340–3344, Mar. 2005. [43] V. Verbetsky, “Absorption of hydrogen by MmNi5 alloys,” Int. J. Hydrogen Energy, vol. 21, no. 11–12, pp. 935–938, Nov. 1996. [44] P. Huang, A. J. Goudy, and J. T. Koh, “Hydrogen absorption-desorption kinetics of MmNi5 and related compounds,” J. Less-Common Met., vol. 155, no. 1, pp. 111–118, 1989. [45] M. MUNGOLE, R. BALASUBRAMANIAM, K. RAI, and K. SINGH, “Hydrogen storage properties of the MmNi4.6Sn0.4 system,” Int. J. Hydrogen Energy, vol. 17, no. 8, pp. 603–606, Aug. 1992. [46] M. Reed, O. Kimberger, P. D. McGovern, and M. C. Albrecht, “Forced-air warming design: Evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions,” AANA J., vol. 81, no. 4, pp. 275–281, 2013. [47] V. Iosub, M. Latroche, J.-M. Joubert, and A. Percheron-Guégan, “Optimisation of MmNi5-xSnx (Mm=La, Ce, Nd and Pr, 0.27,” Int. J. Hydrogen Energy, vol. 31, no. 1, pp. 101–108, 2006. [48] P. S. Rudman, “Thermodynamics of pressure plateaus in metal-hydrogen systems,” Int. J. Hydrogen Energy, vol. 3, no. 4, pp. 431–447, 1978. [49] D. Ohlendorf and H. E. Flotow, “HEAT CAPACITIES AND THERMODYNAMIC FUNCTIONS OF LaNi5, LaNi5H0.36 AND LaNi5H6.39 FROM 5 TO 300 K.,” J. less-common Met., vol. 73, no. 1, pp. 25–32, Sep. 1980.
Materias:Ingeniería > Almacenamiento de hidrógeno
Ingeniería nuclear > Combustibles nucleares
Ingeniería > Tecnología del hidrógeno
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Fisicoquímica de materiales
Código ID:726
Depositado Por:Tamara Cárcamo
Depositado En:15 Jul 2019 12:14
Última Modificación:15 Jul 2019 12:14

Personal del repositorio solamente: página de control del documento