Modelando el efecto de las interacciones dipolares en cadenas de nanopartículas para hipertermia magnética. / Modeling the effect of dipolar interactions in chains of nanoparticles.

Valdés, Daniela Paola (2018) Modelando el efecto de las interacciones dipolares en cadenas de nanopartículas para hipertermia magnética. / Modeling the effect of dipolar interactions in chains of nanoparticles. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
30Mb

Resumen en español

La hipertermia magnética, que está siendo estudiada como un tratamiento para el cáncer, consiste en la incorporación de nanopartículas magnéticas en un tumor y su subsecuente calentamiento mediante un campo magnético alterno. El aumento de temperatura de la zona tumoral por encima de los 42 C puede causar la muerte de las células cancerégenas. El punto clave del tratamiento es la capacidad de las nanopartículas de absorber energía del campo magnético y de posteriormente convertirlo en calor, lo que depende de características morfológicas, magnéticas y reológicas. Este trabajo tiene como objetivo estudiar el efecto de las interacciones dipolares entre nanopartículas sobre el área de los ciclos de histéresis de la magnetización cuando éstas se ordenan en un arreglo de cadenas con anisotropía uniaxial. Un aumento en el área de los ciclos significa una mayor capacidad de absorber potencia del campo alterno por unidad de masa de las partículas. Para abordar este estudio, se tomó un modelo de relajación magnética no lineal y se lo modicó con el fin de agregar interacciones dipolares. Mediante su implementación, se estudiaron cadenas de diferente longitud, orientadas en diferentes direcciones respecto al campo externo y con partículas con diferentes anisotropías, además de analizar el efecto de la frecuencia dentro en la región de interés experimental (100-1000 kHz). Se distinguieron 4 regiones de interés, definidas por la relación del campo coercitivo efectivo y la amplitud del campo externo. Estas regiones fueron caracterizadas exhaustivamente. Se tomaron en cuenta las componentes del campo dipolar paralela y perpendicular al campo magnético externo en el análisis. Los estudios mostraron que en las regiones de menor anisotropía, las interacciones en cadenas ayudan a aumentar el área del ciclo de histéresis y en el caso de alta anisotropía, perjudican. Se pudo estudiar el caso de cadenas orientadas en diferentes direcciones respecto al campo así como el de cadenas distribuidas al azar. Se observó que las componentes del campo dipolar también presentan histéresis y que los cambios en sus ciclos tienen efectos que se reflejan en el ciclo de la magnetización.

Resumen en inglés

Magnetic hyperthermia is being studied as a cancer treatment and consists in the incorporation of magnetic nanoparticles in a tumor with their subsequent heating through the application of an alternating magnetic field. The increase of temperature of the tumoral zone above 42 C may cause the death of cancerigen cells. The key point of the treatment is the ability of the nanoparticles to absorb energy from the magnetic eld and then convert it into heat, which depends on morphological, magnetic and rheological characteristics. This work aims to study the effect of the dipolar interactions between nanoparticles on the area of the magnetization hysteresis loops when they are arranged in chains with uniaxial anisotropy. An increment in the area of the loops means a greater capacity to absorb power from the alternate eld per unit mass of the particles. To address this study, a non-linear magnetic relaxation model was modied to add dipolar interactions. Through its implementation, chains of different lengths, oriented in dierent directions regarding the external eld and with particles with different anisotropy values were studied. The effect of frequency was analyzed for the range of interest for the experiments (100-1000 kHz). Four regions of interest were distinguished, dened by the relation between the effective coercive eld and the amplitude of the external field. These regions were characterized extensively. The components of the parallel and perpendicular dipolar field were taken into account for this analysis. Our study showed that for regions of low anisotropy, the interactions in chains help to increase the area of the hysteresis loops and, for those of high anisotropy, they are detrimental. It was possible to study the case of chains oriented in different directions regarding the eld as well as that of chains distributed randomly. It was observed that the components of the dipolar eld also present hysteresis and that the changes in their cycles have effects that are reflected in the magnetization loops.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Hyperthermia; Hipertermia; Hysteresis; Histeresis; [Magnetic nanoparticles; Nanopartículas magnéticas; Dipolar interactions; Interacciones dipolares; dipolar fields; Campos dipolares; Nanomedicine; Nanomedicina ]
Referencias:[1] Trosko, J. Cancer stem cells and cancer nonstem cells: From adult stem cells or from reprogramming of differentiated somatic cells. Veterinary Pathology, 46, 176-193, 2009. 1 [2] Hyndman, I. Review: the contribution of both nature and nurture to carcinogenesis and progression in solid tumours. Cancer Microenvironment, 9, 63-69, 2016. 1 [3] Negrini, S., Gorgoulis, V., Halazonetis, T. Genomic instability | an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 11, 220-228, 2010. 1 [4] Ramasamy, K., Shanmugham, M., Balupillai, A., Govindhasamy, K., Gunaseelan, S., Muthusamy, G. Ultraviolet radiation-induced carcinogenesis: Mechanisms and experimental models. Journal of Radiation and Cancer Research, 8, 4-19, 2017. 2 [5] Goldstein, B., Witz, G. Free radicals and carcinogenesis. Free Radical Research Communications, 11, 3-10, 1990. 2 [6] Miettinen, M. Overview of soft tissue tumors. En: Modern Soft Tissue Pathology: Tumors and Non-Neoplastic Conditions, pags. 1-10. Nueva York, Estados Unidos de América: Cambridge University Press, 2010. 2 [7] Neufeld, G., Cohen, T., Gengrinovitch, S., Poltorak, Z. Vascular endothelial growth factor and its receptors. The FASEB Journal, 13, 9-22, 1999. 3 [8] Fidler, I. Origin and biology of cancer metastasis. Cytometry, 10, 673-680, 1989. 3 [9] Acerca del cáncer: Estadísticas [en línea], 2016. Argentina: Instituto Nacional del Cáncer. [Consulta: 13 de Noviembre de 2017] http://www.msal.gov.ar/inc/ acerca-del-cancer/mortalidad/. 3 [10] Wyld, L., Audisio, R., Poston, G. The evolution of cancer surgery and future perspectives. Nature Reviews Clinical Oncology, 12, 115-124, 2015. 3 [11] Gnerlich, J., Je e, D., Deshpande, A., Beers, C., Zander, C., Margenthaler, J. Surgical removal of the primary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988-2003 seer data. Annals of Surgical Oncology, 14, 2187{2194, 2007. 3 [12] Retsky, M., Bonadonna, G., Demicheli, R., Folkman, J., Hrushesky, W., Valagussa, P. Hypothesis: Induced angiogenesis after surgery in premenopausal node-positive breast cancer patients is a major underlying reason why adjuvant chemotherapy works particularly well for those patients. Breast Cancer Research, 6, R372-R374, 2004. 3 [13] Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H. Free radical-induced damage to dna: mechanisms and measurement. Free Radical Biology and Medicine, 32, 1102-1115, 2002. 3, 7 [14] Sourati, A., Ameri, A., Malekzadeh, M. Radiation dermatitis and radiation pneumonitis. En: Acute Side Effects of Radiation Therapy: A Guide to Management, pags. 1-114. Cham, Suiza: Springer International Publishing, 2017. 4 [15] Field, S. B. Biological aspects of hyperthermia. En: S. B. Field, F. Caero (eds.) Physics and Technology of Hyperthermia, pags. 19-53. Paíes Bajos: Martinus Nijho Publishers, 1987. 4 [16] Tang, L., Wei, F., Wu, Y., He, Y., Shi, L., Xiong, F., et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. Journal of Experi- mental and Clinical Cancer Research, 37, 87-101, 2018. 4 [17] Selleri, S., Arnaboldi, F., Vizzotto, L., Balsari, A., Rumio, C. Epitheliummesenchyme compartment interaction and oncosis on chemotherapy-induced hair damage. Laboratory Investigation, 84, 1404-1417, 2004. 4 [18] Skeel, R. T., Khleif, S. N. Side effects of chemotherapy and molecular targeted therapy. En: Handbook of Cancer Chemotherapy, pags. 543-565. China: Lippincott Williams & Wilkins, 2011. 4 [19] Ortiz, R., Melguizo, C., Prados, J., Alvarez, P. J., Caba, O., Rodríguez-Serrano, F., et al. New gene therapy strategies for cancer treatment: a review of recent patents. Recent Patents on Anticancer Drug Discovery, 7, 283-494, 2007. 4 [20] Goetz, C., Dobrikova, E., Shveygert, M., Dobrikov, M., Gromeier, M. Oncolytic poliovirus against malignant glioma. Future Virology, 6, 1045-1058, 2011. 4 [21] Sharma, P., Allison, J. The future of immune checkpoint therapy. Science, 348, 56-61, 2015. 4 [22] Cruz, M. M., Ferreira, L. P., Alves, A. F., Mendo, S. G., Ferreira, P., Godinho, M., et al. Nanoparticles for magnetic hyperthermia. En: A. Ficai, A. M. Grumezescu (eds.) Nanostructures for Cancer Therapy, pags. 485-511. Cambridge, Estados Unidos de América: Elsevier, 2017. 4 [23] Chichel, A., Skowronek, J., Kubaszewska, M., Kanikowski, M. Hyperthermia { description of a method and a review of clinical applications. Reports of Practical Oncology and Radiotherapy, 12, 267-275, 2007. 5 [24] Gas, P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad Elektrotechniczny (Electrical Review), 87, 37-40, 2011. 5 [25] Oh, N., Park, J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 9, 51-63, 2017. 5 [26] Alberts, B., Johnson, A., Lewis, J., Morgan, D., Ra, M., Roberts, K., et al. Chapter 18: Cell death. En: Molecular biology of the cell, pags. 1021-1034. Nueva York, Estados Unidos de América: Garland Science, 2015. 6 [27] White, M., Saleh, O., Nonner, D., Barrett, E., Moraes, C., Barrett, J. Mitochondrial dysfunction induced by heat stress in cultured rat cns neurons. Journal of Neurophysiology, 108, 2203-2214, 2012. 7 [28] Hurwitz, M., Stauer, P. Hyperthermia, radiation and chemotherapy: The role of heat in multidisciplinary cancer care. Seminars in Oncology, 41, 714-729, 2014. 7 [29] Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldofner, N., Scholz, R., et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. International Journal of Hyperthermia, 23, 315-323, 2007. 7 [30] Thiesen, B., Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 24, 467-474, 2008. [31] Maier-Hau, K., Ulrich, F., Nestler, D., Nieho, H., Wust, P., Thiesen, B., et al. Effcacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 103, 317-324, 2011. 7 [32] Skitzki, J., Repasky, E., Evans, S. Hyperthermia as an immunotherapy strategy for cancer. Current Opinion in Investigational Drugs, 10, 550-558, 2009. 7 [33] Mojica Pisciotti, M. L. Desarrollo de nanopartículas magnéticas para su utilización en el tratamiento médico: hipertermia. Tesis Doctoral, Universidad Nacional de Cuyo, Instituto Balseiro, San Carlos de Bariloche, Río Negro, Argentina, 2015. 7, 10, 23 [34] De Biasi, E., Zysler, R. D., Ramos, C. A., Knobel, M. A new model to describe the crossover from superparamagnetic to blocked magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 312-315, 2008. 7, 29 [35] Rosensweig, R. E. Heating magnetic uid with alternating magnetic eld. Journal of Magnetism and Magnetic Materials, 252, 370-374, 2002. 9 [36] Lima Jr., E., De Biasi, E., Zysler, R., Vasquez Mansilla, M., Mojica-Pisciotti, M., Torres, T., et al. Relaxation time diagram for identifying heat generation mechanisms in magnetic uid hyperthermia. Journal of Nanoparticle Research, 16, 2791, 2014. 10 [37] Usov, N., Liubimov, B. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. Journal of Applied Physics, 112, (023901)1-11, 2012. 10 [38] Mamiya, H., Jeyadevan, B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic elds. Scientic Reports, 1, (157)1-7, 2011. 10 [39] Ghaisari, S., Winklhofer, M., Strauch, P., Klumpp, S., Faivre, D. Magnetosome organization in magnetotactic bacteria unraveled by ferromagnetic resonance spectroscopy. Biophysical Journal, 773, 637-644, 2017. 10, 31 [40] Orue, I., Marcano, L., Bender, P., García-Prieto, A., Valencia, S., Mawass, M., et al. Conguration of the magnetosome chain: a natural magnetic nanoarchitecture. Nanoscale, 10, 7407-7419, 2018. 10, 11, 31 [41] Marcano, L. Same but so different. Image winner of the People's Choice Award in the Magnetism as Art Showcase at ICM 2018. 10, 11 [42] Stoner, E., Wohlfarth, E. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London, A420, 599-642, 1948. 11, 29 [43] Marcano, L., Muñoz, D., Martín-Rodríguez, R., Orue, I., Alonso, J., García-Prieto, A., et al. Magnetic study of co-doped magnetosome chains. The Journal of Physical Chemistry C, 122, 7541-7550, 2018. 11 [44] Grünberg, K., Muller, E.-C., Otto, A., Reszka, R., Linder, D., Kube, M., et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospi- rillum gryphiswaldense. Applied and Environmental Microbiology, 70, 1040-1050, 2004. 11 [45] Alphandery, E., Guyot, F., Chebbi, I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain amb-1 magnetotactic bacteria, yielding effcient treatment of tumors using magnetic hyperthermia. International Journal of Pharmaceutics, 434, 444-452, 2012. 11 [46] Alphandery, E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Frontiers in Bioengineering and Biotechnology, 2, (5)1-6, 2014. 11 [47] Myrovali, E., Maniotis, N., Makridis, A., Terzopoulou, A., Ntomprougkidis, V., Simeonidis, K., et al. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Scientic Reports, 6, (37934)1-11, 2016. 12 [48] Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Del Puerto Morales, M., et al. Multiplying magnetic hyperthermia response by nanoparticle assembling. The Journal of Physical Chemistry C, 118, 5927-5934, 2014. 12, 13, 31 [49] Nemati, Z., Alonso, J., Rodrigo, I., Das, R., Garaio, E., Garcia, J., et al. Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. The Journal of Physical Chemistry C, 2018. (just accepted). 12 [50] Cullity, B. Introduction to Magnetic Materials. Nueva Jersey, Estados Unidos de America: John Wiley & Sons, Inc., 2009. 15 [51] Tyablikov, S. V. Methods in the Quantum Theory of Magnetism. Nueva York, Estados Unidos de América: Springer Science+Business Media, 1967. 16 [52] Coey, J. M. D. Magnetism and Magnetic Materials. Cambridge, Reino Unido: Cambridge University Press, 2009. 16, 19 [53] Stefanita, C.-G. From Bulk to Nano: The Many Sides of Magnetism. Heidelberg, Alemania: Springer, 2008. 18 [54] Getzla, M. Fundamentals of Magnetism. Heidelberg, Alemania: Springer, 2008. 18 [55] De Biasi, E. Efectos de supercie en sistemas de nanopartículas monodominio ferromagnéticos. Tesis Doctoral, Universidad Nacional de Cuyo, Instituto Balseiro, San Carlos de Bariloche, Argentina, 2005. 18, 19 [56] Nolting, W., Ramakanth, A. Quantum Theory of Magnetism. Heidelberg, Alemania: Springer, 2008. 19 [57] Dormann, J. L., Fiorani, E., D. y Tronc. Magnetic relaxation in ne-particle systems. Advances in Chemical Physics, 98, 283-494, 1997. 19, 21, 23 [58] Aharoni, A. Introduction to the Theory of Ferromagnetism. Nueva York, Estados Unidos de América: Oxford University Press, 2007. 20 [59] Sharpe, M. General Theory of Markov Processes. California, Estados Unidos de América: Academic Press, Inc., 1988. 22 [60] Trindade, T., Da Silva, A. (eds.) Nanocomposite Particles for Bio-Applications: Materials and Bio-Interfaces. Pan Stanford Publishing, 2011. 22 [61] Neel, L. Theorie du tranage magnetique des ferromagnetiques en grains ns avec application aux terres cuites. Annales de Geophysique, 5, 99-136, 1949. 22 [62] Brown Jr., W. F. Thermal uctuations of a single-domain particle. Physical Review, 130, 1677-1686, 1963. 22 [63] Greiner, W., Neise, L., Stocker, H. Applications of Boltzmann Statistics. En: Thermodynamics and Statistical Mechanics, pags. 208-239. Pensilvania, Estados Unidos de América: Springer, 1997. 25 [64] Jackson, J. Classical Electrodynamics. Nueva Jersey, Estados Unidos de America: John Wiley & Sons, Inc., 1975. 32 [65] Burden, R., Faires, J. Numerical Methods. Estados Unidos de América: Brooks / Cole, Cengage Learning, 2013. 33 [66] Mansell, R., Vemulkar, T., Petit, D., Cheng, Y., Murphy, J., Lesniak, M., et al. Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction. Scientic Reports, 7, (4257)1-7, 2017. 85 [67] Goiriena Goikoetxea, M. Magnetic Vortex Nanodiscs for Cancer Cell Destruction. Tesis Doctoral, Universidad del Paffis Vasco, Leioa, España, 2017. 86 [68] Mansell, R., Vemulkar, T., Petit, D., Cheng, Y., Murphy, J., Lesniak, M., et al. Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction (supplementary information). Scientic Reports, 7, 1-10, 2017. 91
Materias:Física > Nanotecnología
Física > Física del estado sólido
Medicina
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:748
Depositado Por:Tamara Cárcamo
Depositado En:08 Oct 2019 13:52
Última Modificación:08 Oct 2019 13:52

Personal del repositorio solamente: página de control del documento