Filtros selectivos de tamaños microestructurales en imágenes por resonancia magnética nuclear. / Selective filter of microestructural restriction sizes with magnetic resonce imaging.

Capiglioni, Milena S. (2018) Filtros selectivos de tamaños microestructurales en imágenes por resonancia magnética nuclear. / Selective filter of microestructural restriction sizes with magnetic resonce imaging. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
6Mb

Resumen en español

La resonancia magnética nuclear (RMN) es una herramienta muy utilizada en la actualidad para la obtención de imágenes medicas de forma no invasiva. Sin embargo, la sensibilidad de detección de los espines nucleares de las moléculas intrínsecas a sistemas biológicos, limita la resolución espacial de las imágenes a milímetros en estudios clínicos. Una forma de crear imágenes por RMN, es utilizar el fenómeno de difusión que sufren los espines nucleares para obtener información específica y cuantitativa sobre parámetros microscópicos del sistema. Esto se logra mediante la aplicación de secuencias de control que, aplicadas sobre los espines, permiten aumentar la sensibilidad de la señal detectada respecto al parámetro que se busca observar. Este es el objetivo de la secuencia de reacople dinámico selectivo (SDR) que fue optimizada en este trabajo. Se analizo el contraste generado por la secuencia SDR, que presenta una gran sensibilidad al tamaño de la restricción dentro de la cual difunden los espines observados. Se optimizo dicho contraste con respecto a dos variables de control, el tiempo total del experimento y la constante de decaimiento de la señal. Se encontró que, debido a la forma que presenta el contraste en función del tamaño de restricción, puede utilizarse como un litro selectivo de tamaños, aplicable al rango de tamaños presentes en tejidos neuronales (del orden de los micrómetros). Se estudio la dependencia de la forma del litro y el mínimo diámetro que es posible filtrar en función de los parámetros del sistema utilizados para la optimización del contraste y se analizaron dichos litros con valores aplicables en equipamientos preclinicos y clínicos. Finalmente, se estudio la utilización del litro para la reconstrucción de distribuciones de tamaño, encontrando que se puede extraer información cuantitativa de la distribución directamente de la señal adquirida, sin la necesidad de post-procesamiento de la misma. Estos resultados ofrecen información para definir el procedimiento a seguir acorde al estudio que se necesita realizar. Estos resultados ofrecen un nuevo mecanismo para realizar imágenes selectivas en tamaños microestructurales y obtener información cuantitativa sobre los parámetros que deben la composición de los tejidos cerebrales.

Resumen en inglés

Nuclear magnetic resonance (NMR) is a very useful tool for obtaining medical images non-invasively. However, the sensitivity to detect the nuclear spins of molecules intrinsic to biological systems, limits the spatial resolution of the images to millimeters in clinical studies. A technique to acquire images by NMR, is to use the diusion phenomenon suered by nuclear spins to obtain specic and quantitative information of microscopic parameters of the system. This is achieved through the application of control sequences that, applied on the spins, allow to increase the sensitivity of the detected signal with respect to the observed parameter. This is the main goal of the Selective Dynamical Recoupling (SDR) technique that was optimized in this work. We analyzed the contrast generated by the SDR sequence, which presents a great sensitivity to the restriction size within which the observed spins difuse. This contrast was optimized with respect to two control variables, the total time of the experiment and the decay constant of the signal. As SDR contrast presents a maximum as a function of the correlation size, we analyze the conditions to use it as a lter of restricting lengths, allowing to make selective images according to the diameter sizes wanted to be observed. The sequence as a lter of microestructural sizes is characterized in therms of the control parameters that dene the sequence and the minimum diameter that can be ltered as a function of the gradient amplitude is found. Finally, the utility of the lter for the reconstruction of size distributions was studied, nding that information of the distribution can be quantied directly from the acquired signal, without the need for post-processing it. These lters were analyzed with values applicable in pre-clinical and clinical equipment. These results oer a new mechanism to make selective images of microestructural sizes and obtain quantitative information on the parameters that dene the composition of biological tissues.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Nuclear magnetic resonance; Resonancia magnética nuclear; [Magnetic resonance imaging; Imágenes de resonancia magnética; Molecular difusion; Difusión molecular]
Referencias:[1] Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Cote, M.-A., Garyfallidis, E., Zhong, J., et al. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8, 1349, 2017. 2, 13 [2] Duval, T., Stikov, N., Cohen-Adad, J. Modeling white matter microstructure. Functional neurology, 31 (4), 217, 2016. 2, 13 [3] Liewald, D., Miller, R., Logothetis, N., Wagner, H.-J., Schuz, A. Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biological cybernetics, 108 (5), 541-557, 2014. 2 [4] Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and alzheimer's disease. Neurobiology of aging, 25 (1), 5-18, 2004. 2 [5] Bartzokis, G., Lu, P. H., Mintz, J. Human brain myelination and amyloid beta deposition in alzheimer's disease. Alzheimer's & dementia, 3 (2), 122-125, 2007. 2 [6] Reynaud, O. Time-dependent diffusion mri in cancer: Tissue modeling and applications. Frontiers in Physics, 5, 58, 2017. 3 [7] Zwick, A., Alvarez, G. A., Kurizki, G. Maximizing Information on the Environment by Dynamically Controlled Qubit Probes. Phys. Rev. Applied, 5 (1), 014007, ene. 2016. URL http://link.aps.org/doi/10.1103/PhysRevApplied. 5.014007. 3, 31 [8] Zwick, A., Alvarez, G. A., Kurizki, G. Criticality of environmental information obtainable by dynamically controlled quantum probes. Phys. Rev. A, 94 (4), 042122, 2016. URL http://link.aps.org/doi/10.1103/PhysRevA.94.042122. 3 [9] Alvarez, G. A., Shemesh, N., Frydman, L. Coherent dynamical recoupling of diffusion-driven decoherence in magnetic resonance. Phys. Rev. Lett., 111 (8), 080404, ago. 2013. URL http://link.aps.org/doi/10.1103/PhysRevLett. 111.080404. 3, 17, 18, 19, 21, 22, 23, 24 [10] Shemesh, N., Alvarez, G. A., Frydman, L. Measuring small compartment dimensions by probing diusion dynamics via non-uniform oscillating-gradient spinecho (NOGSE) NMR. J. Magn. Reson., 237, 49-62, dic. 2013. URL http: //www.sciencedirect.com/science/article/pii/S1090780713002309. 18, 20, 56, 57 [11] Shemesh, N., Alvarez, G. A., Frydman, L. Size Distribution Imaging by Non- Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI. PLoS One, 10 (7), e0133201, jul. 2015. URL http://dx.doi.org/10.1371/journal.pone.0133201. 3, 4, 49, 51 [12] Smith, P. E., Bensky, G., Alvarez, G. A., Kurizki, G., Frydman, L. Shift-driven modulations of spin-echo signals. Proceedings of the National Academy of Sciences, 109 (16), 5958-5961, 2012. 3, 17 [13] Alvarez, G. A., Shemesh, N., Frydman, L. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance. J. Chem. Phys., 140 (8), 084205, feb. 2014. URL http://scitation. aip.org/content/aip/journal/jcp/140/8/10.1063/1.4865335. 3, 18, 20 [14] Fan, Q., Nummenmaa, A., Wichtmann, B., Witzel, T., Mekkaoui, C., Schneider, W., et al. Validation of diffusion mri estimates of compartment size and volume fraction in a biomimetic brain phantom using a human mri scanner with 300 mt/m maximum gradient strength. Neuroimage, 2018. 4 [15] Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P. J. Axcaliber: a method for measuring axon diameter distribution from diffusion mri. Magnetic Resonance in Medicine: An Oficial Journal of the International Society for Magnetic Resonance in Medicine, 59 (6), 1347-1354, 2008. [16] Alexander, D. C. A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features. Magnetic Resonance in Medicine: An Oficial Journal of the International Society for Magnetic Resonance in Medicine, 60 (2), 439-448, 2008. 4 [17] Slichter, C. Principles of Magnetic Resonance. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996. 5, 7 [18] Hahn, E. L. Spin echoes. Phys. Rev., 80, 580-594, 1950. 11 [19] Carr, H. Y., Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev., 94, 630-638, 1954. 11, 15 [20] Le Bihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci., 4 (6), 469-480, 2003. 13, 14 [21] Meiboom, S., Gill, D. Modied spin-echo method for measuring nuclear relaxation times. Review of scientic instruments, 29 (8), 688-691, 1958. 15 [22] Suter, D., Alvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys., 88 (4), 041001, 2016. URL http://link. aps.org/doi/10.1103/RevModPhys.88.041001. 17 [23] Meriles, C. A., Jiang, L., Goldstein, G., Hodges, J. S., Maze, J., Lukin, M. D., et al. Imaging mesoscopic nuclear spin noise with a diamond magnetometer. The Journal of chemical physics, 133 (12), 124105, 2010. 17 [24] Alvarez, G. A., Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Physical review letters, 107 (23), 230501, 2011. [25] Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., et al. Noise spectroscopy through dynamical decoupling with a superconducting ux qubit. Nature Physics, 7 (7), 565-570, 2011. 17 [26] Alvarez, G. A., Ajoy, A., Peng, X., Suter, D. Performance comparison of dynamical decoupling sequences for a qubit in a rapidly uctuating spin bath. Physical Review A, 82 (4), 042306, 2010. 17 [27] Ryan, C., Hodges, J., Cory, D. Robust decoupling techniques to extend quantum coherence in diamond. Physical Review Letters, 105 (20), 200402, 2010. [28] Souza, A. M., Alvarez, G. A., Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Physical review letters, 106 (24), 240501, 2011. 17 [29] Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., Zelaya, F. O. Difractionlike effects in nmr diffusion studies of uids in porous solids. Nature, 351 (6326), 467-469, 1991. 17 [30] Callaghan, P. T. Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford University Press, 2011. [31] Stejskal, E. O., Tanner, J. E. Spin diusion measurements: spin echoes in the presence of a time-dependent eld gradient. The journal of chemical physics, 42 (1), 288-292, 1965. 17 [32] Stepisnik, J. Validity limits of gaussian approximation in cumulant expansion for diffusion attenuation of spin echo. Physica B: Condensed Matter, 270 (1), 110-117, 1999. 19 [33] Klauder, J., Anderson, P. Spectral diffusion decay in spin resonance experiments. Physical Review, 125 (3), 912, 1962. 20 [34] Stepisnik, J., Lasic, S., Mohorix, A., Sersa, I., Sepe, A. Spectral characterization of diffusion in porous media by the modulated gradient spin echo with CPMG sequence. J. Magn. Reson., 182 (2), 195-199, oct. 2006. URL http: //linkinghub.elsevier.com/retrieve/pii/S1090780706001819. 20 [35] Hollingsworth, K., Johns, M. Measurement of emulsion droplet sizes using pfg nmr and regularization methods. Journal of colloid and interface science, 258 (2), 383-389, 2003. 54
Materias:Biología
Medicina
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica
Código ID:749
Depositado Por:Tamara Cárcamo
Depositado En:05 Feb 2021 10:30
Última Modificación:05 Feb 2021 10:30

Personal del repositorio solamente: página de control del documento