Estudio de la rugosidad en paredes de dominio en GdFeCo. / Study of the roughness of domain walss in GdFeCo.

Jordán Ringgold, Daniel (2018) Estudio de la rugosidad en paredes de dominio en GdFeCo. / Study of the roughness of domain walss in GdFeCo. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
6Mb

Resumen en español

En los materiales ferromagnéticos se suelen observar, en el rango de pequeños campos magnéticos, la coexistencia de dominios cuyas magnetizaciones apuntan en sentidos diferentes. En particular, en las películas delgadas con anisotropía magnética perpendicular, la dirección de la magnetización de los dominios apunta siempre perpendicular al plano de la muestra, prefiriendo dos posibles direcciones. La región donde ocurre la transición de un dominio a otro se denomina pared de dominio magnético. La energía elástica en la pared, la temperatura, los campos magnéticos externos y el desorden propio de la muestra compiten entre sí causando que las paredes de dominio sean rugosas. Esta rugosidad, una propiedad geométrica de la pared de dominio, codifica información sobre las interacciones presentes en el material. Utilizando microscopía magneto-óptica por efecto Kerr polar y análisis de imágenes, desarrollamos un método para cuantificar la rugosidad de paredes de dominio magnéticas como una medida de las fluctuaciones en la posición de la pared de dominio. De este análisis se obtienen dos parámetros relevantes: el exponente de rugosidad, que caracteriza el crecimiento de la rugosidad como una ley de potencia con respecto a la longitud de escala, y la amplitud, que es una medida directa de la magnitud de estas fluctuaciones. En esta tesis, utilizando el método desarrollado, presentamos un estudio estadístico del exponente de rugosidad y la amplitud en películas delgadas ferrimagnéticas de GdFeCo. En particular discutimos cómo cambian estos parámetros cuando se aplica un campo magnético en el plano de la muestra. Presentamos también una herramienta computacional diseñada específicamente para este trabajo.

Resumen en inglés

It is commonly observed in ferromagnetic materials, in the range low magnetic elds, the coexistence of domains whose magnetizations point in different directions. In particular, in thin magnetic lms with perpendicular magnetic anisotropy, the direction of the domain magnetization always points perpendicular to the plane of the sample, prefering two possible directions. The region where the transition occurs from one domain to the other is called the magnetic domain wall. The elastic energy of the wall, the temperature, the external magnetic fields, and the sample's intrinsic disorder compete amongst them causing the wall to be rough. This roughness, a geometrical property of the domain wall, codies information about the interactions present in the material. Using polar magneto-optic Kerr effect microscopy and image analysis, we developed a method to quantify the roughness of the magnetic domain wall, as a measure of the fluctuations in the position of the wall. From this analysis two relevant parameters are obtained: the roughness exponent, which describes the growth of the roughness as a power law with respect to the scale length, and the amplitude, which is a direct measure of the magnitude of these fluctuations. In this thesis, using the method we developed, we present a statistical study of the roughness exponent and amplitude in ferrimagnetic GdFeCo thin lms. Particularly, we discuss how these parameters change when an in-plane magnetic eld is applied. We also present a computational tool designed specically for this work.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Magnetic fields; Campos magnéticos; [Magnetic thin films; Películas magnéticas delgadas; Magnetic domain walls; Paredes de dominios magnéticos; Dynamics of interfaces; Dinámica de interfases]
Referencias:[1] Coey, J. M. D. Magnetism and Magnetic Materials. Cambridge: Cambridge University Press, 2010. 2, 3, 4, 6, 22, 23 [2] Cullity, B. D., Graham, C. D. Introduction to Magnetic Materials. John Wiley & Sons, Inc., 2009. [3] Getzlaff, M. Fundamentals of Magnetism. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008. 3 [4] Lemerle, S., Ferre, J., Chappert, C., Mathet, V., Giamarchi, T., Le Doussal, P. Domain Wall Creep in an Ising Ultrathin Magnetic Film. Physical Review Letters, 80 (4), 849-852, jan 1998. 7, 13, 15, 17 [5] Giamarchi, T., Kolton, A., Rosso, A. Dynamics of Disordered Elastic Systems. En: Jamming, Yielding, and Irreversible Deformation in Condensed Matter, pags. 91-108. Berlin/Heidelberg: Springer-Verlag, 2006. 7 [6] Meakin, P. The growth of rough surfaces and interfaces. Physics Reports, 235 (4- 5), 189-289, dec 1993. 9 [7] Barabasi, A.-L., Stanley, H. E. Fractal Concepts in Surface Growth. Cambridge: Cambridge University Press, 1995. 9, 10, 13, 14, 17 [8] Guyonnet, J., Agoritsas, E., Bustingorry, S., Giamarchi, T., Paruch, P. Domain walls roughness in ferroelectric materials: A survey of different scaling analyses, 2016. Trabajo no publicado. 9, 10, 11 [9] Agoritsas, E., Lecomte, V., Giamarchi, T. Temperature-induced crossovers in the static roughness of a one-dimensional interface. Physical Review B - Condensed Matter and Materials Physics, 82 (18), 1-23, 2010. 11 [10] Agoritsas, E., Lecomte, V., Giamarchi, T. Static uctuations of a thick 1D interface in the 1+1 Directed Polymer formulation: numerical study. Physical Review E, 87 (6), 062405, may 2013. [11] Agoritsas, E., Lecomte, V., Giamarchi, T. Static uctuations of a thick onedimensional interface in the 1+1 directed polymer formulation. Physical Review E, 87 (4), 042406, apr 2013. 11 [12] Metaxas, P. J. Domain wall dynamics in ultrathin ferromagnetic lm structures: disorder, coupling and periodic pinning. Tesis Doctoral, University of Western Australia & Universite Paris-Sud XI, 2009. 12 [13] Ferrero, E. E., Bustingorry, S., Kolton, A. B., Rosso, A. Numerical approaches on driven elastic interfaces in random media. Comptes Rendus Physique, 14 (8), 641-650, 2013. 13, 16, 17 [14] Bustingorry, S., Kolton, A. B., Giamarchi, T. Thermal rounding of the depinning transition. EPL (Europhysics Letters), 81 (2), 26005, jan 2008. 13 [15] Bustingorry, S., Kolton, A. B., Giamarchi, T. Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt lms. Physical Review B - Condensed Matter and Materials Physics, 85 (21), 1-7, 2012. [16] Purrello, V. H., Iguain, J. L., Kolton, A. B., Jagla, E. A. Creep and thermal rounding close to the elastic depinning threshold. Physical Review E, 96 (2), 022112, aug 2017. 13 [17] Guyonnet, J. Growing up at the nanoscale: studies of ferroelectric domain wall functionalities, roughening, and dynamic properties by atomic force microscopy. Tesis Doctoral, Universite de Geneve, 2013. 13, 48, 54, 58 [18] Chauve, P., Giamarchi, T., Le Doussal, P. Creep and depinning in disordered media. Physical Review B, 62 (10), 624-6267, sep 2000. 15, 16 [19] Grassi, M. P. Dinámica de paredes de dominios y estadística de avalanchas en películas delgadas de Pt/Co/Pt. Tesis de Maestría, Instituto Balseiro - Universidad Nacional de Cuyo, 2016. 15 [20] Grassi, M. P., Kolton, A. B., Jeudy, V., Mougin, A., Bustingorry, S., Curiale, J. Intermittent collective dynamics of domain walls in the creep regime. Physical Review B, 98 (22), 224201, dec 2018. 15 [21] Kolton, A. B., Rosso, A., Giamarchi, T., Krauth, W. Creep dynamics of elastic manifolds via exact transition pathways. Physical Review B - Condensed Matter and Materials Physics, 79 (18), 1-13, 2009. 17 [22] Kolton, A. B., Rosso, A., Giamarchi, T., Krauth, W. Dynamics below the depinning threshold in disordered elastic systems. Physical Review Letters, 97 (5), 1-4, 2006. 17, 18 [23] Sander, D., Valenzuela, S. O., Makarov, D., Marrows, C. H., Fullerton, E. E., Fischer, P., et al. The 2017 Magnetism Roadmap. Journal of Physics D: Applied Physics, 50 (36), 363001, sep 2017. 18 [24] Stamps, R. L., Breitkreutz, S., Akerman, J., Chumak, A. V., Otani, Y., Bauer, G. E. W., et al. The 2014 Magnetism Roadmap. Journal of Physics D: Applied Physics, 47 (33), 333001, aug 2014. 43 [25] Hirohata, A., Takanashi, K. Future perspectives for spintronic devices. Journal of Physics D: Applied Physics, 47 (19), 193001, may 2014. 18 [26] Allwood, D. A., Xiong, G., Faulkner, C. C., Atkinson, D., Petit, D., Cowburn, R. P. Magnetic domain-wall logic. Science, 309 (5741), 1688-1692, sep 2005. 18 [27] Roschewsky, N., Lambert, C. H., Salahuddin, S. Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Physical Review B, 96 (6), 1{5, 2017. 21 [28] Kim, K.-J., Kim, S. K., Hirata, Y., Oh, S.-H., Tono, T., Kim, D.-H., et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nature Materials, 16 (12), 1187-1192, sep 2017. 24 [29] Hirata, Y., Kim, D. H., Okuno, T., Nishimura, T., Kim, D. Y., Futakawa, Y., et al. Correlation between compensation temperatures of magnetization and angular momentum in GdFeCo ferrimagnets. Physical Review B, 97 (22), 1-6, 2018. 21 [30] Albornoz, L. Tesis Doctoral, Instituto Balseiro - Universidad Nacional de Cuyo, 2018. Trabajo por concluir. 27 [31] Je, S.-G., Kim, D.-H., Yoo, S.-C., Min, B.-C., Lee, K.-J., Choe, S.-B. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Physical Review B, 88 (21), 214401, dec 2013. 43, 45 [32] Hrabec, A., Porter, N. A., Wells, A., Benitez, M. J., Burnell, G., McVitie, S., et al. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin lms. Physical Review B, 90 (2), 020402, jul 2014. 45 [33] Ha Pham, T., Vogel, J., Sampaio, J., Vanatka, M., Rojas-Sánchez, J. C., Bon- m, M., et al. Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction. Epl, 113 (6), 2016. 43, 45 [34] Thiaville, A., Rohart, S., Jue, E., Cros, V., Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic lms. EPL (Europhysics Letters), 100 (5), 57002, dec 2012. 43 [35] Malozemoff, A. P., Slonczewski, J. C. Magnetic DomainWalls in Bubble Materials. Elsevier, 1979. 45 [36] Jeudy, V., Díaz Pardo, R., Savero Torres, W., Bustingorry, S., Kolton, A. B. Pinning of domain walls in thin ferromagnetic lms. Physical Review B, 98 (5), 054406, aug 2018. 45 [37] Guimares, A. P. Principles of Nanomagnetism. NanoScience and Technology. Cham: Springer International Publishing, 2017. 45
Materias:Física > Materia condensada
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:752
Depositado Por:Tamara Cárcamo
Depositado En:14 Nov 2019 13:32
Última Modificación:14 Nov 2019 13:32

Personal del repositorio solamente: página de control del documento