Haces moleculares supersónicos en procesos de separación isotópica. / Supersonic molecular beams in isotope separation processes.

De Simone, Gabriel A. (2018) Haces moleculares supersónicos en procesos de separación isotópica. / Supersonic molecular beams in isotope separation processes. Trabajo Especial Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
2187Kb

Resumen en español

Dada su importancia en algunos métodos de separación isotópica asistida por láser, se estudió el proceso de formación de clusters en la expansión de un sistema de moléculas del tipo XF_6 (SF_6 y UF_6). Abordando el estudio del sistema desde la mecánica clásica y dada la importancia que en los procesos de separación tiene el estado vibracional de las moléculas, se propuso un mejor potencial intramolecular que los encontrados en la bibliografía. Este se ajustó a partir de las frecuencias de vibración experimentales de las moléculas. Se empleó dinámica molecular para validar el modelo y estudiar procesos fuera del equilibrio termodinámico. Se estudió la formación de clusters en la expansión libre de un gas de SF6. Se encontró que, al final de la expansión, sobrevive una proporción estable de clusters, que aumenta con la presión. Se vio que los clusters tendrían a formarse en las regiones con menor temperatura y mayor densidad. Con sistemas de 8 mil y 64 mil moléculas se obtuvieron resultados indistinguibles; solo se modificó la duración de los tiempos de relajación y la incerteza estadística de las determinaciones. Si bien la teoría cinética de gases no incluye la formación de clusters, los resultados obtenidos para las distribuciones de velocidades coincidían con los esperados a partir de esta teoría.

Resumen en inglés

Given its importance in some laser isotope separation methods, we studied cluster formation processes during the expansion of a XF_6 (SF_6 and UF_6) like molecule system. Using a classical mechanics approach and given the relevance of the molecular vibrational state in these separation processes, we present an improved intramolecular potential function compared to those found in previous works. We obtained the potential parameters from measured molecule vibration frequencies. In order to test the force field and to study non-equilibrium processes, we employed Molecular Dynamics. We studied cluster formation during the free expasion of gaseous SF6. At the end of the expansion, we found that an amount of stable clusters had survived, which increased with pressure. We noticed that cluster formation was promoted in regions with lower temperature and higher density. Working with 8 thousand and 64 thousand molecule systems, we obtained identical results; only relaxation times and statistical uncertainty changed. Although clusters are not described in the frame of kinetic theory of gases, the obtained speed distributions agreed with those predicted by this theory.

Tipo de objeto:Tesis (Trabajo Especial Física)
Palabras Clave:Expansion; Expansión; Isotope separation; Separación isotópica; Beams; Haces; [Laser]
Referencias:[1] de Groot, P. A. Handbook of Stable Isotope Analytical Techniques Volume II. Elsevier, 2009. 1 [2] Parvin, P., Sajad, B., Silakhori, K., Hooshvar, M., Zamanipour, Z. Molecular laser isotope separation versus atomic vapor laser isotope separation. Progress in Nuclear Energy, 44, 331, 2004. 1, 2 [3] Housecroft, C., Sharpe, A. G. Inorganic Chemistry. Pearson, 2012. 6 [4] Huang, K. Statistical Mechanics. John Wiley & Sons, 1987. 8, 13 [5] Rapaport, D. C. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. 8, 9, 14, 15, 16, 29 [6] Pawley, G. S. Molecular dynamics simulation of the plastic phase; a model for SF6. Mol. Phys., 43, 1321, 1981. 9 [7] NWChem. NWChem Documentation. NWChem, 2018. 9 [8] Dunning, H. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. J. Chem. Phys., 90, 1007, 1989. 9 [9] Olivet, A., Vega, L. F. Optimized molecular force eld for sulfur hexafluoride simulations. The Journal of Chemical Physics, 126, 144502, 2007. xii, xii, xv, xv, xv, 11, 12, 21, 22, 30, 31, 32, 33, 34, 51 [10] Ranganathan, S., Nakai, K., Schonbach, C. Encyclopedia of Bioinformatics and Computational Biology. Elsevier, 2018. 14 [11] Kubo, R. Statistical Mechanics: An Advanced Course with Problems and Solutions. North-Holland Personal Library, 1965. 15, 16 [12] Thompson, A. P., Plimpton, S. J., Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. The Journal of Chemical Physics, 131, 154107, 2009. 15 [13] Sandia National Laboratories. LAMMPS Users Manual. Sandia Corporation, 2018. 16, 36 [14] Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 255, 1984. 17 [15] Kaxiras, E. Atomic and Electronic Structure of Solids. Cambridge University Press, 2003. 19 [16] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., et al. GNU Scientic Library Reference Manual. Network Theory Ltd, 2009. 21 [17] Maros, I. Computational Techniques of the Simplex Method. Springer, 2003. 21 [18] Wagner, N. L., Wuest, A., Christov, I. P., Popmintchev, T., Zhou, X., Murnane, M., et al. Monitoring molecular dynamics using coherent electrons from high harmonic generation. Proceedings of the National Academy of Sciences of the United States of America, 103, 13279, 2006. xv, 21, 22 [19] DeWitt, R. Uranium hexafluoride: A survey of the physico-chemical properties. Goodyear Atomic Corporation, 1960. xv, 21, 23 [20] Pernaa, J., Aksela, M., Pearl, S. Introduction to Molecular Modeling in Chemistry Education. Edumendo Publishing, 2017. 21 [21] Kardar, M. Statistical Physics of Fields. Cambridge University Press, 2007. 23 [22] Camiola, V. D., Tozzini, V. Collective mode mining from molecular dynamics simulations: A comparative approach. International Journal of Computational Methods, 15, 1850108, 2018. 23, 25 [23] Brigham, E. O. The Fast Fourier Transform and Its Applications. Springer, 2003. 24 [24] Sears, F. W., Salinger, G. Termodinámica, teoría cinética y termodinámica estadística. Editorial Reverté, 1978. 28 [25] Funke, M., Kleinrahm, R.,Wagner, W. Measurement and correlation of the (p; t) relation of sulphur hexafluoride (SF6). i. the homogeneous gas and liquid region in the temperature range from 225 K to 340 K at pressures up to 12 MPa. J. Chem. Thermodynamics, 34, 717, 2002. xv, 30 [26] Chase, M. NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data, 14, 1985. xii, 31, 32 [27] Behringer, H., Pleimling, M., Huller, A. Finite-size behaviour of the microcanonical specic heat. Journal of Physics A, 38, 973, 2005. 31 [28] Beroual, A., Haddad, M. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. MDPI Journal Energies, 10, 1216, 2017. 31 [29] Boushehri, A., Bzowski, J., Kestin, J., Mason, E. A. Equilibrium and transport properties of eleven polyatomic gases at low density. J. Phys. Chem., 16, 445, 1987. xii, xv, 32, 33, 34 [30] Koch, D. Cahier technique no. 188 SF6 properties, and use in MV and HV switchgear. Schneider Electric, 2003. 40 [31] Kundu, P. K., Cohen, I. Fluid Mechanics. Elsevier, 2008. 40, 41
Materias:Física > Física molecular
Física > Óptica
Física > Física atómica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. LASIE > Subgcia. de aplicaciones de tecnología láser
Código ID:761
Depositado Por:Tamara Cárcamo
Depositado En:10 Jul 2019 14:21
Última Modificación:10 Jul 2019 14:21

Personal del repositorio solamente: página de control del documento