Determinación del volumen blanco de planificación en tratamientos de radioterapia esterotáctica corporal con rapidarcTM / Assesment of planning target volume in steroetactic body radiotherapy

Sabadías, Sofía Georgina (2018) Determinación del volumen blanco de planificación en tratamientos de radioterapia esterotáctica corporal con rapidarcTM / Assesment of planning target volume in steroetactic body radiotherapy. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
1600Kb

Resumen en español

La radioterapia estereotáctica corporal es una técnica que emplea dosis ablativas, por lo tanto un alto grado de confianza en la exactitud en la entrega de dosis al blanco resulta elemental no solo para lograr el control tumoral sino también para minimizar la toxicidad en tejidos normales. El cómputo de la distribución de dosis en los volúmenes blanco se realiza durante la planificación para una situación estática. Sin embargo existen variaciones inter e intra fracción que deben ser evaluadas. La determinación de volúmenes de planificación para cada caso es un problema no trivial y de plena actualidad. El presente trabajo propone aprovechar la tecnología del sistema de imágenes tridimensionales en línea, incorporada en el acelerador lineal para, a partir de las definiciones de volúmenes blanco aportada por Comisión Internacional de Unidades Radiológicas y la metodología de estimación de incertidumbres propuesta por The Royal College of Radiologists, evaluar errores sistemáticos y aleatorios presentes en el proceso radioterapéutico. Los errores medidos se emplean para calcular márgenes conformes a las incertidumbres inter e intra fracción observadas en el proceso radioterapéutico. Los márgenes obtenidos además se evalúan en función de la bibliografía para así poder determinar el PTV de modo más objetivo. Como resultado de las mediciones realizadas, la definición de un margen CTV-PTV isotrópico de 3mm en los casos de cáncer de próstata tratados con SBRT, se considera apropiado para salvar las incertidumbres geométricas encontradas durante proceso radioterapéutico aquí estudiado.

Resumen en inglés

Body stereotactic radiotherapy is a technique that uses ablative doses, therefore a high degree of confidence in the accuracy of the dose delivered to the target is elementary not only to achieve tumour control but also to minimise toxicity in normal tissues. The count of the dose distribution in the target volumes is performed during the planning stage for a static situation. However, there are inter and intrafractional variations that must be evaluated. The assesment of planning volumes for each case is a non-trivial and highly topical problem. The aim of this work is to take advantage of the three-dimensional imaging system, incorporated in the linear accelerator, in order to evaluate systematic and random errors in the radiotherapeutic process. Based on the definitions of target volumes, provided by the International Commission of Radiological Units, and the uncertainty estimation methodology, proposed by The Royal College of Radiologists. The measured errors are used to calculate appropriate margins for the inter and intrafractional uncertainties in the radiotherapeutic process. The margins obtained are also evaluated on the basis of the literature in order to determine the PTV more objectively. The incorporation of an isotropic margin of 3mm in cases of prostate cancer with SBRT seems to be sufficient to overcome the geometric uncertainties associated with the radiotherapeutic process.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:[SBRT, SBRT; Internal margin; Margen interno; Preparation margin; Margen de preparación; PTV;PVT; Systematic errors; Randon errors; Errores sistemáticos; Errores aleatorios; SBRT; SBRT]
Referencias:[1] Khan, F., & Gibbons, J. (2014). Khan's the physics of radiation therapy (5th ed.). Philadelphia, PA: Lippincott Williams & Wilkins/Wolters Kluwer. [2] Benedict, S., Yenice, K., Followill, D., Galvin, J., Hinson, W., & Kavanagh, B. et al. (2010). Stereotactic body radiation therapy: The report of AAPM Task Group 101. Medical Physics, 37(8), 4078-4101. doi: 10.1118/1.3438081 [3] Nagata, Y. (2015). Stereotactic body radiation therapy. Tokyo: Springer. [4] International Commission on Radiation Units and Measurements. ICRU Report 50. Prescribing, recording, and reporting photon beamtherapy. Bethesda, MD: ICRU, 1993. [5] International Commission on Radiation Units and Measurements.ICRU Report 62. Prescribing, recording, and reporting photon beamtherapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU, 1999. [6] The Royal College of Radiologists, Society and Collage of Radigraphers, Institute of Physics and Engenieering in Medice (2008). On target: Ensuring geometric accuracy in radiotherapy. London: The Royal College of Radiologists. [7] Dobbs, J., Barrett, A., Morris, S., & Roques, T. (2009). Practical Radiotherapy Planning. London, GBR: CRC Press. [8] Stroom, J., & Heijmen, B. (2002). Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiotherapy And Oncology, 64(1), 75-83. doi: 10.1016/s0167-8140(02)00140-8 [9] van Herk, M. (2004). Errors and margins in radiotherapy. Seminars In Radiation Oncology, 14(1), 52-64. doi: 10.1053/j.semradonc.2003.10.003 [10] van Herk, M., Remeijer, P., Rasch, C., & Lebesque, J. (2000). The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. International Journal Of Radiation Oncology, Biology, Physics, 47(4), 1121-1135. doi: 10.1016/s0360-3016(00)00518-6 [11] VMAT | Varian Medical Systems. (2018). Retrieved from https://www.varian.com/es-xl/oncology/treatment-techniques/external-beam-radiation/vmat [12] Computerized Imaging Reference Systems, Inc. (2018). Retrieved from http://www.cirsinc.com/file/Products/002LFC/002LFC%20DS%20090116(2).pdf [13] Yoder, A., Waheed, N., Van Wyhe, R., & Carpenter, S. (2018). Stereotactic Body Radiation Therapy for Prostate Cancer: An Institutional Experience Using MRI-guided Treatment Planning. Cureus. doi: 10.7759/cureus.2590 [14] Chen, L., Suy, S., Uhm, S., Oermann, E., Ju, A., & Chen, V. et al. (2013). Stereotactic Body Radiation Therapy (SBRT) for clinically localized prostate cancer: the Georgetown University experience. Radiation Oncology, 8(1), 58. doi: 10.1186/1748-717x-8-58 [15] Tree, A., Jones, C., Sohaib, A., Khoo, V., & van As, N. (2013). Prostate stereotactic body radiotherapy with simultaneous integrated boost: which is the best planning method?. Radiation Oncology, 8(1), 228. doi: 10.1186/1748-717x-8-228 [16] Calvo-Ortega, J., Hermida-López, M., Moragues-Femenía, S., Pozo-Massó, M., & Casals-Farran, J. (2017). Investigating the spatial accuracy of CBCT-guided cranial radiosurgery: A phantom end-to-fiend test study. Physica Medica, 35, 81-87. doi: 10.1016/j.ejmp.2017.02.020 [17] Seguimiento extracraneal Calypso® - Recursos | Varian Medical Systems. (2018). Retrieved from https://www.varian.com/esxl/oncology/products/real-time-tracking-motion-management/calypso-extracranial-tracking?cat=resources [18] Kupelian, P., Willoughby, T., Mahadevan, A., Djemil, T., Weinstein, G., & Jani, S. et al. (2007). Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. International Journal Of Radiation Oncology, Biology, Physics, 67(4), 1088-1098. doi: 10.1016/j.ijrobp.2006.10.026 [19] Beltran, C., Herman, M., & Davis, B. (2008). Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods. International Journal Of Radiation Oncology, Biology, Physics, 70(1), 289-295. doi: 10.1016/j.ijrobp.2007.08.040 [20] Wu, Q., Li, T., Yuan, L., Yin, F., & Lee, W. (2013). Single Institution’s Dosimetry and IGRT Analysis of Prostate SBRT. Radiation Oncology, 8(1), 215. doi: 10.1186/1748-717x-8-215 [21] Su, Z., Zhang, L., Murphy, M., & Williamson, J. (2011). Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies. International Journal Of Radiation Oncology, Biology, Physics, 81(3), 880-887. doi: 10.1016/j.ijrobp.2010.07.1978 [22] Magli, A., Malisan, M., Fontanella, C., Crespi, M., Guernieri, M., & Titone, F. et al. (2016). EP-1747: Assessment of PTV margins accounting for prostate intrafraction motion in SBRT with online IGRT. Radiotherapy And Oncology, 119, S818. doi: 10.1016/s0167-8140(16)32998-
Materias:Medicina > Radioterapia
Divisiones:Centro médico Deán Funes
Código ID:772
Depositado Por:Tamara Cárcamo
Depositado En:22 Feb 2021 10:30
Última Modificación:22 Feb 2021 10:31

Personal del repositorio solamente: página de control del documento