Simulación de alta resolución de turbulencia no estacionaria. / High resolution simulations of unsteady turbulence.

Zúñiga, Santiago L. (2018) Simulación de alta resolución de turbulencia no estacionaria. / High resolution simulations of unsteady turbulence. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
21Mb

Resumen en español

El flujo combinado consiste de un flujo oscilatorio superpuesto sobre una corriente constante. En este trabajo se estudia flujo combinado en la cercanía de una pared rígida mediante simulación numérica directa (DNS, por Direct Numerical Simulation) de las ecuaciones de Navier-Stokes. Este tipo de flujos se presenta, por ejemplo, en ambientes costeros donde corrientes marinas se superponen a las olas, flujo de sangre, álabes de turbomáquinas, o flujo cruzado entre subcanales de elementos combustibles nucleares. Las simulaciones se realizaron para un número de Reynolds basado en la frecuencia y amplitud de oscilación de 4:95E5 en régimen de transición turbulento y la relación entre la magnitud del gradiente de presión constante y oscilatorio que fuerza el fluido se varió entre valores de 0:005 y 0:2. Estos parámetros corresponden al régimen dominado por las oscilaciones, con frecuencias bajas. El trabajo se focaliza en el análisis de las velocidades medias, las tensiones de corte totales, la energía cinética turbulenta y las componentes de la ecuación de balance de la misma. Los resultados obtenidos demuestran que para el caso con mayor componente de correntada el comportamiento corresponde a un flujo cuasiestacionario cuyas propiedades no dependen del avance temporal si se utiliza la escala correspondiente para cada momento de tiempo. Por su parte para los casos dominados por la oscilación se muestra que, para las amplitud seleccionadas, el comportamiento es similar al correspondiente a una oscilación pura con diferencias menores. En los casos de transición el comportamiento se asemeja al estacionario para fases lejos de los mínimos del corte en la pared.

Resumen en inglés

Combined flow is the superposition of a oscillatory flow and a stationary current. In the present work the turbulent boundary combined flow is studied, using direct numerical simulations (DNS) of the Navier-Stokes equations. These type of flows are relevant in coastal regions where waves are in the presence of maritime currents, blood flow, turbomachines blades or cross flow between subchannels of nuclear fuel elements. Simulations were performed using a wave Reynolds number, based on the amplitude and frequency of oscillation, of 4:95E5 in the transition to fully turbulent regime. The ratio between the current pressure gradient and the amplitude of oscillatory gradient used in the simulations spans between 0:005 and 0:2 corresponding to the low frequency wave-dominated regime. The present work is focused on the study of mean velocities, total shear stress, turbulent kinetic energy (TKE) and the TKE budget. It is found that for the case with the greatest current component the flow behaviour follows a quasistationary regime, for which properties do not show a temporal dependence as long as the correct instantaneus scales are used. For the wave dominated cases it is shown that the flow behaviour follows closely the wave case with minor differences. For transitional cases and for phases away from the minimum shear stress the flow behaviour follows the current dominated one.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Turbulence flow; Flujo turbulento; [Unsteady turbulence; Turbulencia no estacionaria; Turbulent oscillatory flow; Flujo turbulento oscilatorio; Channel flow; Flujo de canal; Direct numerical simulation; Simulación numérica directa; Turbulent kinetic energy; Energía cinética turbulenta]
Referencias:[1] Perillo, M. M., Best, J. L., Garcia, M. H. A new phase diagram for combined- flow bedforms. Journal of Sedimentary Research, 84 (4), 301-313, apr 2014. [2] Felli, M., Falchi, M. Propeller wake evolution mechanisms in oblique flow conditions. Journal of Fluid Mechanics, 845, 520-559, apr 2018. [3] Merzari, E., Obabko, A., Fischer, P., Halford, N., Walker, J., Siegel, A., et al. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives. Nuclear Engineering and Design, 312, 86-98, feb 2017. [4] Amos, C., Bowen, A., Huntley, D., Lewis, C. Ripple generation under the combined influences of waves and currents on the canadian continental shelf. Continental Shelf Research, 8 (10), 1129-1153, oct 1988. [5] Uchida, S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 7 (5), 403-422, 1956. [6] Ramaprian, B. R., Tu, S. W. Fully developed periodic turbulent pipe flow. part 2. the detailed structure of the flow. Journal of Fluid Mechanics, 137, 59, dec 1983. [7] Tardu, S. F., Binder, G., Blackwelder, R. F. Turbulent channel flow with largeamplitude velocity oscillations. Journal of Fluid Mechanics, 267, 109, may 1994. [8] He, S., Jackson, J. An experimental study of pulsating turbulent flow in a pipe. European Journal of Mechanics - B/Fluids, 28 (2), 309-320, mar 2009. [9] Papadopoulos, P., Vouros, A. Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies. International Journal of Heat and Fluid Flow, 58, 54-67, apr 2016. [10] Scotti, A., Piomelli, U. Numerical simulation of pulsating turbulent channel flow. Physics of Fluids, 13 (5), 1367-1384, may 2001. [11] Manna, M., Vacca, A., Verzicco, R. Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part1: Time-averaged analysis. Journal of Fluid Mechanics, 700, 246-282, apr 2012. [12] Manna, M., Vacca, A., Verzicco, R. Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 2. Phase-averaged analysis. Journal of Fluid Mechanics, 766, 272-296, feb 2015. [13] Lodahl, C. R., Sumer, B. M., Fredse, J. Turbulent combined oscillatory flow and current in a pipe. Journal of Fluid Mechanics, 373, 313-348, oct 1998. [14] Mao, Z., Hanratty, T. J. In fluence of large-amplitude oscillations on turbulent drag. AIChE Journal, 40 (10), 1601-1610, oct 1994. [15] Weng, C., Boij, S., Hani, A. Numerical and theoretical investigation of pulsatile turbulent channel flows. Journal of Fluid Mechanics, 792, 98-133, feb 2016. [16] Sundstrom, L. R. J., Mulu, B. G., Cervantes, M. J. Wall friction and velocity measurements in a double-frequency pulsating turbulent flow. Journal of Fluid Mechanics, 788, 521-548, jan 2016. [17] Panton, R. L. Incompressible Flow. 4a ed. John Wiley and Sons, Inc, 2013. [18] Pope, S. B. Turbulent Flows. 1a ed. Cambridge University Press, 2000. [19] Wilcox, D. C. Turbulence Modeling for CFD. 3a edon. D C W Industries, 2006. [20] Kim, J., Moin, P., Moser, R. Turbulence statistics in fully developed channel flow at low reynolds number. Journal of Fluid Mechanics, 177, 133, apr 1987. [21] Jensen, B. L., Sumer, B. M., Fredse, J. Turbulent oscillatory boundary layers at high Reynolds numbers. Journal of Fluid Mechanics, 206, 265, sep 1989. [22] Akhavan, R., Kamm, R. D., Shapiro, A. H. An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 2. Numerical simulations. Journal of Fluid Mechanics, 225, 423, apr 1991. [23] Vittori, G., Verzicco, R. Direct simulation of transition in an oscillatory boundary layer. Journal of Fluid Mechanics, 371, 207-232, sep 1998. [24] Pedocchi, F., Cantero, M. I., García, M. H. Turbulent kinetic energy balance of an oscillatory boundary layer in the transition to the fully turbulent regime. Journal of Turbulence, 12, N32, jan 2011. [25] Stokes, G. G. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 9, 8, 1851. [26] Ramaprian, B. R., Tu, S.-W. An experimental study of oscillatory pipe flow at transitional Reynolds numbers. Journal of Fluid Mechanics, 100 (03), 513, oct 1980. [27] Ronneberger, D., Ahrens, C. D. Wall shear stress caused by small amplitude perturbations of turbulent boundary-layer flow: an experimental investigation. Journal of Fluid Mechanics, 83 (03), 433, dec 1977. [28] Binder, G., Kueny, J. L. Measurements of the periodic velocity oscillations near the wall in unsteady turbulent channel flow. En: Turbulent Shear Flows 3, pags. 6-17. Springer Berlin Heidelberg, 1982. [29] Mao, Z.-X., Hanratty, T. J. Studies of the wall shear stress in a turbulent pulsating pipe flow. Journal of Fluid Mechanics, 170, 545, sep 1986. [30] Pedocchi, F., Cantero, M., García, M. Direct numerical simulation of transitional Stokes boundary layer. En: Proceedings of the Second International Symposium on Shallow Flows (ISSF), pags. 10-12. 2008. [31] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A. Spectral Methods in Fluid Dynamics. Springer Berlin Heidelberg, 1988. [32] Cantero, M. I., Balachandar, S., Garcia, M. H. High-resolution simulations of cylindrical density currents. Journal of Fluid Mechanics, 590, oct 2007. [33] Chorin, A. J. Numerical solution of the navier-stokes equations. Mathematics of Computation, 22 (104), 745-745, 1968. [34] Salinas, J. S. Modelado y Simulación de Corrientes de Gravedad con Efectos de Rotación. mathesis, 2014. [35] Blackwelder, R. F., Haritonidis, J. H. Scaling of the bursting frequency in turbulent boundary layers. Journal of Fluid Mechanics, 132, 87, jul 1983
Materias:Ingeniería nuclear > Mecánica de fluidos
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Mecánica computacional
Código ID:776
Depositado Por:Tamara Cárcamo
Depositado En:24 Jun 2019 13:46
Última Modificación:24 Jun 2019 13:46

Personal del repositorio solamente: página de control del documento