Procesamiento digital de señales en comunicaciones ópticas. / Digital processing of signals in optical communications.

Estrada González , Yanet (2018) Procesamiento digital de señales en comunicaciones ópticas. / Digital processing of signals in optical communications. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
12Mb

Resumen en español

A partir de la aparicion del amplicador optico que compensa las perdidas de potencia en la fibra, la dispersión cromática como las no linealidades han pasado a ser los factores limitantes del desempeño en los enlaces de comunicaciones ópticas de alta capacidad. En la actualidad los formatos de modulación de fase son objeto de estudio en la literatura sobre el tema. Estos tipos de esquema requieren la detección coherente en la etapa de demodulación, lo que implica una complejidad alta del receptor y un elevado costo, limitando su uso principalmente a enlaces de larga distancia y alta capacidad. En cambio, en sistemas de mediana o corta distancia se opta por utilizar esquemas simples de modulación de intensidad, como OOK (por sus siglas en ingles, On-O Keying) o el formato de modulación de fase diferencial (DPSK por sus siglas en ingles). El objetivo principal de este trabajo es el de desarrollar técnicas de procesamiento digital de señales para compensar los efectos dispersivos que se producen en los sistemas de comunicaciones ópticas que emplean los esquemas de modulacion OOK y DPSK. En el caso de OOK se pretende ecualizar el efecto de la dispersión cromática producto de la propagación por la fibra. Por su parte, en DPSK se busca compensar los efectos distorsivos resultantes de las imperfecciones propias del detector balanceado empleado para su recepción. En líneas generales el procedimiento es análogo para ambos casos. Se presentan modelos analíticos para las señales involucradas tanto en condiciones ideal como cuando los efectos degradantes se hacen presentes. En base a dichos problemas se diseñan litros que cumplan con los requerimientos, siguiendo el criterio de minimizar el error cuadrático medio entre la salida y una señal deseada. Posteriormente se llevan a cabo simulaciones numéricas del tipo Monte Carlo que permiten dar cuenta del funcionamiento de los ecualizadores propuestos. Se evalúan probabilidades de error de bit y se analizan diagramas de ojo. Los resultados numéricos en cada caso se verifican mediante aproximaciones o cotas teóricas. Por otro lado, también se analiza el numero optimo de coeficientes haciendo un balance entre desempeño y costo computacional. Finalmente, para el esquema de modulación OOK se llevan a cabo experiencias de laboratorio con el objetivo de validar los modelos de señal usados y verificar el funcionamiento del ecualizador obtenido en condiciones realistas. Las mismas consisten en la medición de las formas de onda de señales, previa y posteriormente a la propagación por fibra óptica. Se emplean un tramo de 24 km de fibra óptica y un módulo compensador de dispersión equivalente a contar con 100 km de fibra entándar.

Resumen en inglés

From the beginnig of the optical amplier that compensates power losses in optical fibers, both the chromatic dispersion and the non-linearities have been the limitating factor in the perfomance of high capacity optical communication links. Nowadays, phase modulation formats are subject of study in the specic literature. These kind of schemes require coherent detection in demodulator's stage, which implies high complexity in the receiver and high cost,limiting its use mainly to long distances and high capacity links. For these reasons, it does not happen the same issue in middle and short distance systems, where simple intensity-modulation schemes are chosen, like OOK (on-o keying) or dierential phase shift keying (DPSK) modulation format. The main target of this work is to develop digital signal processing techniques in order to compensate the dispersive eects which are produced in optical communication systems that employ OOK and DPSK modulation schemes. In the case of OOK, the intention is to equalize the effect of the chromatic dispersion produced by ber pulse propagation. By his side, in DPSK it is required to compensate dispersive effects due to proper imperfections in the balanced detector employed by his reception. Generally speaking, the process is analogous for both cases. Analytical models are presented for the signals involved in both ideal conditions as when degrading eects occur. Based on the mencioned issues, lters that satisfy the requirements are designed, following the criteria of minimizing the mean square error between the output and the desired signal. Next, numerical simulations of Monte Carlo type are carried out in such a way as to give account of the performance of the equalizer proposed. The bit error rate is evaluated and eye diagrams are analysed. In each case numerical results are veried by means of approximations or theoretical bounds. On the other hand, it is also analysed the optimum number of coecients carrying out a balance between the performance and computational cost. Finally, for OOK modulation scheme, laboratory tests are performed with the objective of the validation of the used signal models and the verication of the performance of the equalizer obtained in realistic conditions. They consist in the measurement of signal waveforms, previous and subsequently to the propagation in the optical fiber. It is employed a 24 km span of optical fiber and a dispersion compensation module equivalent to count 100 km of standard fiber.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:[Chromatic dispersion; Dispersión cromática; Signal processing; Procesamiento digital; Dispersive effects; Efectos dispersivos; Optical communications; Comunicaciones ópticas]
Referencias:[1] L. B. Du, D. Raque, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. J. Lowery, Digital ber nonlinearity compensation: toward 1-Tb/s transport, IEEE signal processing magazine, vol. 31, no. 2, pp. 46-56, 2014. 1 [2] Agrawal, Govind P, Fiber-optic communication systems, John Wiley & Sons, 2012. 1, 2, 3, 8, 9, 10, 11, 20, 25, 69 [3] Gnauck, Alan H and Winzer, Peter J, Optical phase-shift-keyed transmission. Journal of lightwave technology, vol. 23, no. 1, pp. 115,2005. 2, 16, 17, 23, 46, 73 [4] M. Mlejnek, Balanced differential phase-shift keying detector performance: an analytical study, Optics letters, vol. 31, no. 15, pp. 2266-2268, 2006. 2 [5] M. S. Hai and O. Liboiron-Ladouceur, Design of a 50-Gb/s SOI-based DPSK demodulator for dense photonic integration, IEEE Photonics Technology Letters, vol. 24, no. 19, pp. 1749-1752, 2012. 2, 5 [6] F. Bontempi, S. Faralli, X. J. Leijtens, J. Bolk, G. Contestabile, and N. Andriolli, A 40 Gb/s InP-monolithically integrated DPSK-demodulator enhanced by crossgain- compression in an SOA, Optics Communications, vol. 340, pp. 155-158, 2015. 2, 4, 5 [7] Winzer, Peter J and Kim, Hoon Degradations in balanced DPSK receivers, IEEE Photonics Technology Letters, vol. 15, no. 9, pp. 1282-1284, 2003. 3, 23 [8] Bosco, G and Poggiolini, P, The impact of receiver imperfections on the performance of optical direct-detection DPSK, Journal of Lightwave Technology, vol. 23, no. 2, pp. 842, 2005. 3, 23 [9] Pablo A. Costanzo-Caso, C. Cuadrado-Laborde, R. Duchowicz, E. Sicre, Distortion in optical pulse equalization through phase modulation and dispersive transmission, Optics Communications, vol. 281, no. 15-16, pp. 4001-4007, 2008. 3 [10] E.B. Treacy, Optical pulse compression with diffraction gratings, IEEE Journal of quantum Electronics, vol. 5, no. 9, pp. 454-458, 1969. 3 [11] M. Nanou, C. Politi, A. Stavdas, G. Glentis, K. Georgoulakis, A. Emeretlis, and G. Theodoridis, Cost-effective optical transponders for deployed metropolitan area networks, Optics Communications, vol. 380, pp. 201-213, 2016. 3, 5, 23 [12] S.K.Varshney, N.J. Florous, K. Saitoh, M. Koshiba and T. Fujisawa, Numerical investigation and optimization of a photonic crystal ber for simultaneous dispersion compensation over S+ C+ L wavelength bands, Optics communications, vol. 274, no. 1, pp. 74-79, 2007. 3 [13] C. Madsen, J. Zhao, Optical lter design and analysis: a signal processing approach, New York: John Wiley & Sons, 1999. 3 [14] C. Xia, W. Rosenkranz, Electrical dispersion compensation for different modulation formats with optical ltering, Optical Fiber Communication Conference, 2006. 3, 4 [15] M. Bohn, C. Xia, Electrical and optical equalization strategies in direct detected high-speed transmission systems, AEU-International Journal of Electronics and Communications, vol. 63, no. 7, pp. 526-532, 2009. 3, 4 [16] J.W. Park, W.Z. Chung , Performance analysis of electrical mmse linear equalizers in optically amplied ook systems, Journal of the Optical Society of Korea, vol. 15, no. 3, pp. 232-236, 2011. 3 [17] J. Wang, J. M. Kahn, Performance of electrical equalizers in optically amplied OOK and DPSK systems, IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1397-1399, 2004. 3 [18] A. Pola, J. E. Cousseau, O. Agazzi, M. Hueda, A low-complexity decision feedforward equalizer architecture for high-speed receivers on highly dispersive channels, Journal of Control Science and Engineering, vol. 2013, pp. 3, 2013. 3, 4 [19] O.E. Agazzi, D.E. Crivelli and H.S. Carrer, Maximum likelihood sequence estimation in the presence of chromatic and polarization mode dispersion in intensity modulation/direct detection optical channels, Communications, 2004 IEEE International Conference on, vol. 5, pp 2787-2793, 2004. 3 [20] Mario R. Hueda, Diego E. Crivelli, Hugo S. Carrer, and Oscar E. Agazzi, Parametric estimation of IM/DD optical channels using new closed-form approximations of the signal PDF, Journal of lightwave technology, vol. 25, no. 3, pp. 957-975, 2007. 4 [21] C. Xia, W. Rosenkranz, Nonlinear electrical equalization for different modulation formats with optical ltering, Journal of Lightwave Technology, vol. 25, no. 4, pp. 996-1001, 2007. 4 [22] W. Rosenkranz, C. Xia, Electrical equalization for advanced optical communication systems, Int. J. Electron. Commun., vol. 51, no. 1, pp. 1{8, 2006. 4 [23] G. Katz, D. Sadot, Radial basis function network equalizer for optical communication ook system, Journal of Lightwave Technology, vol. 25, no. 9, pp. 2631-2637, 2007. 4 [24] G. Katz, D. Sadot, Radial basis function network for non-linear EDC in optical communication OOK system, Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, pp. 3, 2006. 4 [25] G. Katz, D. Sadot, A nonlinear electrical equalizer with decision feedback for OOK optical communication systems, IEEE Transactions on Communications, vol. 56, no. 12, 2008. 4 [26] A. G. Steffan, M. L. Nielsen, G. Tsianos, A. Umbach, A. Boutin, L. Fulop, and F. Verluise, 40 Gb/s DPSK receiver module with integrated free-space delay-lineinterferometer, in Proc. of the Conference on Optical Fiber Communication, pp. 1-3, 2009. 5 [27] J Wang, C. Zawadzki, N. Mettbach, W. Brinker, Z. Zhang, D. Schmidt, N. Keil, N. Grote, and M. Schell, Polarization insensitive 25-Gbaud direct D (Q) PSK receiver based on polymer planar lightwave hybrid integration platform, Optics express, vol. 19, no. 13, pp. 12197-12207, 2011. 5 [28] M. S. Hai and M. N. S. O. Liboiron-Ladouceur, Monolithic 1-2 MMI-based 25- Gb/s SOI DPSK demodulator integrated with SiGe photodetector, IEEE Photonics Technology Letters, vol. 27, no. 6, pp. 565-568, 2015. 5 [29] K. Vysrokinos, C. Vagionas, C. Mitsolidou, M. Cherchi, M. Harjanne, S. Ylinen, M. Kapulainein, T. Aalto, and A. Miliou, DPSK-Demodulation based on Ultra- Compact micron-scale SOI platform, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), pp. 1-3, 2015. 5 [30] K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. and Huttl, and C. Schubert, Performance of 40-Gb/s DPSK demodulator in SOItechnology, IEEE Photonics Technology Letters, vol. 20, no. 5/8, pp. 614, 2008. 5 [31] S. Okada, K. Igarashi, and K. Inoue, Bit-error-rate improvement of binary phaseshift keying signals with an optoelectronic regenerator based on the feed-forward control of a LiNbO3 intensity modulator, Optical Fiber Technology, vol. 24, pp. 49-55, 2015. [32] Tosi, Mauricio, Desarrollo de un receptor digital de comunicaciones ópticas para redes de acceso de alta capacidad., Universidad Nacional de Cuyo, 2018. 5, 13, 15, 46 [33] J. P. Pascual, Y. Estrada, L. Morbidel, P. A. Constanzo, Compensacón de dispersión mediante filtrado digital en sistema óptico con modulación OOK, ARGENCON, 2018a. 5 [34] J. P. Pascual, M. Tosi, Y. Estrada, P. A. Constanzo, Ecualización de desbalances en un sistema óptico con modulacion DPSK diferencial, ARGENCON, 2018b. 5 [35] Agrawal, Govind P., Nonlinear ber optics, Academic press, 2007. 11 [36] Corning Incorporated, SMF-28e+ Optical Fiber, Product Information, 2014. xiii, 19, 20 [37] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1995. 21, 27, 28, 72 [38] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2008. 21, 30, 32, 33 [39] Wang, Jin and Kahn, Joseph M, Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection. Journal of Lightwave Technology, vol. 22, no. 2, pp. 362, 2004. 22 [40] S. Haykin, Communication Systems, 4th ed, New York: John Wiley & Sons, 2001. 27, 29, 38, 48 [41] S. M. Kay, Fundamentals of Statistical Signal Processing, Detection Theory, Upper Saddle River, NJ: Prentice Hall, 1998. 35 [42] Copyright Ciena Corporation, System Description Manual CN 4200, Software Release 7.2, 2010. xii, xiii, xiii, 51, 52, 53, 55 [43] LeCroy, Wave Expert 100H Equivalent Time Sampling Oscilloscope System, Operator's Manual, 2007. 51, 56 [44] New Focus, Newport Corporation, User's guide, 12-GHz Amplied Photoreceivers, Models 1544-A & 1554-A, 2012. xiii, 51, 54 [45] S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory, Upper Saddle River, NJ: Prentice Hall, 1993. 62, 73
Materias:Ingeniería en telecomunicaciones > Telecomunicaciones
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:781
Depositado Por:Tamara Cárcamo
Depositado En:11 Jul 2019 11:25
Última Modificación:11 Jul 2019 11:25

Personal del repositorio solamente: página de control del documento