Efectos de la contaminación y posterior resterilización en la performance de implantes ortopédicos. / Effects of contamination and subsequent resterilization in the performance of orthopedic implants.

Lucero Manzano, Andrea M. (2018) Efectos de la contaminación y posterior resterilización en la performance de implantes ortopédicos. / Effects of contamination and subsequent resterilization in the performance of orthopedic implants. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
42Mb

Resumen en español

En Argentina es usual la práctica de reprocesamiento de implantes, tales como tornillos y placas que no fueron empleados durante una cirugía traumatológica, para poder utilizarlos durante intervenciones quirúrgicas subsiguientes. Dicho reprocesamiento incluye lavado y esterilización de los implantes para dejarlos en condiciones asépticas para un nuevo procedimiento. De acuerdo a la legislación nacional e internacional investigada, la mayoría de los organismos regulatorios no tiene una postura clara respecto a esta práctica. Sin embargo, existe evidencia que sugiere que la resterilización de estos implantes resulta en una degradación de la performance de los mismos, tanto desde el punto de vista de las propiedades superficiales y mecánicas como biológicas. Por todo esto, se estableció como objetivo del presente trabajo la caracterización de tornillos corticales de fabricación nacional sometidos a repetidos procesos de lavado y esterilización, con el fin de analizar la implicancia que estas prácticas tienen en el desempeño posterior de los mismos. A tal fin, se realizaron ensayos de tracción y de fatiga sobre los tornillos, para los cuales se dise~naron dispositivos complementarios de agarre para ser utilizados junto a las mordazas de una máquina de ensayos servohidráulica. Asimismo, se efectuó un análisis de la superficie mediante la técnica de microscopía electrónica de barrido y se complementó con ensayos de crecimiento bacterial. No se hallaron diferencias significativas en los resultados de los ensayos mecánicos efectuados al evaluar tornillos con distinta cantidad de reprocesamientos. Sin embargo, la observación de la superficie sugiere la formación de partículas de óxido cuyo número por unidad de área y tamaño se incrementa con el número de veces que se repite el proceso. Se verificó crecimiento bacterial en muestras con distinta cantidad de reprocesamientos. Sin embargo, no se observó este fenómeno en muestras de tornillos importados con un valor de rugosidad menor. Es posible que la rugosidad asociada al proceso de fabricación enmascare un posible efecto de los ciclos repetidos de reprocesamiento. Como resultados colaterales de este trabajo se puede inferir a partir de la caracterización inicial de las muestras que el proceso de producción de tornillos no es óptimo.

Resumen en inglés

In Argentina, repeated reprocessing of implants that were not used during trauma surgery, such as screws and plates, is currently routinely practiced. The activities of reprocessing include cleaning and sterilization of implants in order to leave them in aseptic conditions for a new procedure. According to the national and international legislation available, most regulatory agencies do not have a clear position regarding this practice. However, there is evidence that suggests that resterilization of these implants results in a degradation of their performance, taking into account the surface, mechanical and biological properties. Therefore, the purpose of this work is to characterize cortical screws of local manufacture subjected to repeated cleaning and sterilization processes, in order to analyze the implication that these practices have in the subsequent performance of these devices. Tensile and fatigue tests were carried out on the screws, for which complementary gripping devices were designed to be used together with the jaws of a servohydraulic testing machine. In addition, a surface analysis was carried out using scanning electron microscopy and complemented with bacterial growth assays. No signicant differences were found in the results of the mechanical tests carried out when evaluating screws with different amounts of reprocessing. However, surface characterization suggests the formation of oxide particles whose number per unit area and size increases with the number of times the process is repeated. Bacterial growth was veried in samples with different amount of reprocessing. However, this phenomenon was not observed in samples of imported screws with a lower roughness value. It is possible that the roughness associated with the manufacturing process masks a possible effect of the repeated cycles of reprocessing. As collateral results of this work, it can be inferred from the initial characterization of the samples that the screw production process is not optimal.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Screws; Tornillos; Sterilization; Esterilización; Implants; Implantaciones [Stainless steel; Acero inoxidable; Reprocessing; Reprocesamiento; Bacterial resistance; Resistencia bacteriana]
Referencias:[1] T.P. Ruedi, W.M. Murphy, AO Principles of Fracture Management, AO Publishing, 2000. [2] SYNTHES LC-DCP self-tapping small fragment set. Obtenida de: http://aamedicalstore.com/synthes-lc-dcp-self-tapping-small-fragment-set.html. [3] A. Hernandez, Reuso de dispositivos médicos para un solo uso, agosto de 2013. Disponible en: http://www.elhospital.com/temas/Reuso-de-dispositivos-medicos-paraun- solo-uso+8093530. [4] Food and Drug Administration, Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling, Guidance for Industry and Food and Drug Administration Staff, 17 de marzo de 2015. Disponible en: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/ GuidanceDocuments/UCM253010.pdf. [5] R. Seavey, Reducing the risks associated with loaner instrumentation and implants, AORN J 2010;92(3):322-34. [6] Decreto Nº1490/1992 (con las modicaciones del Decreto Nº1886/2014), Poder Ejecutivo Nacional (P.E.N.), declárese de Interés Nacional la Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. Buenos Aires, 20 de agosto de 1992. [7] >Qué es la ANMAT?, ANMAT. Disponible en: http://www.anmat.gov.ar /webanmat/institucional/ que es la ANMAT.asp [8] Disposición Nº2319/2002, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [9] Disposición Nº3266/2013, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [10] Disposición Nº 6052/2013, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [11] R. McEvoy, P. Mcliesh, The effects of multiple sterilisations on titanium and stainless steel plates and screws, ACORN: The Journal of Perioperative Nursing in Australia, 2013, 18-20. [12] C.C. Shih, Y.Y. Su, L.C. Chen, C.M. Shih, S.J. Lin, Degradation of 316L stainless steel sternal wire by steam sterilization, Acta Biomaterialia, Vol. 6, (June 2010), pp.2322-2328. [13] T. McAuley, Reprocessing Of Single Use Screws, A Study on the Eects of Repeated Reprocessing on Single-use Screws in Screw Caddies, 5th International Australasian College for Infection Prevention and Control Conference, Melbourne, Australia, Nov. 20-23, 2016. [14] D. de Melo Costa, L.K. de Oliveira Lopes, A. Ferreira Veiga Tipple, K. Johani, H. Hu, A.K. Deva, E. Watanabe, K. Vickery, Evaluation of stainless steel surgical instruments subjected to multiple use/processing, Infection, Disease & Health, 2018, 3-9. [15] J. Azizi, R.J. Basile, Doubt and proof: the need to verify the cleaning process, Biomed Instrum Technol 2012;(Suppl(1)): 49-54. [16] D. de Melo Costa, L.K. de Oliveira Lopes, K. Vickery, E. Watanabe, L.S. Netto de Oliveira Le~ao Vasconcelos, M.C. de Paula, D. Sousa Melo, H. Hu, A.K. Deva, A. Ferreira Veiga Tipple, Reprocessing safety issues associated with complex-design orthopaedic loaned surgical instruments and implants, Injury, 2018. [17] Disposición Nº 2318/2002, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [18] Habilitación de Distribuidora de productos biomédicos, estériles y descartables, Argentina.gob.ar. Disponible en: https://www.argentina.gob.ar/habilitacionde- distribuidora-de-productos-biomedicos-esteriles-y-descartables. [19] Resolución Nº 255/1994, Ministerio de Salud y Acción Social, Reglaméntase el Decreto Nº 2.505/85. Buenos Aires, 07 de abril de 1994. [20] Resolución Nº 935/2014, Ministerio de Salud, Neuquén, 30 de junio de 2014. [21] Decreto Nº 199/2011, Poder Ejecutivo Provincial (P.E.P.), Adquisición, almacenamiento, distribución, entrega, dispensa y comercio al por mayor y/o por menor de productos médicos. Mendoza, 21 de febrero de 2011. [22] RESOLUḈÃO DE DIRETORIA COLEGIADA - RDC Nº 185, DE 22 DE OUTUBRO DE 2001, Agȇncia Nacional de Vigil^ancia Sanitária. Diário Ocial da União Nº 201, 24 de octubre de 2001. [23] RESOLUḈÃO - RE Nº 2.605, DE 11 DE AGOSTO DE 2006, Ag^encia Nacional de Vigil^ancia Sanitária. Diário Ocial da União Nº155, 14 de agosto de 2006. [24] Government of Canada. Update: Notice to Stakeholders - Health Canada's Regulatory Approach to Commercial Reprocessing of Medical Devices Originally Labelled for Single Use. 4 de mayo de 2016. Disponible en: https://www.canada.ca/en/health-canada/services/drugs-health-products/medicaldevices/ activities/announcements/update-notice-stakeholders-regulatory-approachcommercial- reprocessing-medical-devices-originally-labelled-single-use.html. [25] Government of Canada. Guidance Document: Information to Be Provided by Manufacturers for the Reprocessing and Sterilization of Reusable Medical Devices. 1 de junio de 2011. Disponible en: https://www.canada.ca/en/healthcanada/ services/drugs-health-products/medical-devices/applicationinformation/ guidance-documents/guidance-document-information-manufacturerssterilization- reusable-medical-devices.html. [26] Food and Drug Administration. Quality System Regulation Labeling Requirements, Sterile Device Labeling. Obtenido de: https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ DeviceLabeling/QualitySystemRegulationLabelingRequirements/default.htm. [27] E.H. Otálvaro Cifuentes, Reprocesamiento y Reuso de Dispositivos Médicos un Compromiso de Gobierno, FORO: EL REPROCESAMIENTO DE DISPOSITIVOS MÉDICOS EN COLOMBIA SITUACIÓN ACTUAL Y PERSPECTIVAS, Medellín, 25 Junio 2018. [28] Unión Europea. REGLAMENTO (UE) 2017/745 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 5 de abril de 2017 sobre los productos sanitarios, por el que se modifican la Directiva 2001/83/CE, el Reglamento (CE) n.º178/2002 y el Reglamento (CE) n.º1223/2009 y por el que se derogan las Directivas 90/385/CEE y 93/42/CEE del Consejo. Diario Ocial de la Unión Europea L 117, 5 de mayo de 2017, pp. 1-175. [29] Comisión Europea. INFORME DE LA COMISIÓN AL PARLAMENTO EUROPEO Y AL CONSEJO - Informe sobre el reprocesamiento de productos sanitarios en la Unión Europea, de conformidad con lo establecido en el artículo 12 bis de la Directiva 93/42/CEE. 27 de agosto de 2010. [30] Medicines and Healthcare Products Regulatory Agency, Single-use medical devices: UK guidance on re-manufacturing, junio 2016. [31] Medicines and Healthcare Products Regulatory Agency, Single-use medical devices: implications and consequences of reuse, diciembre de 2018. [32] Therapeutic Goods Administration, Therapeutic Goods (Medical Devices) Regulations 2002, Statutory Rules Nº236, 2002, Compilation Nº37. 1 de julio de 2018. [33] Therapeutic Goods Administration, Australian regulatory guidelines for medical devices: Part 2 - Pre-market. Disponible en: https://www.tga.gov.au/sites/default/les/devices-argmd-p2.pdf. [34] Association of Medical Device Reprocessors, About AMDR - AMDR. Obtenido de: http://amdr.org/about-amdr/. [35] European Alliance for Access to Safe Medicines, When is a medicine not a medicine? Re-use of single-use devices. Disponible en: https://www.eaasm.eu/cache/downloads/cx4eh43e5y8gwos0ck0k80k0s/ 1428 %20Single-use %20Backgrounder 03.pdf. [36] N. Chobin, Best practices in loaner surgical instruments, Sterile Processing University, LLC. Obtenido de: http://www.spdceus.com/ceus/pdf/loaner instrumentation.pdf. [37] Queensland Government, Department of Health, Reprocessing Screw Banks & other Orthopaedic Implant Sets, versión 2, septiembre de 2013. Obtenido de: https://www.health.qld.gov.au/ data/assets/pdf le/0026/368108/ sbanks factsheet.pdf. [38] Scottish Executive, Health Department, Decontamination - Migration to singleuse pre-sterilised individually wrapped small orthopaedic implants, 29 de enero de 2007. Obtenido de: https://www.sehd.scot.nhs.uk/mels/hdl2007 04.pdf. [39] Disposición Nº1722/2015, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [40] Disposición Nº1130/2017, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [41] Disposición Nº2163/2016, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [42] Disposición Nº7233/2014, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica. [43] M.J. Alfa, The `pandora's box' dilemma: reprocessing of implantable screws and plates in orthopedic tray sets, Biomedical instrumentation & technology/Association for the Advancement of Medical Instrumentation, Suppl., pp. 55-9, 2012. [44] G. Gradu, J.B. Jupiter, Current Concepts Review - Fractures of the Shaft of the Humerus, ACTA CHIRURGIAE ORTHOPAEDICAE ET TRAUMATOLOGIAE CECHOSLOVACA, 80, 2013, p. 321 - 327. [45] P. Ducheyne, K. Healy, D.W. Hutmacher, D.W. Grainger, C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier Ltd. 2011. [46] J.-M. Cognet, M. Altman, P. Simon, Matériel d'ostéosynthèese: vis et plaques, EMC (Elsevier Masson SAS, Paris), Techniques chirurgicales - Orthopédie-Traumatologie, 44-015-A, 2008. [47] Q. Chen, G.A. Thouas, Metallic implant biomaterials, Materials Science and Engineering R, Vol. 87, (January 2015), pp.1-57. [48] L. Kuncicka, R. Kocich, T.C. Lowe, Advances in metals and alloys for joint replacement, Progress in Materials Science, Vol. 88, (July 2017), pp.232-280. [49] G.J. Tortora, B. Derrickson, Principles of Anatomy and Physiology, 12th. Ed., John Wiley & Sons, Inc. 2009. [50] M. Nordin, V.H. Frankel, Basic Biomechanics of the Musculoskeletal System, 4th. Ed., Lippincott Williams and Wilkins, 2012. [51] N.M. Willems, G.E. Langenbach, V. Everts, A. Zentner, The microstructural and biomechanical development of the condylar bone: A review, European Journal of Orthodontics, Volume 36, Issue 4, 1 August 2014, Pages 479-485. [52] S.E. Asnis, R.F. Kyle, Cannulated screw xation: principles and operative techniques, 1st Ed., 1996 Springer-Verlag New York, Inc. [53] ASTM F543-17, Standard Specication and Test Methods for Metallic Medical Bone Screws, ASTM International, West Conshohocken, PA, 2017, www.astm.org. [54] C. Colton, Surgical screw xation, eLearning modules for the AO Principles Courses, AO Foundation, 2012. [55] AO Surgery Reference. Obtenida de: https://www.aofoundation.org. [56] J. Andermahr, M. McKee, D. Nam, Scapula - Reduction & Fixation - ORIF - Lag screw xation - Body and processes, acromion - AO Surgery Reference. [57] A.J. Thakur, The Elements of Fracture Fixation,3rd Ed., Elsevier Inc, 2015. [58] J.R. Davies, Metallic materials, Handbook of Materials for Medical Devices, ASM International, Materials Park, Ohio, 2003, pp. 21{50. [59] ASTM F138-13a, Standard Specication for Wrought 18Chromium-14Nickel- 2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673), ASTM International, West Conshohocken, PA, 2013, www.astm.org. [60] International Organization for Standardization (ISO) 5832-1:2016, Implants for surgery | Metallic materials | Part 1: Wrought stainless steel. 2016. [61] ASTM A276 / A276M-17, Standard Specication for Stainless Steel Bars and Shapes, ASTM International, West Conshohocken, PA, 2017, www.astm.org. [62] ASTM E45-18a, Standard Test Methods for Determining the Inclusion Content of Steel, ASTM International, West Conshohocken, PA, 2018, www.astm.org. [63] ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013, www.astm.org. [64] J. Disegi, Implant Materials, Wrought 18% Chromium - 14% Niquel - 2,5% Molybdenum Stainless Steel, Synthes. 2009. [65] D.M. Escriba, E. Materna-Morris, R.L. Plaut, A.F. Padilha, Chi-phase precipitation in a duplex stainless steel, Materials Characterization, Volume 60, Issue 11, November 2009, pp. 1214-1219. [66] S.Y Zhang, E. Compagnon, B. Godin, A.M. Korsunsky, Investigation of Martensite Transformation in 316L Stainless Steel, Materials Today: Proceedings, Volume 2, Supplement 2, 2015, pp. S251-S260. [67] N. Solomon, I. Solomon, Deformation induced martensite in AISI 316 stainless steel, Revista de Metalurgia, Vol. 46, 2010, pp.121-128. [68] E.H. Spaulding, Chemical disinfection of medical and surgical materials. In: Lawrence C, Block SS, editors. Disinfection, sterilization, and preservation. Philadelphia (PA): Lea & Febiger; 1968:517-31. [69] G.J. Tortora, B.R. Funke, C.L. Case, Microbiology : an introduction, 11th ed., Pearson Education, Inc, 2013. [70] W.A. Rutala, D.J. Weber, Disinfection, sterilization, and antisepsis: An overview, American Journal of Infection Control, Vol. 44, 2016, e1-e6. [71] International Organization for Standardization, ISO 11139:2018, Sterilization of health care products { Vocabulary of terms used in sterilization and related equipment and process standards, 2018. [72] World Health Organization and Pan American Health Organization, Decontamination and Reprocessing of Medical Devices for Health-care Facilities, 2016. Disponible en: http://www.who.int/infection-prevention/publications/decontamination/en/. [73] G.E. McDonnell, Antisepsis, disinfection, and sterilization : types, action, and resistance, ASM Press, 2007. [74] S.I. Acosta-Gnass, V. de Andrade Stempliuk, Manual de esterilización para centros de salud, Organización Panamericana de la Salud, 2008. [75] S. Lerouge, A. Simmons, Sterilisation of biomaterials and medical devices, Woodhead Publishing Series in Biomaterials, Elsevier, 2012. [76] Comisión INOZ, Guía para la Gestión del Proceso de Esterilización, Administraci ón de la Comunidad Autónoma del País Vasco, Servicio Vasco de Salud. [77] Esterilización. Procedimientos relacionados, McGraw-Hill Education. Disponible en: https://www.mheducation.es/bcv/guide/capitulo/8448164180.pdf. [78] South America Implants, Catálogo Técnico de Productos, disponible en: http://southamericaimplants.com/catalogos/CATALOGOTECNICOSAI.pdf. [79] ASTM E352-13, Standard Test Methods for Chemical Analysis of Tool Steels and Other Similar Medium- and High-Alloy Steels, ASTM International, West Conshohocken, PA, 2013, www.astm.org. [80] ASTM E353-14, Standard Test Methods for Chemical Analysis of Stainless, Heat- Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys, ASTM International, West Conshohocken, PA, 2014, www.astm.org. [81] CS230 Carbon/Sulfur Determinator Specication Sheet, LECO Corporation, 2008. Obtenida de: http://www.usbioecuador.com/descargas/lecoinorganica/CS230- ht.pdf. [82] G.D. Christian, P.K. Dasgupta, K.A. Schug, Analytical chemistry, 7th Ed., John Wiley & Sons, Inc, 2014. [83] Sistema de titulación automático HI902, Hanna Instruments. Obtenida de: http://cdn.hannacolombia.com/hannacdn/support/catalogo/2015/12/catalogo Sistema de Titulacion Automatico 902C.pdf. [84] ASTME3-11(2017), Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2017, www.astm.org. [85] ASTM E407-07(2015)e1, Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2015, www.astm.org. [86] Allied High Tech products. Consumables. Grinding and Polishing. Silicon Carbide Fine Grit Discs. Obtenida de: https://consumables.alliedhightech.com/Silicon- Carbide-Fine-Grit-Discs-p/sicfg.htm. [87] J. Andrade Gamboa, Apuntes de clase, Introducción a la cristalografía y a los métodos de difracción, Instituto Balseiro, San Carlos de Bariloche, 2016. [88] C. Suryanarayana y M. Grant Norton, X-Ray Diffraction A Practical Approach, Springer Science+Business Media, LLC, 1998. [89] R.F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, 1st Ed., Springer US, 2005. [90] M. Jaffe, W. Hammond, P. Tolias, T. Arinzeh, Characterization of Biomaterials, 1st Ed., Woodhead Publishing, 2012. [91] V. dos Santos, R.N. Brandalise, M. Savaris, Engineering of Biomaterials, 1st Ed., Springer International Publishing, 2017. [92] M. Spector, L. Peretti, F. Salas, G. Romero, L. Iglesias, Bacterial Conduction in Prosthesis, Procedia Materials Science, Vol. 8, 2015, pp. 351{357. [93] Optical Prolers - How Optical Prolers Work, Obtenida de: https://www.zygo.com/?/met/prolers/opticalprolersabout.htm. [94] International Organization for Standardization (ISO) 4287:1997, Geometrical Product Specications (GPS) - Surface texture: Prole method - Terms, denitions and surface texture parameters. 2015. [95] W.D. Callister.- Fundamentals of Materials Science and Engineering. John Wiley `I&' Sons. 2001. [96] S. Kalpakjian, Manufactura, ingeniera y tecnologa, 5ta Ed., Pearson Educacion, 2008. [97] J. Davis, Handbook of Materials for Medical Devices, ASM International, 2003. [98] G.L. Lucas, F.W. Cooke, E.A. Friis, A primer of biomechanics, Springer Science+ Business Media, LLC, 1999. [99] ASTM E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org. [100] ASTM F606 / F606M-16, Standard Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets, ASTM International, West Conshohocken, PA, 2016, www.astm.org. [101] MTS SYSTEMS CORPORATION, MTS 810 & 858 Material Testing Systems. Obtenido de: https://www.upc.edu/sct/en/documents equipament/d 77 id-412.pdf [102] B.D. Ratner, A. S. Homan, Biomaterials Science. An Introduction to Materials in Medicine, 3rd Ed., Elsevier Inc. 2013. [103] D. Klein, P. Karanja, Biolm and the reprocessing of medical devices, Self-study series, Healthcare Purchasing News, July 2014. Obtenido de: https://www.hpnonline.com/ce/pdfs/1407cetest.pdf. [104] E. Cervantes-García, R. García-González, P. M. Salazar-Schettino, Características generales del Staphylococcus aureus, Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio, 61 (1), 2014, pp. 28-40. [105] INVAP, Caracterización de aleaciones metálicas - Acero inoxidable, documento N° 0289-1AMA-EIPCA-001, versión A, 6 de abril de 2018. [106] F.C. Nascimento, C.E. Foerster, S.L. Rutz da Silva, C.M. Lepienski, C.J. de Mesquita Siqueira, C. Alves Junior, A Comparative Study of Mechanical and Tribological Properties of AISI-304 and AISI-316 Submitted to Glow Discharge Nitriding, Materials Research, Vol. 12, No. 2, 173-180, 2009.
Materias:Física > Física de materiales
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Física de metales
Código ID:789
Depositado Por:Tamara Cárcamo
Depositado En:18 Jun 2019 12:27
Última Modificación:18 Jun 2019 12:27

Personal del repositorio solamente: página de control del documento