Obtención y caracterización de recubrimientos micro y nano estructurados mediante técnicas electrolíticas de deposición utilizando pulsos de tensión de duty y frecuencia variable. / Micro and nano estructured coatings made by electrolytic techniques with PWM technology and variable frequency.

Tagarelli Gaete, Victor E. (2018) Obtención y caracterización de recubrimientos micro y nano estructurados mediante técnicas electrolíticas de deposición utilizando pulsos de tensión de duty y frecuencia variable. / Micro and nano estructured coatings made by electrolytic techniques with PWM technology and variable frequency. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

Mediante el uso de técnicas electroquímicas de deposición se obtuvieron recubrimientos de cromo. Los films fueron obtenidos en condiciones de corriente continua y con secuencias de pulsos de tensión. Respecto de esta condición, se realizaron trabajos modificando dos características de ella, el ciclo de trabajo y la frecuencia, mediante técnicas de modulación de ancho de pulsos (PWM). Se trabajó bajo la hipótesis que los parámetros eléctricos de la señal aplicada, modifican las condiciones dinámicas del proceso de electrodeposición, creando un modelo competitivo entre las velocidades de los fenómenos que ocurren en la zona de la doble capa difusa; y como resultado, se obtuvieron películas con diferentes propiedades físicas, químicas y mecánicas. Los films obtenidos fueron caracterizados mediante técnicas de microscopía electrónica de barrido, espectroscopía de impedancia electroquímica, difracción de rayos X y microdureza Vickers; a partir de ello se pudieron establecer parámetros comparativos para determinar cuál de ellos presenta mejores prestaciones. Los recubrimientos con corrientes continuas resultaron sobresalientes en sus propiedades mecánicas sin embargo su resistencia a la corrosión se ve disminuida por las características microestructurales, aspecto que pudo ser corregido con pulsos de duty intermedio (65%) y bajas frecuencias (menor a 100 Hz). Bajo dichas condiciones se obtuvieron excelentes resultados tanto en propiedades mecánicas como químicas.

Resumen en inglés

Coatings with hard metals were obtained by using electrochemical plating techniques. The films were obtained in conditions of direct current and with sequence of potentiostatic pulses. In order to this signal, work was carried out modifying two characteristics, the pulse-pause relation or duty cycle and the frequency. I worked under the hypothesis that the electrical parameters of the applied signal modify the dynamic conditions of the electrodeposition process, creating a competitive model between the velocities of the phenomena that occur in the area of the diffuse double layer; and as a result films with different mechanical, chemical and physical properties were obtained. The films obtained were characterized by techniques of scanning electron microscopy, electrochemical impedance spectroscopy, X-ray diffraction and Vickers microhardness; from this, it was possible to establish comparative parameters to determine which of them has better benefits. The coatings with continuous currents were outstanding in their mechanical properties however their resistance to corrosion is diminished by their microstructural conditions, aspect that could be corrected with pulses of intermediate duty (65%) and low frequencies (less than 100 Hz). Under these conditions excellent results were obtained in both, mechanical and chemical properties.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Hardness; Dureza; Corrosion; Corrosión; Morphology; Morfología; Coverings; Recubrimientos; [Electrodeposition; Electrodeposición; Duty; Pulsos]
Referencias:[1] Wolf G, Halwax E, Kromberger H. Effect of current density and temperature on the morphology of electrodeposited chromium. Metal finishing, 19-27, January 2010. [2] Torres González J, Benaben P. Study of the influence of electrolyte chemical composition on the properties of chromium electrodeposits- Microstruture, crystallographic texture, residual stress, and microhardness. Metal finishing, 107-116, June 2003. [3] Schlesinger M (ed.), Paunovic M (ed.). Modern electroplating. 5ta ed. USA: Jhon Wiley & Sons. 2010. [4] Ibl N. Some theoretical aspects of pulse electrolysis. Surface Technology, 10, 81-104, 1980. [5] Popov K, Spasojevic M, Marsimovic M, Boskovic I. Fundamental aspects of pulsating current metal electrodeposition. II: The mechanism of metal film formation on an inert electrode. Surface Technology, 11, 111-116, 1980. [6] Marsimovic M, Dimitrijevic Z. Fundamental aspects of pulsating current metal electrodeposition. V: The determination of the optimal frequency range. Surface Technology, 17, 3-9, 1982. [7] Popov K, Djokic S, Nikolic N, Jovic V. Morphology of electrochemically and chemically deposited metals. 1ra Ed Suiza: Springer. 2016. [8] Julve E. Perpectiva general del cromado industrial: características físicas del recubrimiento y tipos de cromada. Química e industria, 19-27, Julio-Septiembre 2001. [9] Imaz Molina N. aplicación de técnicas de electrodeposición mediante pulsos de corriente para la obtención de recubrimientos metálicos. Tesis doctoral. Universitat de Barcelona. 2013. 281p. [10] Mentone P. Pulse vs. DC Plating. Metal Finishing, 14-18, June 2005. [11] Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition. 2da ed. New Jersey, USA: Jhon Wiley & Sons. 2006. [12] Chandrasekar M, Pushpuanam M. Pulse and Pulse Reverse Plating—Conceptual Advantages and Applications. Electrochimica Acta, 53, 3313-3322, 2008. [13] Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Sawyer L, et al. Scanning electron microscopy and X-Ray microanalysis. 3er ed. New York USA: Kluwer academic/Plenum publishers. 2003. [14] Sands D. Introducción a la cristalografía. España: Editorial Reverte. 1993. [15] Young R. The Rietveld method. International Union Crystallography. Oxford science publications, 1995. [16] Bard A, Faulkner L. Electrochemical methods- Fundamentals and applications. 2da ed: USA: Jhon Wiley & Sons. 2001. [17] Fischer Instruments SA. Manual del operador Couloscope CMS. [18] Chandler H (ed). Hardness Testing. ASM International. 1999. [19] Mandich M, Snyder D. Electrodeposition of chromium. En: Schlesinger M (ed.), Paunovic M (ed.). Modern electroplating. 5ta ed. USA: Jhon Wiley & Sons. 2010. pp 205-248. [20] Kasper C. Mechanism of chromium deposition from the chromic acid bath. Journal of research of the National Bureau of Standards, 14, 693-708, 1935. [21] Mandich N. Chemistry of chromium. En: AESF 82nd Technical Conference, SURFIN 95 (Baltimore, Md, June 1995). [22] Rodriguez P. Galvanoplastía aplicada- Teoría y práctica. 2da ed. Buenos Aires: Alsina. 2010. [23] Devaraj G, Guruviah, Seshadri S. Pulse plating. Materials chemistry and physics, 25, 439-461, 1990. [24] Durut F, Benaben P, Forest B, Rieu J. Influence of temperature on the microstructure and properties of chromium electrodeposits. Metal finishing, 52-60, March 1998. [25] Radanyi A, Sicheva A, Gacsi Z. Whisker formation on galvanic tin surface layer. Archive of metallurgy and materials, 60, 1341-1345, 2015. [26] Nguyen Ngan Le, Thi Cam Hue Phan, Anh Duy Le, Thi My Dung Dang, Mau Chien Dang. Optimization of cooper electroplating process applied for microfabrication on flexible polyethylene terephthalate substrate. Advances in natural sciences: nanoscience and nanotechnology, 6, 6 pp, 2015. [27] Landolt D. En: Electrochemically deposited thin films III. Paunovic M (ed), Scherson D (ed). Proceedings, 26, Electrochemical society, 1997. [28] Hoyos B, Ossa L, Rendom M. Efecto de la onda de corriente rectangular sobre la dureza de recubrimientos de níquel. Ingeniería e investigación, 26, 35-41, 2006. [29] Swanson et al. Standard X Ray diffraction powder patterns. Circular of the National Bureau of Standard nro 539, 20, 1955. [30] Barret C, Massalski T. Structure of metals crystallographic methods- Principles and data. 3ra ed. New York, USA: International series on materials science and technology. 1980. [31] Bergenstof Nielsen C, Leisner P, Horsewell A. On texture formation of chromium electrodeposits. Journal of applied electrochemistry, 28, 141-150, 1998. [32] Popov K, Marsimovic M, Ocokoljic B. Fundamental aspects of pulsating current metal electrodeposition. I: The effect of the pulsating current on the surface roughness and the porosity of metal deposits. Surface Technology, 11, 99-109, 1980. [33] Galvele J, Duffo G. Degradación de materiales- Corrosión. 1ra ed. Argentina: J Baudino ediciones. 2006. [34] Räuchle F, Diaz M. Pasivación y pasividad. Revista de química, 3, 37-47, 1989. [35] Huang C, Lin W, Liao M. The electrochemical behavior of the bright chromium deposits plated with direct and pulse current in 1 M H2SO4. Corrosion science, 48, 460-471, 2006. [36] Saghi Beyragh M, Khamenesh Asl Sh, Norouzi S. A comparative research on corrosion behavior of a standard, crack free and duplex hard chromium coatings. Surface and coatings technology, 205, 2605-2610, 2010. [37] Criado M, Fajardo S, Valdez B, Bastidas JM. Aspectos cinéticos de la corrosión y fenómenos de pasividad. En: Valdez Salas B & Schoro Wiener M (eds). Corrosion y preservación de la infraestructura industrial. Barcelona, España: OmniaScience. 2013. [38] Sykes J, et al. Proc of the 10th International congress on metallic corrosión. Madras. 1987. [39] Walter G. A review of impedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science, 26, 681-703, 1986. [40] Barsoukov E (ed), Macdonald J (ed). Impedance spectroscopy theory- Experiment and applications. 2da ed. New Jersey, USA: Wiley Interscience. 2005. [41] Piratoba Morales U, Vera Lopez E, Ortiz Otalora. Aspectos básicos en la interpretación de diagramas de impedancia electroquímica. DYNA, 77, 13-19, 2010. [42] Orazem M, Tribollet B. Electrochemical impedance spectroscopy. USA: Jhon Wiley & Sons. 2008. [43] Rocha J, Terrazas R, Prada M. Evaluación electroquímica de aleaciones de alta resistencia a la corrosión. Revista Metalúrgica UTO, 36, 19-25, Mayo 2015. [44] Peña Ballesteros D, Vazques Quinteros C, et al. Corrosión de partes de vehículos fabricados con latón y bronce expuestas a mezclas de bioetanol y gasolina. Revista ION, 24, 43-52, Junio 2011. [45] Scully J. Polarization resistance method for determination of instantaneous corrosion rates. Critical review of corrosion science and engineering, 56, 199-218, 2000. [46] Kelly R, Scully J, Shoesmith D, Buchheit R. Electrochemical techniques in corrosion science and engineering. USA: Marcel Dekker Inc. 2002. [47] National Institute of Advanced Industrial Science and Technology. Atlas of Eh-pH diagrams. 2005. [48] Maurice V, Yang W, Marcus P. XPS and STM Investigation of the Passive Film Formed on Cr(110) Single‐Crystal Surfaces. Journal of electrochemical society, 141, 3016-3027, 1994. [49] Moffat T, Latanision R, An Electrochemical and X‐Ray Photoelectron Spectroscopy Study of the Passive State of Chromium. Journal of electrochemical society, 139, 1869-1879, 1992. [50] Lansdell P, Farr J. A comparison of the surface chemistries of chromium electroplated finishes. Transactions of the Institute of metal finishing, 82, 105-113, 1994. [51] Frankel G. Pitting corrosion. En: Metals handbook Vol 13. Cramer A (ed), Covino B Jr (ed). ASM international, 2003. [52] Hong Shi (ed). Corrosion resistance. 1ra ed. Croatia: InTech. 2012. [53] Aguilar C, Guzman D, Iglesias C. Análisis de perfiles de rayos X de dos materiales metálicos. Revista latinoamericana de metales y materiales. 33. 15-32. 2013. [54] Warren B, Averbach B. J. Appl. Phys, 21, 595-599, 1950. [55] Hall W, Williamson G. The diffraction pattern of cold worked metals. Proceedings of the physical society- Section B, 64, 937-952, 195. [56] ASTM E178-16a, Standard Practice for Dealing With Outlying Observations, ASTM International, West Conshohocken, PA, 2016. [57] Grubbs F. Sample criteria for testing outlying observations. Annals of Mathematical Statistics, 21, 27–58, 1950. [58] Cruz Gandarilla F, Cabanas Moreno J, Ortega M. Aplicaciones de la difracción de rayos X a materiales policristalinos. Sociedad Mexicana de cristalografía. México. 2005.
Materias:Química > Ingeniería química
Divisiones:Aplicaciones de la energía nuclear > Tecnología nuclear innovativa > Desarrollos electrónicos
Código ID:790
Depositado Por:Tamara Cárcamo
Depositado En:14 Jun 2019 14:45
Última Modificación:14 Jun 2019 14:45

Personal del repositorio solamente: página de control del documento