Diseño conceptual y estimación de performance del difractómetro de neutrones ANDES para el estudio de muestras en polvo / Conceptual desing and performance estimation of ANDES neutron diffractometer for powder diffraction

Beceyro Ferrán, Agustín (2019) Diseño conceptual y estimación de performance del difractómetro de neutrones ANDES para el estudio de muestras en polvo / Conceptual desing and performance estimation of ANDES neutron diffractometer for powder diffraction. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
5Mb

Resumen en español

Aquí se presenta el diseño de la óptica neutrónica para el difractometro multiprop ósito ANDES. Este trabajo se ve motivado por la construcción del reactor RA-10 en el Centro Atómico Ezeiza y el LAHN - Laboratorio Argentino de Haces de Neutrones, que permitirá explotar los haces de neutrones provistos por el reactor para investigación básica y aplicaciones tecnológicas. El proceso de diseño involucro un análisis de las técnicas analíticas que la comunidad científica local desea emplear, y la identificación de los requerimientos instrumentales que permitan llevar adelante dichas técnicas. En base a un revelamiento de instrumentos de otros laboratorios y a un estudio de la óptica neutrónica, se propusieron tres configuraciones preliminares capaces de desarrollar un amplio abanico de técnicas. En segunda instancia, se abordo la optimización de cada configuración. En este campo se realizo un estudio bibliográfico mas profundo de los modelos analíticos disponibles y se propuso la inclusión de nuevos parámetros a la metodologa. En particular se contemplaron los efectos cristalográficos del monocromador, la eficiencia de la fuente y del detector. Por otro lado, se encaro el estudio y aprendizaje del software McStas. Como parte del proceso de validación del código, se simularon diversas geometrías instrumentales basadas en modelos analíticos y también en el instrumento de referencia Stress-Spec. Luego, se utilizo esta herramienta para evaluar las configuraciones de ANDES. Como resultado de este proceso, se obtuvo un difractómetro con diseño modular que permitirá desarrollar una variedad de técnicas de difracción con una performance comparable a la de otros instrumentos de laboratorios reconocidos.

Resumen en inglés

This work approaches the design of ANDES neutron optics, a multi-purpose diffractometer of the Argentinean Neutron Beam Laboratory - LAHN. This facility will be placed in the Ezeiza Atomic Center and the neutron source will be the RA-10 research reactor. LAHN will allow the exploitation of its neutron beams for basic research and technological applications. The design process involved an analysis of the diffraction techniques that the local scientic community wishes to employ and the identication of the instrumental requirements that allow these techniques to be carried out. Based on a survey of instruments from other laboratories and a study of neutron optics, three preliminary configurations capable of developing a wide range of techniques, were proposed. Later, the optimization of each configuration was addressed. A more in-depth bibliographical study of the analytical models available was carried out and the inclusion of new parameters to the methodology was proposed. In particular, the crystallographic effects of the monochromator and the source and detector efficiency. Also, the implementation of McStas was addressed. As part of the validation process, various instrumental geometries based on analytic models were simulated. The instrument Stress-Spec was also modeled to contrast simulated and experimental data. Then, this tool was used to evaluate the ANDES configurations. As a result of this process, a diffractometer with a modular design was obtained. ANDES will be capable of carrying out a variety of diffraction techniques with performance comparable to that of other instruments of reknown laboratories.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Diffraction; Difracción; Diffractometer; Difractrometro; Neutrons; Neutrones; [ANDES; Neutron optics; Óptica neutrónica; LAHN]
Referencias:[1] Reactor Argentino RA-10. https://www.cnea.gob.ar/es/proyectos/ra-10/. [2] Sanchez, F., Cintas, A., and Blaumann, H., 2014. \Ra-10: Argentinean multipurpose reactor". Neutron News, 25(4), pp. 6{8. [3] Blaumann, H., Vertullo, A., Sanchez, F., Brollo, F., and Longhino, J., 2011. \Ra- 10: a new argentinian multipurpose research reactor". In Proc. Int. Conf. on Research Reactors: Safe Management and Effective Utilization, Rabat. [4] Marquez, A. \Análisis de los haces de neutrones térmicos y fríos". Informe técnico CNEA, IT-47/RA-10/6006-3-001 Rev.:01. [5] Laboratorio Argentino de Haces de Neutrones. http://www.lahn.cnea.gov.ar. [6] Aurelio, G., Mogni, L., and Napolitano, F. \Caso científico para un instrumento de difracción de polvos de alta resolución". Informe técnico CNEA, SC-LAHN-005 Rev.:00. [7] Asociación Argentina de Cristalográfica - AACr. http://www.cristalografia. com.ar. [8] Sistema Nacional de Rayos X. http://www.rayosx.mincyt.gob.ar. [9] Santisteban, J. R., and Beceyro Ferran, A., 2015. \Análisis de la óptica neutrónica de un difractometro multiproposito para el reactor ra-10". XLII Reunion Anual AATN. [10] Chadwick, J., 1932. \Possible existence of a neutron". Nature, 129(3252), p. 312. [11] Chadwick, J., 1932. \The existence of a neutron". Proc. R. Soc. Lond. A, 136(830), pp. 692-708. [12] Premio Nobel 1935. https://www.nobelprize.org/prizes/physics/1935/ summary/. [13] Von Halban, H., and Preiswerk, P., 1936. \Experimental evidence of neutron diffraction". CR Hebd. Seances Acad, 203, p. 73. [14] Mitchell, D. P., and Powers, P. N., 1936. \Bragg re effection of slow neutrons". Physical Review, 50(5), p. 486. [15] Halpern, O., and Johnson, M., 1939. \On the magnetic scattering of neutrons". Physical Review, 55(10), p. 898. [16] Premio Nobel 1994. https://www.nobelprize.org/prizes/physics/1994/ summary/. [17] Willis, B. T. M., and Carlile, C. J., 2017. Experimental neutron scattering. Oxford University Press. [18] Shirane, G., Shapiro, S. M., and Tranquada, J. M., 2002. Neutron scattering with a triple-axis spectrometer: basic techniques. Cambridge University Press. [19] Skold, K., and Price, D. L., 1986. Neutron scattering. Elsevier. [20] Lefmann, K., 2010. Neutron scattering: Theory, instrumentation, and simulation. Citeseer. [21] Wikimedia. https://commons.wikimedia.org/wiki/File:Nuclear_fission_ reaction.svg. [22] High Flux Isotope Reactor. https://neutrons.ornl.gov/hfir. [23] Institut Laue Langevin. https://www.ill.eu. [24] ISIS Neutron and Muon Source - Rutherford Appleton Laboratory. https://www. isis.stfc.ac.uk/Pages/home.aspx. [25] Spallation Neutron Source. https://neutrons.ornl.gov/sns. [26] Japan Proton Accelerator Research Complex. https://j-parc.jp/index-e. html. [27] Windsor, C. G., 1981. Pulsed neutron diffraction. Taylor & Francis. [28] ESFRI Physical Sciences and Engineering Strategy Working Group - Neutron Landscape Group, 2016. Neutron scattering facilities in Europe: Present status and future perspectives. Dipartimento di Física - Universita degli Studi di Milano. [29] Rucker, U., Cronert, T., Voigt, J., Dabruck, J., Doege, P.-E., Ulrich, J., Nabbi, R., Beler, Y., Butzek, M., Buscher, M., et al., 2016. \The julich high-brilliance neutron source project". The European Physical Journal Plus, 131(1), p. 19. [30] Debye, P., and Scherrer, P., 1916. \Interferenzen an regellos orientierten teilchen im rontgenlicht". Phys. Z, 17, p. 277. [31] Hull, A. W., 1917. \A new method of x-ray crystal analysis". Physical Review, 10(6), p. 661. [32] Montfrooij, W., McGreevy, R., Hadeld, R., and Andersen, N., 1996. \Reverse monte carlo analysis of powder patterns". Journal of applied crystallography, 29(3), pp. 285-290. [33] Young, R., 1993. \The rietveld method, iucr". Monographs on Crystallography, Oxford University Press, Oxford. [34] Snyder, R. L., Bunge, H. J., and Fiala, J., 1999. Defect and microstructure analysis by diraction. Oxford Univ. Press. [35] Kocks, U. F., Tome, C. N., and Wenk, H.-R., 2000. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press. [36] Fitzpatrick, M. E., and Lodini, A., 2003. Analysis of residual stress by diffraction using neutron and synchrotron radiation. CRC Press. [37] Hutchings, M. T., Withers, P. J., Holden, T. M., and Lorentzen, T., 2005. Introduction to the characterization of residual stress by neutron diffraction. CRC press. [38] ADC. www.adc9001.com. [39] Soller, W., 1924. \A new precision x-ray spectrometer". Physical Review, 24(2), p. 158. [40] Euro Collimators Ltd. www.eurocollimators.com. [41] Caglioti, G., Paoletti, A. t., and Ricci, F., 1958. \Choice of collimators for a crystal spectrometer for neutron diffraction". Nuclear Instruments, 3(4), pp. 223-228. [42] Santisteban, J. R., and Beceyro Ferran, A. \Dise~no conceptual de difractometro de neutrones multiproposito para el reactor ra-10". Informe tecnico CNEA, INLAHN- 002/0200 Rev.:00. [43] Bisson Technology. www.bisson-technology.com. [44] Bacon, G., and Lowde, R., 1948. \Secondary extinction and neutron crystallography". Acta Crystallographica, 1(6), pp. 303-314. [45] Sears, V., 1997. \Bragg re flection in mosaic crystals. i. general solution of the darwin equations". Acta Crystallographica Section A, 53(1), pp. 35{45. [46] Sears, V., 1997. \Bragg re flection in mosaic crystals. ii. neutron monochromator properties". Acta Crystallographica Section A: Foundations of Crystallography, 53(1), pp. 46{54. [47] Courtois, P., 2016. \Vertical neutron beam focusing with bent mosaic crystals". In Journal of Physics: Conference Series, Vol. 746, IOP Publishing, p. 012005. [48] Knoll, G. F., 2010. Radiation detection and measurement. John Wiley & Sons. [49] Heitmann, T., and Montfrooij, W., 2012. \Practical neutron scattering at a steady state source". Columbia: Mizzou Media. [50] Rietveld, H., 1969. \A prole renement method for nuclear and magnetic structures". Journal of applied Crystallography, 2(2), pp. 65-71. [51] Sailor, V., Foote Jr, H., Landon, H., and Wood, R., 1956. \High resolution crystal spectrometer for neutrons". Review of Scientic Instruments, 27(1), pp. 26-34. [52] Hewat, A., 1975. \Design for a conventional high-resolution neutron powder diffractometer". Nuclear Instruments and Methods, 127(3), pp. 361{370. [53] Cussen, L., 2005. \Better powder diractometers-choice of beam elements and trade-os in design". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 554(1- 3), pp. 406-414. [54] Cussen, L., 2007. \Better powder diractometers. ii|optimal choice of u, v and w". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 583(2-3), pp. 394-406. [55] Christensen, A. N., Lehmann, M. t., and Nielsen, M., 1985. \Solving crystal structures from powder diffraction data". Australian journal of physics, 38(3), pp. 497-506. [56] Python Software Foundation. Python Language version 3.6. http://www.python. org. [57] Kraft, D., 1988. \A software package for sequential quadratic programming". Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt. [58] Neutron Ray Tracing Package McStas version 2.4.1. www.mcstas.org. [59] Ulam, S., Richtmyer, R., and Von Neumann, J., 1947. \Statistical methods in neutron diusion". LAMS-551, Los Alamos National Laboratory, pp. 1-22. [60] Metropolis, N., 1987. \Los alamos science". Special Issue, 125. [61] Bielajew, A. F., 2001. \Fundamentals of the monte carlo method for neutral and charged particle transport". The University of Michigan. [62] Eckhardt, R., 1987. \Stan ulam, john von neumann, and the monte carlo method". Los Alamos Science, 15(131-136), p. 30. [63] Warnock, T., 1987. \Random-number generators". Los Alamos Science, 15, pp. 137-141. [64] Matsumoto, M., and Nishimura, T., 1998. \Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator". ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1), pp. 3-30. [65] Proyecto e-neutrons. https://www.e-neutrons.org. [66] Nielsen, K., and Lefmann, K., 2000. \Monte carlo simulations of neutron-scattering instruments using mcstas". Physica B: Condensed Matter, 283(4), pp. 426-432. [67] Lefmann, K., Willendrup, P. K., Udby, L., Lebech, B., Mortensen, K., Birk, J. O., Klen, K., Knudsen, E., Christiansen, P., Saroun, J., et al., 2008. \Virtual experiments: the ultimate aim of neutron ray-tracing simulations". Journal of Neutron Research, 16(3-4), pp. 97-111. [68] Udby, L., 2009. \Superoxygenerated la2-xsrxcuo4+ y-virtuel and physical experiments". PhD thesis, Technical University of Denmark (DTU). [69] Hofmann, M., Seidl, G. A., Rebelo-Kornmeier, J., Garbe, U., Schneider, R., Wimpory, R. C., Wasmuth, U., and Noster, U., 2006. \The new materials science difractometer stress-spec at frm-2". In Materials science forum, Vol. 524, Trans Tech Publ, pp. 211{216. [70] Saroun, J., Kornmeier, J. R., Hofmann, M., Mikula, P., and Vrana, M., 2013. \Analytical model for neutron diffraction peak shifts due to the surface effect". Journal of Applied Crystallography, 46(3), pp. 628-638. [71] Hofmann, M., Schneider, R., Seidl, G., Rebelo-Kornmeier, J., Wimpory, R., Garbe, U., and Brokmeier, H. \The new materials science difractometer stress-spec at frm-ii: Proceedings of the eighth international conference on neutron scattering". Physica B: Condensed Matter, 385(386), pp. 1035-1037. [72] Miyake, Y., Hiraka, H., Ohoyama, K., Yamaguchi, Y., and Yamada, K., 2010. \Hot pressing of ge crystals toward a re flection-plane-selective neutron monochromator". In Journal of Physics: Conference Series, Vol. 200, IOP Publishing, p. 112006. [73] Riste, T., and Otnes, K., 1969. \Oriented graphite as a neutron monochromator". Nuclear Instruments and Methods, 75(2), pp. 197-202. [74] Vertullo, A. \Modicacion de los tramos in-pile de los haces al hall de haces". Control de cambios de ingeniera, CIN-47/RA-10/6000-2-002 Rev.:01. [75] Agency, I. A. E., 2014. \Development and applications of residual stress measurements using neutron beams". [76] Marquez Damian, J. I. \Estimacion de flujo térmico y rápido en posición del monocromador". Informe tecnico CNEA, IN-LAHN-004/02020000 Rev.:00. [77] Marquez Damian, J. I. \Tablas para el dimensionamiento del ltro de zaro en gt3". Informe técnico CNEA, IN-LAHN-046/020103 Rev.:00. [78] Danilkin, S., Horton, G., Moore, R., Braoudakis, G., Hagen, M., et al., 2006. \Thermal triple-axis spectrometer at opal reactor". In Pacic Basin Nuclear Conference 2006, Australian Nuclear Association, p. 1038. [79] DENEX - Detektoren fur Neutronen GmbH. http://www.denex-gmbh.de/ index.php?sprache=eng. [80] Heere, M., Muhlbauer, M. J., Schokel, A., Knapp, M., Ehrenberg, H., and Senyshyn, A., 2018. \Energy research with neutrons (erwin) and installation of a fast neutron powder diffraction option at the mlz, germany". Journal of applied crystallography, 51(3). [81] Senyshyn, A., Muhlbauer, M., Nikolowski, K., Pirling, T., and Ehrenberg, H., 2012. \\in-operando" neutron scattering studies on li-ion batteries". Journal of Power Sources, 203, pp. 126{129. [82] Sharma, N., and Peterson, V. K., 2013. \Overcharging a lithium-ion battery: Effect on the lixc6 negative electrode determined by in situ neutron diffraction". Journal of Power Sources, 244, pp. 695-701. [83] Senyshyn, A., Muhlbauer, M., Dolotko, O., Hofmann, M., Pirling, T., and Ehrenberg, H., 2014. \Spatially resolved in operando neutron scattering studies on li-ion batteries". Journal of Power Sources, 245, pp. 678-683. [84] Senyshyn, A., Muhlbauer, M., Dolotko, O., Hofmann, M., and Ehrenberg, H., 2015. \Homogeneity of lithium distribution in cylinder-type li-ion batteries". Scientic reports, 5, p. 18380. [85] Hansen, T. C., Henry, P. F., Fischer, H. E., Torregrossa, J., and Convert, P., 2008. \The d20 instrument at the ill: a versatile high-intensity two-axis neutron diractometer". Measurement Science and Technology, 19(3), p. 034001. [86] Studer, A. J., Hagen, M. E., and Noakes, T. J., 2006. \Wombat: The high-intensity powder difractometer at the opal reactor". Physica B: Condensed Matter, 385, pp. 1013-1015. [87] Ivon Luders, C., Zinth, V., Erhard, S. V., Osswald, P. J., Hofmann, M., Gilles, R., and Jossen, A., 2017. \Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction". Journal of Power Sources, 342, pp. 17-23. [88] Withers, P. J., Daymond, M. R., and Johnson, M. W., 2001. \The precision of diffraction peak location". Journal of applied crystallography, 34(6), pp. 737-743.
Materias:Ingeniería > Optica de neutrones > Difracción de neutrones
Ingeniería > Optica de neutrones
Divisiones:Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > Física de neutrones
Código ID:803
Depositado Por:Tamara Cárcamo
Depositado En:09 Abr 2021 10:06
Última Modificación:16 Abr 2021 09:25

Personal del repositorio solamente: página de control del documento