Separación de hidrógeno mediante hidruros metálicos. / Hydrogen separation using metallic hydrides.

Borzone, Emiliano M. (2016) Separación de hidrógeno mediante hidruros metálicos. / Hydrogen separation using metallic hydrides. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
23Mb

Resumen en español

Se presenta un proceso de purificación de hidrógeno en flujo, basado en el uso de hidruros metálicos. Este estudio encuentra su motivación en la posibilidad de generar aplicaciones industriales concretas a corto y mediano plazo, de acuerdo a un conjunto de oportunidades identificadas previamente. En base a trabajos previos se escoge el sistema LaNi_5-xSn_x como material activo. Se preparan aleaciones en el rango 0 ≤ x ≤ 0,5 y se caracteriza su reacción con H_2. Los resultados confirman que se trata de un sistema apto para su uso en aplicaciones estacionarias como la propuesta, con presiones de equilibrio cercanas a 1 bar, cinética de reacción apropiada a temperatura ambiente y buena resistencia a la degradación por ciclado. Se presta especial atención a la degradación por ciclado, tanto en H_2 puro como en presencia de CO. La incorporación de Sn aumenta la vida media del material en hidrógeno puro. Por otro lado, el CO retarda fuertemente la reacción, sin reducir la capacidad final. Los estudios de ciclado se realizan utilizando un equipo de laboratorio específico, desarrollado en esta Tesis. El proceso de purificación es implementado a escala de prototipo, utilizando un total de 300 g de LaNi_5. Se discuten los criterios de diseño del equipo y se presentan detalles de su construcción. Se presentan pruebas de purificación sobre hidrógeno previamente humidificado. Utilizando un flujo de trabajo de 100 sccm y a temperatura ambiente, sin fuentes ni sumideros de calor, se logra disminuir el contenido de humedad del gas de entrada de 3800 ppm a 190 ppm, manteniendo una fracción de recuperación del 93 %. A partir de los resultados obtenidos, se desarrolla un modelo computacional que describe el comportamiento de la reacción en el rango de condiciones estudiadas. Con esta herramienta se realiza un estudio preliminar del efecto de diferentes parámetros sobre la fracción recuperada. En particular, se evalúa el efecto del flujo de entrada, de la presión máxima, del contenido de Sn, de la caída de carga en el filtro de entrada al reactor, de la temperatura externa, de las condiciones de transferencia térmica y de la presencia de contaminantes nocivos para el material.

Resumen en inglés

A continuous hydrogen purification process based on hydride forming materials is presented. The study is motivated by the possibility of generating industrial applications in the short and medium term, in relation to a group of opportunities previously identified. The system LaNi_5-xSn_x is chosen as the hydride forming material. Alloys within the range 0 ≤ x ≤ 0; 5 are prepared and their interaction with H_2 is characterized. Results confirm this is a suitable system for stationary applications. It shows equilibrium pressures near 1 bar, good reaction kinetics at room temperature and good resistance to cycling-induced degradation. Special attention is paid to cycling degradation, both in pure H_2 and in the presence of CO. Sn addition is found to increase the material's life in pure hydrogen. CO strongly retards the reaction, without affecting the final storage capacity. Cycling studies were made using a special laboratory equipment, developed in this Thesis. The purification process is implemented at a prototype scale, using a total of 300 g of LaNi_5. The equipment's design criteria are discussed and construction details are presented. Purification tests are presented, using previously humidified hydrogen. Using a flow of 100 sccm at room temperature, without the need for heat sources or sinks, the process successfully lowers the humidity content in the gas from 3800 ppm to 190 ppm, with a hydrogen recovery fraction of 93%. A computational model is developed from the experimental results to describe the reaction's behavior in the range of studied conditions. This tool is used in a preliminary study on the effect of different working conditions on the recovery fraction. Specifically, the effect of the operating flow, the maximum pressure, the Sn content in the material, the pressure loss in the filters at the reactor's inlet, the operating temperature, heat transfer conditions and the presence of harmful contaminants are evaluated.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Hydrogen; Hidrógeno; Capture; Captura; Purification; Purificación; Hydrides; Hidruros, [Materials science; Ciencia de materiales; Metal hydrides; Hidruros metálicos]
Referencias:[1] Winter C.-J. Hydrogen energy - abundant, efficient, clean: A debate over the energy-system-of-change. International Journal of Hydrogen Energy, 34, S1-S52, 2009. (citado en pág. 1). [2] Jain I. Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34, 7368-7378, 2009. (citado en pág. 1). [3] Dagdougui H. Models, methods and approaches for the planning and design of the future hydrogen supply chain. International Journal of Hydrogen Energy, 37, 5318-5327, 2012. (citado en pág. 1). [4] Orhan M. F., Dincer I., Rosen M. A., Kanoglu M. Integrated hydrogen production options based on renewable and nuclear energy sources. Renewable and Sustainable Energy Reviews, 16 (8), 6059-6082, 2012. (citado en pág. 1). [5] Ball M., Weeda M. The hydrogen economy - Vision or reality? International Journal of Hydrogen Energy, 40, 7903-7919, 2015. (citado en pág. 1). [6] Midilli A., Ay M., Dincer I., Rosen M. A. On hydrogen and hydrogen energy strategies I: Current status and needs. Renewable and Sustainable Energy Reviews, 9, 255-271, 2005. (citado en pág. 1). [7] McDowall W., Eames M. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature. Energy Policy, 34, 1236-1250, 2006. (citado en pág. 1). [8] Wang Q. D., Chen C. P., Lei Y. Q. The recent research, development and industrial applications of metal hydrides in the People's Republic of China. Journal of Alloys and Compounds, 253-254, 629-634, 1997. (citado en pág. 1). [9] Verbetsky V. N., Malishenko S. P., Mitrokhin S. V., Solovei V. V., Shmal'ko Y. F. Metal hydrides: Properties and practical applications. Review of the works in CIS countries. International Journal of Hydrogen Energy, 23 (12), 1165-1177, 1998. (citado en pág. 1). [10] Sandrock G., Bowman R. C. Gas-based hydride applications: recent progress and future needs. Journal of Alloys and Compounds, 356-357, 794-799, 2003. (citado en pág. 1). [11] Bhuiya M. M. H., Kumar A., Kim K. J. Metal hydrides in engineering systems, processes, and devices: A review of non-storage applications. International Journal of Hydrogen Energy, 40, 2231-2247, 2015. (citado en pág. 1). [12] Holladay J. D., Hu J., King D. L., Wang Y. An overview of hydrogen production technologies. Catalysis Today, 139, 244-260, 2009. (citado en pág. 1). [13] LeValley T. L., Richard A. R., Fan M. The progress in water gas shift and steam reforming hydrogen production technologies: A review. International Journal of Hydrogen Energy, 39, 16983-17000, 2014. (citado en pág. 1). [14] Acar C., Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 39, 1-12, 2014. (citado en pág. 1). [15] Miura S., Fujisawa A., Ishida M. A hydrogen purification and storage system using metal hydride. International Journal of Hydrogen Energy, 37, 2794-2799, 2012. (citado en págs. 1, 11, 17, 18). [16] Lototskyy M., Modibane K. D., Williams M., Klochko Y. E., Linkov V., Pollet B. G. Application of surface-modified metal hydrides for hydrogen separation from gas mixtures containing carbon dioxide and monoxide. Journal of Alloys and Compounds, 580, S382-S385, 2013. (citado en págs. 1, 18). [17] Shmal'ko Y. F., Ivanovsky A. I., Lototsky M. V., Kolosov V. I., Volosnikov D. V. Sample pilot plant of industrial metal-hydride compressor. International Journal of Hydrogen Energy, 24, 534-537, 1999. (citado en pág. 1). [18] Lototskyy M., Yartys V., Pollet B., Bowman R. Metal hydride hydrogen compressors: A review. International Journal of Hydrogen Energy, 39, 5818-5851, 2014. (citado en págs. 1, 13). [19] Schlapbach L., Züttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353-358, 2001. (citado en pág. 1). [20] Sakintuna B., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 32, 1121- 1140, 2007. (citado en págs. 1, 7). [21] Pukazhselvan D., Kumar V., Singh S. K. High capacity hydrogen storage: Basic aspects, new developments and milestones. Nano Energy, 1, 566-589, 2012. (citado en pág. 1). [22] Richards G., Gemmen R. S., Williams M. C. Solid-state electrochemical heat engines. International Journal of Hydrogen Energy, 40, 3719-3725, 2015. (citado en pág. 1). [23] Bowman R. Development of metal hydride beds for sorption cryocoolers in space applications. Journal of Alloys and Compounds, 356-357, 789-793, 2003. (citado en págs. 1, 13). [24] Muthukumar P., Groll M. Metal hydride based heating and cooling systems: A review. International Journal of Hydrogen Energy, 35, 3817-3831, 2010. (citado en págs. 1, 13). [25] Muthukumar P., Groll M. Erratum to "Metal hydride based heating and cooling systems: A review". International Journal of Hydrogen Energy, 35, 8816-8829, 2010. (citado en págs. 1, 13). [26] Zhao X., Ma L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. International Journal of Hydrogen Energy, 34, 4788- 4796, 2009. (citado en pág. 1). [27] Veziroglu A., Macario R. Fuel cell vehicles: State of the art with economic and environmental concerns. International Journal of Hydrogen Energy, 36, 25-43, 2011. (citado en pág. 1). [28] Sørensen B. Fuel cells: Optimism gone - Hard work still there. International Journal of Hydrogen Energy, 38, 7578-7582, 2013. (citado en pág. 1). [29] Toyota Global Site - Technology File. www.toyota-global.com/innovation/ environmental_technology/technology_file/. (citado en pág. 1). [30] Feng F., Geng M., Northwood D. O. Electrochemical behaviour of intermetallicbased metal and hydrides used in Ni/metal hydride (MH) and batteries: a review. International Journal of Hydrogen Energy, 26, 725-734, 2001. (citado en págs. 1, 12). [31] Park S. The country-dependent shaping of 'hydrogen niche' formation: A comparative case study of the UK and South Korea from the innovation system perspective. International Journal of Hydrogen Energy, 38, 6557-6568, 2013. (citado en pág. 2). [32] Hardman S., Steinberger-Wilckens R., van der Horst D. Disruptive innovations: The case for hydrogen fuel cells and battery electric vehicles. International Journal of Hydrogen Energy, 38, 15438-15451, 2013. (citado en pág. 2). [33] Tang W., Sanville E., Henkelman G. A grid-based bader analysis algorithm without lattice bias. Journal of Physics Condensed Matter, 21, 084204, 2009. (citado en pág. 3). [34] Matar S. F. Intermetallic hydrides: A review with ab initio aspects. Progress in Solid State Chemistry, 38, 1-37, 2010. (citado en págs. 3, 7). [35] Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 293-295, 877-888, 1999. (citado en págs. 3, 6, 7, 13, 89). [36] Ghezzi F., Bocto C. Pressure-concentration-temperature characterization of St909 getter alloy with hydrogen. Vacuum, 47, 991-995, 1996. (citado en pág. 3). [37] Calvert J. G. Glossary of atmospheric chemistry terms. Pure and Applied Chemistry, 62, 2167-2219, 1990. (citado en págs. 4, 67). [38] Rudman P. S. Thermodynamics of pressure plateaus in metal-hydrogen systems. International Journal of Hydrogen Energy, 3 (4), 431-447, 1978. (citado en pág. 5). [39] Balasubramaniam R. Hysteresis in metal-hydrogen systems. Journal of Alloys and Compounds, 253-254, 203-206, 1997. (citado en pág. 5). [40] Schwarz R., Khachaturyan A. Thermodynamics of open two-phase systems with coherent interfaces: Application to metal-hydrogen systems. Acta Materialia, 54, 313-323, 2006. (citado en págs. 5, 89). [41] Flanagan T. B., Clewley J. D. Hysteresis in metal hydrides. Journal of the Less-Common Metals, 83, 127-141, 1982. (citado en pág. 6). [42] Flanagan T. B., Oates W. A. Some thermodynamic aspects of metal hydrogen systems. Journal of Alloys and Compounds, 404-406, 16-23, 2005. (citado en pág. 6). [43] Dantzer P. Properties of intermetallic compounds suitable for hydrogen storage applications. Materials Science and Engineering A, 329-331, 313-320, 2002. (citado en pág. 7). [44] Goodell P. D. Stability of rechargeable hydriding alloys during extended cycling. Journal of the Less-Common Metals, 99, 1-14, 1984. (citado en págs. 7, 73, 75). [45] Joubert J.-M., Latroche M., Cerný R., Percheron-Guégan A., Yvon K. Hydrogen cycling induced degradation in LaNi5-type materials. Journal of Alloys and Compounds, 330-332, 208-214, 2002. (citado en pág. 7). [46] Meyer G. O., Arneodo Larochette P., Baruj A., Castro F. J., Lacharmoise P., Zacur E. Equipment for hydrogen absorption-desorption cycling characterization of hydride forming materials. Review of Scientific Instruments, 78, 023903, 2007. (citado en pág. 7). [47] Mendelsohn M., Gruen D., Dwight A. LaNi5-xAlx is a versatile alloy system for metal hydride applications. Nature, 269, 45-47, 1977. (citado en pág. 7). [48] Pecheron-Guégan A., Lartigue C., Achard J. Correlations between the structural properties, the stability and the hydrogen content of substituted LaNi5 compounds. Journal of the Less-Common Metals, 109, 287-309, 1985. (citado en pág. 7). [49] Clay K. R., Goudy A. J., Schweibenz R. G., Zarynow A. The effect of the partial replacement of lanthanum in LaNi5H with cerium, praseodymium, and neodymium on absorption and desorption kinetics. Journal of the Less-Common Metals, 166, 153-162, 1990. (citado en pág. 7). [50] Wang B., Chen Y., Liu Y. Structure and electrochemical properties of (La1-xDyx)0.8Mg0.2Ni3.4Al0.1 (x = 0.0-0.20) hydrogen storage alloys. International Journal of Hydrogen Energy, 37, 9082-9087, 2012. (citado en pág. 7). [51] Latroche M. Structural transitions induced by hydrogen absorption in metallic hydrides. Zeitschrift für Kristallographie, 223, 666-673, 2008. (citado en págs. 7, 8, 57). [52] Nakamura Y., Bowman Jr R. C., Akiba E. Variation of hydrogen occupation in LaNi4.78Sn0.22Dx along the P-C isotherms studied by in situ neutron powder diffraction. Journal of Alloys and Compounds, 431, 148-154, 2007. (citado en págs. 7, 8, 57). [53] Lambert S. W., Chandra D., Cathey W. N., Lynch F. E., Bowman Jr R. C. Investigation of hydriding properties of LaNi4.8Sn0.2, LaNi4.27Sn0.24 and La0.9Gd0.1Ni5 after thermal cycling and aging. Journal of Alloys and Compounds, 187, 113135, 1992. (citado en págs. 8, 10). [54] Luo S., Luo W., Clewley J. D., Flanagan T. B., Wade L. A. Thermodynamic studies of the LaNi5-xSnx-H system from x = 0 to 0.5. Journal of Alloys and Compounds, 231, 467-472, 1995. (citado en págs. 8, 9, 65, 66, 67, 68). [55] Luo S., Clewley J. D., Flanagan T. B., Bowman Jr R. C., Cantrell J. S. Split plateaux in the LaNi5 - H system and the effect of Sn substitution on splitting. Journal of Alloys and Compounds, 253-254, 226-231, 1997. (citado en págs. 8, 9, 65). [56] Laurencelle F., Dehouche Z., Goyette J. Hydrogen sorption cycling performance of LaNi4.8Sn0.2. Journal of Alloys and Compounds, 424, 266-271, 2006. (citado en págs. 8, 9, 10, 61, 62, 70, 75, 77). [57] Cantrell J. S., Beiter T. A., Bowman Jr R. C. Crystal structure and hydriding behavior of LaNi5-ySny. Journal of Alloys and Compounds, 207-208, 372-376, 1994. (citado en págs. 8, 60). [58] Joubert J. M., Latroche M., Cerný R., Bowman Jr R. C., Percheron-Guégan A., Yvon K. Crystallographic study of LaNi5-xSnx (0.2 ≤ x ≤ 0.5) compounds and their hydrides. Journal of Alloys and Compounds, 293-295, 124129, 1999. (citado en págs. 8, 61, 62). [59] Matsuda J., Nakamura Y., Akiba E. Lattice defects introduced into LaNi5-based alloys during hydrogen absorption/desorption cycling. Journal of Alloys and Compounds, 509, 7498-7503, 2011. (citado en págs. 8, 75, 76). [60] Luo S., Clewley J. D., Flanagan T. B., Bowman Jr R. C., Wade L. A. Further studies of the isotherms of LaNi5-xSnx - H for x = 0-0.5. Journal of Alloys and Compounds, 267, 171-181, 1998. (citado en págs. 9, 58, 61, 62, 65, 66). [61] Zhai T., Yang T., Yuan Z., Xu S., Bu W., Qi Y., et al. Influences of hydrogeninduced amorphization and annealing treatment on gaseous hydrogen storage properties of La1-xPrxMgNi3.6Co0.4 (x=0-0.4) alloys. Journal of Alloys and Compounds, 639, 15-20, 2015. (citado en pág. 9). [62] Bowman Jr R. C., Luo C. H., Ahn C. C., Witham C. K., Fultz B. The effect of tin on the degradation of LaNi5-ySny metal hydrides during thermal cycling. Journal of Alloys and Compounds, 217, 185-192, 1995. (citado en págs. 10, 75). [63] Araki H., Date R., Sakaki K., Mizuno M., Shirai Y. Positron lifetime study on the degradation of LaNi5 and LaNi4.8Sn0.2 during hydrogen absorption-desorption cycling. Physica Status Solidi C, 4, 3510-3513, 2007. (citado en págs. 10, 74, 75). [64] Dunikov D., Borzenko V., Malyshenko S. Influence of impurities on hydrogen absorption in a metal hydride reactor. International Journal of Hydrogen Energy, 37, 13843-13848, 2012. (citado en págs. 10, 122). [65] Sandrock G. D., Goodell P. D. Ciclic life of metal hydrides with impure hydrogen: Overview and engineering considerations. Journal of the Less-Common Metals, 104, 159-173, 1984. (citado en págs. 10, 74, 79, 82, 83). [66] US DOE . Fuel cell handbook, 5ta edición. Morgantown, West Virginia, 2000. (citado en pág. 10). [67] Amphlett J. C., Mann R. F., Peppley B. A. Onboard hydrogen purification for steam reformation/PEM fuel cell vehicle power plants. International Journal of Hydrogen Energy, 21, 673-678, 1996. (citado en pág. 10). [68] Majlan E. H., Daud W. R. W., Iyuke S. E., Mohamad A. B., Kadhum A. A. H., Mohammad A. W., et al. Hydrogen purification using compact pressure swing adsorption system for fuel cell. International Journal of Hydrogen Energy, 34, 2771-2777, 2009. (citado en pág. 10). [69] Sandrock G., Goodell P. D. Surface poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, CO and H2O. Journal of the Less-Common Metals, 73, 161-168, 1980. (citado en págs. 10, 11, 80, 81, 82, 83). [70] Sakaguchi H., Tsujimoto T., Adachi G. The confinement of hydrogen in LaNi5 by poisoning of the hydride surface. Journal of Alloys and Compounds, 223, 122-126, 1995. (citado en págs. 10, 11, 80). [71] Eisenberg F. G., Goodell P. D. Cyclic response of reversible hydriding alloys in hydrogen containing carbon monoxide. Journal of Alloys and Compounds, 89, 55-62, 1983. (citado en págs. 10, 79, 82, 83). [72] Gamo T., Moriwaki Y., Yanagihara N., Iwaki T. Life properties of Ti-Mn alloy hydrides and their hydrogen purification effect. Journal of the Less-Common Metals, 89, 495-504, 1983. (citado en págs. 10, 16, 81). [73] Han S., Zhang X., Shi S., Tanaka H., Kuriyama N., Taoka N., et al. Experimental and theoretical investigation of the cycle durability against CO and degradation mechanism of the LaNi5 hydrogen storage alloy. Journal of Alloys and Compounds, 446-447, 208-211, 2007. (citado en págs. 11, 80, 81, 83). [74] Surnev L., Xu Z., Yates J. T. IRAS study of the adsorption of CO on Ni(111): Interrelation between various bonding modes of chemisorbed CO. Surface Science, 201, 1-13, 1988. (citado en págs. 11, 80). [75] Shaltiel D., von Waldkirch T., Stucki F., Schlapbach L. Ferromagnetic resonance in hydrogenated-dehydrogenated LaNi5, FeTi, and Mg2Ni and its relation to magnetic and surface investigations. Journal of Physics F: Metal Physics, 11, 471-485, 1981. (citado en pág. 11). [76] Uchida H. Surface processes of H2 on rare earth based hydrogen storage alloys with various surface modifications. International Journal of Hydrogen Energy, 24, 861-869, 1999. (citado en pág. 11). [77] Szuber J., Gzempik G., Larciprete R., Koziej D., Adamowicz B. XPS study of the L-CVD deposited SnO2 thin lms exposed to oxygen and hydrogen. Thin Solid Films, 391, 198-203, 2001. (citado en pág. 11). [78] Sato M., Uchida H., Stange M., Yartys V. A., Kato S., Ishibashi Y., et al. H2 reactivity on the surface of LaNi4.7Sn0.3. Journal of Alloys and Compounds, 402, 219223, 2005. (citado en págs. 11, 76). [79] Au M., Chen C., Ye Z., Fang T., Wu J., Wang O. The recovery, purification, storage and transport of hydrogen separated from industrial purge gas by means of mobile hydride containers. International Journal of Hydrogen Energy, 21 (1), 33-37, 1996. (citado en págs. 11, 17). [80] Bethke G. K., Kung H. H. Selective CO oxidation in a hydrogen-rich stream over Au/-Al2O3 catalysts. Applied Catalysis A: General, 194-195, 43-53, 2000. (citado en pág. 11). [81] Kandavel M., Ramaprabhu S. Hydrogen solubility and diffusion studies of Zrbased AB2 alloys and sol-gel encapsulated AB2 alloy particles. Intermetallics, 15, 968-975, 2007. (citado en pág. 11). [82] Nishimiya N., Suzuki M., Ishigaki K., Kashimura K. Water resistant hydrogen storage materials comprising encapsulated metal hydrides. International Journal of Hydrogen Energy, 32, 661-665, 2007. (citado en pág. 11). [83] Fernández G. E., Rodríguez D., Meyer G. Hydrogen absorption kinetics of MmNi4.7Al0.3. International Journal of Hydrogen Energy, 23, 1193-1196, 1998. (citado en págs. 11, 80, 100). [84] Ren J., Williams M., Lototskyy M., Davids W., Ulleberg . Improved tolerance of Pd/Cu-treated metal hydride alloys towards air impurities. International Journal of Hydrogen Energy, 35, 8626-8630, 2010. (citado en págs. 11, 18). [85] Williams M., Lototsky M. V., Davids M. W., Linkov V., Yartys V. A., Solberg J. K. Chemical surface modification for the improvement of the hydrogenation kinetics and poisoning resistance of TiFe. Journal of Alloys and Compounds, 509, S770-S774, 2011. (citado en págs. 11, 18). [86] Wang X.-L., Iwata K., Suda S. Hydrogen purification using fluorinated LaNi4.7Al0.3 alloy. Journal of Alloys and Compounds, 231, 860-864, 1995. (citado en págs. 11, 16, 17, 79, 82). [87] Uchida H., Inoue T., Tabata T., Seki S., Uchida H.-H., Aono F., et al. Effect of HF pretreatment on H reactivity with LaNi5 and LaNi4.7Al0.3. Journal of Alloys and Compounds, 253-254, 547-549, 1997. (citado en pág. 11). [88] Rodriguez D., Meyer G. Improvement of the activation stage of MmNi4.7Al0.3 hydride-forming alloys by surface fluorination. Journal of Alloys and Compounds, 293-295, 374-378, 1999. (citado en pág. 11). [89] Williams M., Nechaev A. N., Lototsky M. V., Yartys V. A., Solberg J. K., Denys R. V., et al. Influence of aminosilane surface functionalization of rare earth hydride-forming alloys on palladium treatment by electroless deposition and hydrogen sorption kinetics of composite materials. Materials Chemistry and Physics, 115, 136-141, 2009. (citado en págs. 11, 18). [90] Lototsky M. V., Williams M., Yartys V. A., Klochko Y. V., Linkov V. M. Surfacemodi fied advanced hydrogen storage alloys for hydrogen separation and purification. Journal of Alloys and Compounds, 509, S555-S561, 2011. (citado en págs. 11, 18). [91] Kim T.-H., Choi J.-S., Choo K.-Y., Sung J.-S., Jeong H. Study on the eect of hydrogen purication with metal hydride. En: 16th World Hydrogen Energy Conference 2006, WHEC 2006, tomo 2, págs. 1180-1189. 2006. (citado en págs. 11, 17). [92] Wu Y.-M., Yin Q.-S., Zhu Q.-S. 400 nm3/h ultra pure hydrogen generation equipment using metal hydride. Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 28, 121-124, 2006. (citado en págs. 11, 17). [93] Prigent J., Latroche M., Leoni E., Rohr V. Hydrogen trapping properties of Zrbased intermetallic compounds in the presence of CO contaminant gas. Journal of Alloys and Compounds, 509, S801-S803, 2011. (citado en pág. 11). [94] Shihai G., Guoqing W., Dongliang Z., Yanghuan Z., Xinlin W. Study on hydrogen in mixed gas separated by rare earth hydrogen storage alloys. Rare Metal Materials and Engineering, 40, 189-94, 2011. (citado en págs. 11, 17). [95] Olander D., Konashi K., Yamawaki M. Uranium-zirconium hydride fuel, tomo 3 de Comprehensive Nuclear Materials, cap. 3.12, págs. 313-357. Elsevier, 2012. (citado en pág. 12). [96] Olander D., Greenspan E., Garkisch H. D., Petrovic B. Uranium-zirconium hydride fuel properties. Nuclear Engineering and Design, 239, 1406-1424, 2009. (citado en pág. 12). [97] Hollmuller P., Joubert J.-M., Lachal B., Yvon K. Evaluation of a 5 kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland. International Journal of Hydrogen Energy, 25, 97-109, 2000. (citado en pág. 12). [98] McWhorter S., Read C., Ordaz G., Stetson N. Materials-based hydrogen storage: Attributes for near-term, early market PEM fuel cells. Current Opinion in Solid State and Materials Science, 15, 2938, 2011. (citado en pág. 12). [99] Züttel A. Materials for hydrogen storage. Materials Today, 6, 24-33, 2003. (citado en pág. 12). [100] Rönnebro E. Development of group II borohydrides as hydrogen storage materials. Current Opinion in Solid State and Materials Science, 15, 44-51, 2011. (citado en pág. 12). [101] Jorgensen S. W. Hydrogen storage tanks for vehicles: Recent progress and current status. Current Opinion in Solid State and Materials Science, 15, 39-43, 2011. (citado en pág. 12). [102] Lototskyy M., Yartys V. A. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials. Journal of Alloys and Compounds, 645, S365-S373, 2015. (citado en pág. 12). [103] López González E., Isorna Llerena F., Silva Pérez M., Rosa Iglesias F., Guerra Macho J. Energy evaluation of a solar hydrogen storage facility: Comparison with other electrical energy storage technologies. International Journal of Hydrogen Energy, 40, 5518-5525, 2015. (citado en pág. 12). [104] Delgado-Torres A. M. Solar thermal heat engines for water pumping: An update. Renewable and Sustainable Energy Reviews, 13, 462-472, 2009. (citado en pág. 13). [105] Coldea I., Popeneciu G., Lupu D., Misan I., Blanita G., Ardelean O. Investigation of heat and mass transfer process in metal hydride hydrogen storage reactors, suitable for a solar powered water pump system. AIP Conference Proceedings, 1425, 61, 2012. (citado en pág. 13). [106] Burch S. D., Potter T. F., Keyser M. A., Brady M. J., Michaels K. F. Reducing cold-start emissions by catalytic converter thermal management. Inf. téc., SAE Technical Papers, 1995. (citado en pág. 13). [107] Bao Z. Performance investigation and optimization of metal hydride reactors for high temperature thermochemical heat storage. International Journal of Hydrogen Energy, 40, 5664-5676, 2015. (citado en pág. 13). [108] Huiberts J. N., Griessen R., Rector J. H., Wijngaarden R. J., Dekker J. P., De Groot D. G., et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature, 380, 231-234, 1996. (citado en pág. 13). [109] Lohstroh W.,Westerwaal R. J., Van Mechelen J. L. M., Chacon C., Johansson E., Dam B., et al. Structural and optical properties of Mg2NiHx switchable mirrors upon hydrogen loading. Physical Review B, 70, 1-11, 2004. (citado en pág. 13). [110] Pearson D., Bowman R., Prina M., Wilson P. The planck sorption cooler: Using metal hydrides to produce 20 K. Journal of Alloys and Compounds, 446-447, 718-722, 2007. (citado en pág. 13). [111] Slaman M., Dam B., Pasturel M., Borsa D. M., Schreuders H., Rector J. H., et al. Fiber optic hydrogen detectors containing Mg-based metal hydrides. Sensors and Actuators, B: Chemical, 123, 538-545, 2007. (citado en pág. 13). [112] Ramage M. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. The National Academy Press: Washington, DC, 2005. (citado en págs. 13, 14). [113] Ritter J. A., Ebner A. D. State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Separation Science and Technology, 42, 1123-1193, 2007. (citado en págs. 14, 15). [114] Wittco- H. A., Reuben B. G., Plotkin J. S. Industrial Organic Chemicals. John Wiley & Sons, Inc.: New Jersey, 2004. (citado en pág. 14). [115] Malek A., Farooq S. Hydrogen purification from refinery fuel gas by pressure swing adsorption. AIChE Journal, 44, 1985-1992, 1998. (citado en pág. 14). [116] Sircar S., Golden T. C. Purification of hydrogen by pressure swing adsorption. Separation Science and Technology, 35, 667-687, 2000. (citado en pág. 14). [117] Takht Ravanchi M., Kaghazchi T., Kargari A. Application of membrane separation processes in petrochemical industry: a review. Desalination, 235, 199-244, 2009. (citado en pág. 15). [118] Adhikari S., Fernando S. Hydrogen membrane separation techniques. Industrial & Engineering Chemistry Research, 45, 875-881, 2006. (citado en pág. 15). [119] Lin H., Van Wagner E., Freeman B. D., Toy L. G., Gupta R. P. Plasticizationenhanced hydrogen purification using polymeric membranes. Science, 311, 639- 642, 2006. (citado en pág. 15). [120] Shao L., Low B. T., Chung T.-S., Greenberg A. R. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 327, 18-31, 2009. (citado en pág. 15). [121] Lu G., Diniz da Costa J., Duke M., Giessler S., Socolow R., Williams R., et al. Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 314, 589-603, 2007. (citado en pág. 15). [122] Rezakazemi M., Shahidi K., Mohammadi T. Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. International Journal of Hydrogen Energy, 37, 14576-14589, 2012. (citado en pág. 15). [123] Yang T., Chung T.-S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 38, 229-239, 2013. (citado en pág. 15). [124] Gardner C. L., Ternan M. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology. Journal of Power Sources, 171, 835-841, 2007. (citado en pág. 15). [125] Sakai T., Isa K., Matsuka M., Kozai T., Okuyama Y., Ishihara T., et al. Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte. International Journal of Hydrogen Energy, 38, 6842-6847, 2013. (citado en pág. 15). [126] Kamakoti P., Morreale B. D., Ciocco M. V., Howard B. H., Killmeyer R. P., Cugini A. V., et al. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science, 307, 569-573, 2005. (citado en pág. 15). [127] SAES Group Palladium Hydrogen Purifiers. www.saesgetters.com/products/ palladium-hydrogen-purifiers. (citado en pág. 15). [128] SAES Group Hydrogen Getters. www.saesgetters.com/products/ hydrogen-getters. (citado en pág. 15). [129] Jiménez García M. A. Recombinación de Hidrógeno en Dispositivos Autocatal íticos Pasivos y sus Implicaciones en la Seguridad de las Centrales Nucleares. Tesis Doctoral, Escuela Técnica Superior de Ingenieros Industriales - Universidad Politécnica de Madrid, 2007. (citado en pág. 15). [130] Gidaspow D., Liu Y. Hydrogen separation and compression through hydride formation and dissociation by low-level heat. En: Intersoc Energy Convers Eng Conf, 11th, Proc, State Line, págs. 920-925. 1976. (citado en pág. 16). [131] Sheridan J. J., Eisenberg F. G., Greskovich E., Sandrock G., Huston E. Hydrogen separation from mixed gas streams using reversible metal hydrides. Journal of the Less-Common Metals, 89, 447-455, 1983. (citado en pág. 16). [132] Rudman P. S., Sandrock G. D., Goodell P. D. Hydrogen separation from gas mixtures using LaNi5 pellets. Journal of the Less-Common Metals, 89, 437-446, 1983. (citado en pág. 16). [133] Block F. R., Dey A., Kappes H., Reith K. Hydrogen purifin Metals, 131, 329-335, 1987. (citado en pág. 16). [134] Hill F. B., Grzetic V. Cascades for hydrogen isotope separation using metal hydrides. Journal of the Less-Common Metals, 89, 399-405, 1983. (citado en pág. 16). [135] Mordkovich V. Z., Baichtock Y. K., Dudakova N. V., Korostyshevsky N. N., Sosna M. H. Comparative efficiency of using hydrides in industrial processes of hydrogen recovery and compression. International Journal of Hydrogen Energy, 18, 839-842, 1993. (citado en pág. 16). [136] Kruglov A. V., Perevezentsev A. N., Andreev B. N. Heat-mass transfer during hydrogen sorption from gas mixture by hydride-forming sorbents. International Journal of Hydrogen Energy, 19, 363-367, 1994. (citado en pág. 16). [137] Liu F.-J., Sandrock G., Suda S. Activation characteristics of chemically treated LaNi4.7Al0.3. Journal of Alloys and Compounds, 190, 57-60, 1992. (citado en pág. 16). [138] Wang X.-L., Suda S. Surface study of chemically treated LaNi4.7Al0.3 alloy. Journal of Alloys and Compounds, 194, 73-76, 1993. (citado en pág. 16). [139] Wang X.-L., Suda S. Stability and tolerance to impurities of the fluorinated surface of hydrogen-absorbing alloys. Journal of Alloys and Compounds, 227, 58-62, 1995. (citado en pág. 16). [140] Wang X.-L., Suda S. Surface characteristics of fluorinated hydriding alloys. Journal of Alloys and Compounds, 231, 380-386, 1995. (citado en págs. 16, 119). [141] Sun Y.-M., Gao X.-P., Araya N., Higuchi E., Suda S. A duplicated fluorination technique for hydrogen storage alloys. Journal of Alloys and Compounds, 293- 295, 364-368, 1999. (citado en pág. 16). [142] Saitou T., Sugiyama K. Hydrogen purification with metal hydride sintered pellets using pressure swing adsorption method. Journal of Alloys and Compounds, 231, 865-870, 1995. (citado en pág. 17). [143] Taniguchi Y., Ishida M. Hydrogen purification method from reformed gas containing high concentration of CO by using metal hydride. IEEJ Transactions on Power and Energy, 126, 1267-1274+11, 2006. (citado en pág. 17). [144] Fujisawa A., Miura S., Mitsutake Y., Monde M. Simulation study of hydrogen purification using metal hydride. Journal of Alloys and Compounds, 580, S423- S426, 2013. (citado en pág. 18). [145] Modibane K. D., Williams M., Lototskyy M., Davids M. W., Klochko Y., Pollet B. G. Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO2/CO containing gas mixtures. International Journal of Hydrogen Energy, 38, 9800-9810, 2013. (citado en pág. 18). [146] Minko K. B., Artemov V. I., Yan'kov G. G. Numerical simulation of sorption/ desorption processes in metal-hydride systems for hydrogen storage and purification. Part II: Verification of the mathematical model. International Journal of Heat and Mass Transfer, 68, 693-702, 2014. (citado en pág. 18). [147] Fleming W. H., Khan J. A., Rhodes C. A. Effective heat transfer in a metalhydride- based hydrogen separation process. International Journal of Hydrogen Energy, 26, 711-724, 2001. (citado en pág. 18). [148] Blinov D. V., Borzenko V. I., Dunikov D. O., Malyshenko S. P. Experimental investigations of hydrogen purification by purging through metal hydride. En: Proceedings of the International Conference Nanomaterials: Applications and Properties, tomo 1, pág. 03AET07(3pp). 2012. (citado en pág. 18). [149] Sieverts A. Die aufnahme von gasen durch metalle. Zeitschrift für Metallkunde, 21, 37-46, 1929. (citado en pág. 25). [150] Blach T., MacA. Gray E. Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts. Journal of Alloys and Compounds, 446-447, 692-697, 2007. (citado en págs. 25, 46). [151] Broom D. P. The accuracy of hydrogen sorption measurements on potential storage materials. International Journal of Hydrogen Energy, 32, 4871-4888, 2007. (citado en págs. 25, 49). [152] Bououdina M., Soubeyroux J. L., Juen P., Mouget C., Argoud R., Fruchart D. An apparatus for gravimetric analysis: its application to metal-hydrogen systems. Journal of Alloys and Compounds, 231, 422-426, 1995. (citado en pág. 25). [153] González Fernández I., Meyer G. O., Gennari F. C. Reversible hydrogen storage in Mg2CoH5 prepared by a combined milling-sintering procedure. Journal of Alloys and Compounds, 446-447, 106-109, 2007. (citado en pág. 26). [154] González Fernández I., Meyer G. O., Gennari F. C. Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling. Journal of Alloys and Compounds, 464, 111-117, 2008. (citado en pág. 26). [155] Talagañis B. A., Castro F. J., Baruj A., Meyer G. Novel device for simultaneous volumetric and X-ray difrraction measurements on metal-hydrogen systems. Review of Scientific Instruments, 80, 073901, 2009. (citado en pág. 26). [156] Bielmann M., Kato S., Mauron P., Borgschulte A., Züttel A. Characterization of hydrogen storage materials by means of pressure concentration isotherms based on the mass flow method. Review of Scientific Instruments, 80, 083901, 2009. (citado en págs. 26, 57). [157] Buckley C. E., Gray E. M. A., Kisi E. H. Stability of the hydrogen absorption and desorption plateaux in LaNi5-H. Part 1: hysteresis dynamics and location of the equilibrium isotherm. Journal of Alloys and Compounds, 215, 195-199, 1994. (citado en pág. 29). [158] Blanco M. V., Borzone E. M., Baruj A., Meyer G. O. Determinación de propiedades termodinámicas de materiales formadores de hidruro. En: Congreso Internacional de Metalurgia y Materiales SAM-CONAMET/IBEROMAT/MATERIA. 2014. (citado en págs. 31, 119). [159] Guillot A., Dantzer P. Determination of volumes by gas expansion. Journal of Physics E: Scientific Instruments, 19, 121008-121009, 1986. (citado en págs. 36, 48). [160] Taylor B. N., Kuyatt C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurement results, 1994. National Institute of Standards and Technology, Technical Note 1297. (citado en pág. 43). [161] National Institute of Standards and Technology . NIST reference on constants, units and uncertainty. physics.nist.gov/cuu/. (citado en pág. 43). [162] Webb C. J., Gray E. Analysis of the uncertainties in gas uptake measurements using the Sieverts method. International Journal of Hydrogen Energy, 39, 366- 375, 2014. (citado en págs. 44, 50). [163] Zhou L., Zhou Y. Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage. International Journal of Hydrogen Energy, 26, 597-601, 2001. (citado en pág. 44). [164] Wieser M. E., Holden N., Coplen T. B., Böhlke J. K., Berglund M., Brand W. A., et al. Atomic weights of the elements (IUPAC technical report). Pure and Applied Chemistry, 85, 1047-1078, 2013. (citado en pág. 44). [165] Joubert J. M., Cerný R., Latroche M., Leroy E., Guénée L., Percheron-Guégan A., et al. A structural study of the homogeneity domain of LaNi5. Journal of Solid State Chemistry, 166, 1-6, 2002. (citado en págs. 45, 112, 133). [166] Stange M., Maehlen J. P., Yartys V. A., Norby P., van Beek W., Emerich H. In situ SR-XRD studies of hydrogen absorption-desorption in LaNi4.7Sn0.3. Journal of Alloys and Compounds, 404-406, 604-608, 2005. (citado en págs. 46, 112, 133). [167] Beeri O., Cohen D., Gavra Z., Johnson J. R., Mintz M. H. High-pressure studies of the TiCr1.8-H2 system statistical thermodynamics above the critical temperature. Journal of Alloys and Compounds, 267, 113-120, 1998. (citado en págs. 46, 88). [168] Checchetto R., Trettel G., Miotello A. Sievert-type apparatus for the study of hydrogen storage in solids. Measurement Science and Technology, 15, 127-130, 2004. (citado en pág. 50). [169] York D., Evensen N. M., López Martínez M., De Basabe Delgado J. Uniffed equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72, 367-375, 2004. (citado en pág. 52). [170] Kapischke J., Hapke J. Measurement of the pressure-composition isotherms of high-temperature and low-temperature metal hydrides. Experimental Thermal and Fluid Science, 18, 70-81, 1998. (citado en pág. 53). [171] Lototsky M., Yartys V., Marinin V., Lototsky N. Modelling of phase equilibria in metal-hydrogen systems. Journal of Alloys and Compounds, 356-357, 27-31, 2003. (citado en págs. 56, 88). [172] Park C.-N., Luo S., Flanagan T. B. Analysis of sloping plateaux in alloys and intermetallic hydrides I. Diagnostic features. Journal of Alloys and Compounds, 384, 203-207, 2004. (citado en pág. 56). [173] Luo S., Park C.-N., Flanagan T. B. Analysis of sloping plateaux in alloys and intermetallic hydrides II. Real systems. Journal of Alloys and Compounds, 384, 208-216, 2004. (citado en pág. 57). [174] Senoh H., Takeichi N., Yasuda K., Kiyobayashi T. A theoretical interpretation of the pressure-composition isotherms of RNi5 (R = La, Pr, Nd and Sm) systems based on statistical mechanics. Journal of Alloys and Compounds, 470, 360-364, 2009. (citado en págs. 57, 89). [175] Shan X., Payer J. H., Wainright J. S. Improved durability of hydrogen storage alloys. Journal of Alloys and Compounds, 430, 262-268, 2007. (citado en pág. 59). [176] Wasz M. L., Desch P. B., Schwarz R. B. The effect of tin alloying on the structure of LaNi5. Philosophical Magazine A, 74, 15-22, 1996. (citado en págs. 61, 62). [177] Millet P. Pneumatochemical Impedance Spectroscopy. 2. Dynamics of hydrogen sorption by metals. The Journal of Physical Chemistry B, 109 (50), 24025-24030, Dec 2005. (citado en pág. 65). [178] Millet P., Decaux C., Ngameni R., Guymont M. Experimental requirements for measuring pneumatochemical impedances. Review of Scientific Instruments, 78, 123902, 2007. (citado en pág. 65). [179] Ngameni R., Mbemba N., Grigoriev S., Millet P. Comparative analysis of the hydriding kinetics of LaNi5, La0.8Nd0.2Ni5 and La0.7Ce0.3Ni5 compounds. International Journal of Hydrogen Energy, 36, 4178-4184, 2011. (citado en pág. 65). [180] Luo S., Flanagan T. B., Bowman R. C. Hydrogen isotherms for annealed, unactivated LaNi5 (273-333 K). Journal of Alloys and Compounds, 574, 443-450, 2013. (citado en págs. 65, 66). [181] Ono S., Nomura K., Akiba E., Uruno H. Phase transformations of the LaNi5-H2 system. Journal of the Less-Common Metals, 113, 113-117, 1985. (citado en pág. 65). [182] Shilov A. L., Kost M. E., Kuznetsov N. T. The system LaNi5-H2. Journal of the Less-Common Metals, 144, 23-30, 1988. (citado en págs. 65, 68). [183] Fultz B., Witham C. K., Udovic T. J. Distributions of hydrogen and strains in LaNi5 and LaNi4.75Sn0.25. Journal of Alloys and Compounds, 335, 165-175, 2002. (citado en págs. 65, 68, 76). [184] Sakaki K., Date R., Mizuno M., Araki H., Nakamura Y., Shirai Y., et al. Behavior of vacancy formation and recovery during hydrogenation cycles in LaNi4.93Sn0.27. Journal of Alloys and Compounds, 477, 205-211, 2009. (citado en pág. 69). [185] Ron M. The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. Journal of Alloys and Compounds, 283, 178-191, 1999. (citado en págs. 70, 72, 91, 96). [186] Mordkovich V. Z., Korostyshevsky N. N., Baychtok Y. K., Mazus E. I., Dudakova N. V., Mordovin V. P. Degradation of LaNi5 by thermobaric cycling in hydrogen and hydrogen-nitrogen mixture. International Journal of Hydrogen Energy, 15, 723-726, 1990. (citado en pág. 74). [187] Nishimura K., Sato K., Nakamura Y., Inazumi C., Oguro K., Uehara I., et al. Stability of LaNi5-xAlx alloys (x≤0-0.5) during hydriding and dehydriding cycling in hydrogen containing O2 and H2O. Journal of Alloys and Compounds, 268, 207-210, 1998. (citado en pág. 74). [188] Nakamura H., Nakamura Y., Fujitani S., Yonezu I. Cycle performance of a hydrogen-absorbing La0.8Y0.2Ni4.8Mn0.2 alloy. International Journal of Hydrogen Energy, 21, 457-460, 1996. (citado en pág. 75). [189] Uchida H., Seki S., Seta S. Effect of surface contamination on the hydriding behaviors of LaNi4.5Al0.5, LaNi2.5Co2.5 and LaNi4.5Mn0.5. Journal of Alloys and Compounds, 231, 403-410, 1995. (citado en pág. 76). [190] Han J. I., Lee J.-Y. The effect of CO impurity on the hydrogenation properties of LaNi5, LaNi4.7Al0.3 and MmNi4.5Al0.5 during hydriding/dehydriding cycling. Journal of the Less-Common Metals, 152, 319-327, 1989. (citado en págs. 79, 82). [191] Smith G., Goudy A. J. Thermodynamics, kinetics and modeling studies of the LaNi5-xCox hydride system. Journal of Alloys and Compounds, 316, 93-98, 2001. (citado en págs. 79, 80, 100, 107). [192] Blanco M. V., Borzone E. M., Baruj A., Meyer G. O. Hydrogen sorption kinetics of La-Ni-Sn storage alloys. International Journal of Hydrogen Energy, 39, 5858- 5867, 2014. (citado en págs. 80, 99). [193] An X. H., Pan Y. B., Luo Q., Zhang X., Zhang J. Y., Li Q. Application of a new kinetic model for the hydriding kinetics of LaNi5-xAlx (0≤x≤1.0) alloys. Journal of Alloys and Compounds, 506, 63-69, 2010. (citado en págs. 80, 100). [194] Schweppe F., Martin M., Fromm E. Hydrogen absorption of LaNi5 powders precovered with O2, CO, H2S, CO2 or N2. Journal of Alloys and Compounds, 253-254, 511-514, 1997. (citado en pág. 80). [195] Han J. I., Lee J.-Y. Simulation of the degradation behavior of the hydrogen absorption kinetics of LaNi5 under the cyclic operations in H2-CO and H2-O2. Journal of the Less-Common Metals, 157, 187-199, 1990. (citado en pág. 82). [196] Askri F., Jemni A., Ben Nasrallah S. Dynamic behavior of metal-hydrogen reactor during hydriding process. International Journal of Hydrogen Energy, 29, 635- 647, 2004. (citado en pág. 88). [197] Talagañis B. A., Meyer G. O., Aguirre P. A. Modeling and simulation of absorption-desorption cyclic processes for hydrogen storage-compression using metal hydrides. International Journal of Hydrogen Energy, 36, 13621-13631, 2011. (citado en págs. 88, 89). [198] Voskuilen T. G., Waters E. L., Pourpoint T. L. A comprehensive approach for alloy selection in metal hydride thermal systems. International Journal of Hydrogen Energy, 39, 13240-13254, 2014. (citado en págs. 88, 89). [199] Lacher J. R. A theoretical formula for the solubility of hydrogen in palladium. Proceedings of the Royal Society of London, Series A, 161, 525-545, 1937. (citado en pág. 88). [200] Bjurström H., Suda S., Lewis D. A numerical expression for the P-C-T properties of metal hydrides. Journal of the Less-Common Metals, 130, 365-370, 1987. (citado en pág. 88). [201] Feng F., Geng M., Northwood D. Mathematical model for the plateau region of P-C-isotherms of hydrogen-absorbing alloys using hydrogen reaction kinetics. Computational Materials Science, 23, 291-299, 2002. (citado en pág. 88). [202] Falahati H., Barz D. P. Evaluation of hydrogen sorption models for AB5-type metal alloys by employing a gravimetric technique. International Journal of Hydrogen Energy, 38, 8838-8851, 2013. (citado en pág. 88). [203] Herbrig K., Röntzsch L., Pohlmann C., Weiÿgärber T., Kieback B. Hydrogen storage systems based on hydride-graphite composites: computer simulation and experimental validation. International Journal of Hydrogen Energy, 38, 7026- 7036, 2013. (citado en págs. 88, 123). [204] Zhou Z., Zhang J., Ge J., Feng F., Dai Z. Mathematical modeling of the PCT curve of hydrogen storage alloys. International Journal of Hydrogen Energy, 19, 269-273, 1994. (citado en págs. 88, 89). [205] Fang S., Zhou Z., Zhang J., Yao M., Feng F., Northwood D. O. Two mathematical models for the hydrogen storage properties of AB2 type alloys. Journal of Alloys and Compounds, 293-295, 10-13, 1999. (citado en págs. 88, 89). [206] Paya J., Linder M., Laurien E., Corberan J. M. Mathematical models for the P-C-T characterization of hydrogen absorbing alloys. Journal of Alloys and Compounds, 484, 190-195, 2009. (citado en pág. 88). [207] Gondor G., Lexcellent C. Analysis of hydrogen storage in metal hydride tanks introducing an induced phase transformation. International Journal of Hydrogen Energy, 34, 5716-5725, 2009. (citado en págs. 88, 89). [208] Ye J., Jiang L., Li Z., Liu X., Wang S., Li X. Numerical analysis of heat and mass transfer during absorption of hydrogen in metal hydride based hydrogen storage tanks. International Journal of Hydrogen Energy, 35, 8216-8224, 2010. (citado en pág. 88). [209] Sajid Ahmed S., Srinivasa Murthy S. Analysis of a novel metal hydride cycle for simultaneous heating and cooling. Renewable Energy, 29, 615-631, 2004. (citado en pág. 89). [210] Muthukumar P., Prakash Maiya M., Srinivasa Murthy S. Experiments on a metal hydride based hydrogen compressor. International Journal of Hydrogen Energy, 30, 879-892, 2005. (citado en pág. 89). [211] Laurencelle F., Goyette J. Simulation of heat transfer in a metal hydride reactor with aluminium foam. International Journal of Hydrogen Energy, 32, 2957-2964, 2007. (citado en pág. 89). [212] Payá J., Freni A., Corberán J. M., Compañ V. Hydriding kinetics of LaNi5 using nucleation-growth and diusion models. Journal of New Materials for Electrochemical Systems, 15, 293300, 2012. (citado en págs. 89, 97, 99). [213] Schwarz R. B., Khachaturyan A. G. Thermodynamics of open two-phase systems with coherent interfaces. Physical Review Letters, 74, 2523-2526, 1995. (citado en pág. 89). [214] Lexcellent C., Gondor G. Analysis of hydride formation for hydrogen storage: Pressure-composition isotherm curves modeling. Intermetallics, 15, 934-944, 2007. (citado en pág. 89). [215] Khawam A., Flanagan D. R. Solid-state kinetic models: Basics and mathematical fundamentals. Journal of Physical Chemistry B, 110, 17315-17328, 2006. (citado en págs. 93, 94, 95). [216] Muthukumar P., Satheesh A., Linder M., Mertz R., Groll M. Studies on hydriding kinetics of some La-based metal hydride alloys. International Journal of Hydrogen Energy, 34, 7253-7262, 2009. (citado en pág. 95). [217] Dantzer P., Orgaz E. Hydriding kinetics: The role of thermal transfer. Journal of the Less-Common Metals, 147, 27-39, 1989. (citado en págs. 96, 99). [218] Andreasen A., Vegge T., Pedersen A. S. Compensation effect in the hydrogenation/ dehydrogenation kinetics of metal hydrides. Journal of Physical Chemistry B, 109, 3340-3344, 2005. (citado en págs. 96, 98, 99). [219] Schweppe F., Martin M., Fromm E. Model on hydride formation describing surface control, diffusion control and transition regions. Journal of Alloys and Compounds, 261, 254-258, 1997. (citado en págs. 97, 99). [220] Borgschulte A., Gremaud R., Griessen R. Interplay of diffusion and dissociation mechanisms during hydrogen absorption in metals. Physical Review B: Condensed Matter and Materials Physics, 78, 094106, 2008. (citado en pág. 97). [221] Boser O. Hydrogen sorption in LaNi5. Journal of the Less-Common Metals, 46, 91-99, 1976. (citado en pág. 99). [222] Sato M., Stange M., Yartys V. A. Desorption behaviour of hydrogen in the LaNi4.7Sn0.3-H system. Journal of Alloys and Compounds, 396, 197-201, 1995. (citado en pág. 99). [223] Nahm K. S., Kim W. Y., Hong S. P., Lee W. Y. The reaction kinetics of hydrogen storage in LaNi5. International Journal of Hydrogen Energy, 17, 333-338, 1992. (citado en pág. 99). [224] Martin M., Gommel C., Borkhart C., Fromm E. Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds, 238, 193-201, 1996. (citado en págs. 99, 100, 101, 102). [225] Gulsen M., Smith A. E., Tate D. M. A genetic algorithm approach to curve fitting. International Journal of Production Research, 33, 1911-1923, 1995. (citado en pág. 104). [226] Misevicius A. An improved hybrid genetic algorithm: new results for the quadratic assignment problem. Knowledge-Based Systems, 17, 65-73, 2004. (citado en pág. 104). [227] Tinós R., Yang S. A self-organizing random inmigrants genetic algorithm for dynamic optimization problems. Genetic Programming and Evolvable Machines, 8, 255-286, 2007. (citado en pág. 104). [228] Ohlendorf D., Flotow H. E. Heat capacities and thermodynamic functions of LaNi5, LaNi5H0.36 and LaNi5H6.39 from 5 to 300 K. Journal of the Less-Common Metals, 13, 25-32, 1980. (citado en págs. 112, 133). [229] Blanco M. V. Captura y separación de hidrógeno en la producción de radiofármacos. Tesis Doctoral, Instituto Balseiro, 2015. (citado en págs. 119, 146). [230] Yang F., Wang G., Zhang Z., Meng X., Rudolph V. Design of the metal hydride reactors - A review on the key technical issues. International Journal of Hydrogen Energy, 35, 3832-3840, 2010. (citado en págs. 119, 120). [231] Meng X., Wu Z., Bao Z., Yang F., Zhang Z. Performance simulation and experimental confirmation of a mini-channel metal hydrides reactor. International Journal of Hydrogen Energy, 38, 15242-15253, 2013. (citado en pág. 120). [232] Ma J., Wang Y., Shi S., Yang F., Bao Z., Zhang Z. Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank. International Journal of Hydrogen Energy, 39, 13583-13595, 2014. (citado en pág. 120). [233] Lynch F. E. Operating characteristics of high performance commertial metal hydride heat exchangers. Journal of the Less-Common Metals, 74, 411-418, 1980. (citado en págs. 120, 121). [234] American Society of Mechanical Engineering. 2007 ASME Boiler & Pressure Vessel Code VIII - Division 1: Rules for Construction of Pressure Vessels. (citado en pág. 120). [235] Nasako K., Ito Y., Hiro N., Osumi M. Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy. Journal of Alloys and Compounds, 264, 271-276, 1998. (citado en pág. 121). [236] Ao B. Y., Chen S. X., Jiang G. Q. A study on wall stresses induced by LaNi5 alloy hydrogen absorption-desorption cycles. Journal of Alloys and Compounds, 390, 122-126, 2005. (citado en pág. 121). [237] Okumura M., Terui K., Ikado A., Saito Y., Shoji M., Matsushita Y., et al. Investigation of wall stress development and packing ratio distribution in the metal hydride reactor. International Journal of Hydrogen Energy, 37, 6686-6693, 2012. (citado en pág. 121). [238] Au M., Wu J., Wang Q. D. Some engineering methods for eliminating deformation and expansion damage of hydride storage containers. Journal of the Less-Common Metals, 172-174, 1168-1174, 1991. (citado en págs. 121, 122, 123). [239] Bershadsky E., Josephy Y., Ron M. Permeability and thermal conductivity of porous metallic matrix hydride compacts. Journal of the Less-Common Metals, 153, 65-78, 1989. (citado en págs. 121, 123). [240] Melnichuk M., Silin N., Peretti H. Optimized heat transfer fin design for a metalhydride hydrogen storage container. International Journal of Hydrogen Energy, 34, 3417-3424, 2009. (citado en pág. 122). [241] Mohan G., Prakash Maiya M., Srinivasa Murthy S. The performance simulation of air-cooled hydrogen storage device with plate fins. International Journal of Low-Carbon Technologies, 5, 25-34, 2010. (citado en pág. 122). [242] Melnichuk M., Silin N. Guidelines for thermal management design of hydride containers. International Journal of Hydrogen Energy, 37, 18080-18094, 2012. (citado en pág. 122). [243] Kaplan Y. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors. International Journal of Hydrogen Energy, 34, 2288- 2294, 2009. (citado en págs. 122, 131, 140). [244] Dehouche Z., Grimard N., Laurencelle F., Goyette J., Bose T. K. Hydride alloys properties investigations for hydrogen sorption compressor. Journal of Alloys and Compounds, 399, 224-236, 2005. (citado en pág. 122). [245] Mayer U., Groll M., Supper W. Heat and mass transfer in metal hydride reaction beds: Experimental and theoretical results. Journal of the Less-Common Metals, 131, 235-244, 1987. (citado en pág. 123). [246] Tsai M.-L., Yang T.-S. On the selection of metal foam volume fraction for hydriding time minimization of metal hydride reactors. International Journal of Hydrogen Energy, 35, 11052-11063, 2010. (citado en pág. 123). [247] Yasuda N., Tsuchiya T., Okinaka N., Akiyama T. Thermal conductivity and cycle characteristic of metal hydride sheet formed using aramid pulp and carbon -ber. International Journal of Hydrogen Energy, 38, 1657-1651, 2013. (citado en pág. 123). [248] Couturier K., Joppich F., Wörner A., Tamme R. Tank design for on board hydrogen storage in metal hydrides. En: Proceedings of Energy Sustainability, ES2008-54031. Jacksonville, Florida USA: ASME, 2008. (citado en pág. 123). [249] Air Liquide Technical Data - Conversion Factors. www.airliquide.com.au/. (citado en pág. 128). [250] Neuman E. J. Prototipo para purificación de hidrógeno en flujo. Instituto Balseiro, Universidad Nacional de Cuyo, 2015. Trabajo Integrador de Ingeniería Mecánica. (citado en pág. 136). [251] Talagañis B. A., Meyer G. O., Oliva D. G., Fuentes M., Aguirre P. A. Modeling and optimal design of cyclic processes for hydrogen purification using hydrides forming metals. International Journal of Hydrogen Energy, 39, 18997-19008, 2014. (citado en pág. 139). [252] Aregbe Y., Mayer K., Valkiers S., Debievre P. Detection of reprocessing activities through stable isotope measurements of atmospheric noble gases. Fresenius Journal of Analytical Chemistry, 358, 533-535, 1997. (citado en pág. 146). [253] Grosch M. Complications of the medical radioisotope production for the nonproliferation regime. University of Hamburg, 2008. Tesis de Maestría. (citado en pág. 146). [254] Kemp R. S., Schlosser C. A performance estimate for the detection of undeclared nuclear-fuel reprocessing by atmospheric Kr-85. Journal of Environmental Radioactivity, 99, 1341-1348, 2008. (citado en pág. 146). [255] Roÿ J. O. Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing. Tesis Doctoral, Max-Planck-Institute für Meteorologie, 2010. (citado en pág. 146). [256] Milidoni M. L. Captura/separación de hidrógeno en la producción de radioisótopos. Instituto Balseiro, Universidad Nacional de Cuyo, 2012. Trabajo Integrador de Ingeniería Nuclear. (citado en pág. 146). [257] Rossich J. P. Caracterización de membranas base Pd para la separación/purificación de hidrógeno en procesos industriales. Instituto Balseiro, Universidad Nacional de Cuyo, 2015. Trabajo Integrador de Ingeniería Nuclear. (citado en pág. 146).
Materias:Ingeniería > Tecnología del hidrógeno
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Fisicoquímica de materiales
Código ID:805
Depositado Por:Tamara Cárcamo
Depositado En:08 Aug 2019 10:20
Última Modificación:08 Aug 2019 10:20

Personal del repositorio solamente: página de control del documento