Estudio de los métodos para la generación de pseudo-CTs utilizadas en la corrección de atenuación de imágenes cerebrales mediante secuencias de resonancia magnética y atlas en un sistema híbrido PET/MR / Study of the methods for the generation of pseudo-CTs used in the correction of the attenuation of cerebral images using magnetic resonance sequences and atlas in a PET/MR equipment

Battellino Percello, Victoria (2019) Estudio de los métodos para la generación de pseudo-CTs utilizadas en la corrección de atenuación de imágenes cerebrales mediante secuencias de resonancia magnética y atlas en un sistema híbrido PET/MR / Study of the methods for the generation of pseudo-CTs used in the correction of the attenuation of cerebral images using magnetic resonance sequences and atlas in a PET/MR equipment. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
15Mb

Resumen en español

Para obtener información cuantitativa con la técnica PET es necesario hacer una corrección de la imagen adquirida debido a la atenuación que los fotones de 511 keV tienen en su recorrido desde su origen hasta el detector que los registra. En el PET convencional, el mapa de atenuación se obtenía a partir de un escaneo de transmisión, en el que se utilizaba una fuente de radionucleido rotatoria (68"Ge o 137"Cs); actualmente, se utiliza la técnica CT en los equipos híbridos PET/CT y SPECT/CT. En los equipos híbridos PET/MR el mapa de atenuación debe provenir de la técnica de MRI. Existen varios métodos para generar el mapa de atenuación, tres de los mas importantes se basan en la segmentación de la imagen de MRI, en la construcción de un atlas único o un atlas múltiple y en datos por emisión de PET. Generar un mapa de atenuación directo con la técnica de MRI es complejo porque sus intensidades se correlacionan con las densidades de protones y las propiedades de relajación de los tejidos y no con la densidad electrónica como ocurre en la CT. Hoy en día, es un desafío convertir directamente las señales de la imagen de MRI a datos de atenuación lineal sin utilizar un atlas u otra herramienta. En este trabajo se estudiaron protocolos de cabeza de tomografía computada y de PET/CT, los cuales se configuraron para obtener la información suciente para referencia osea y corrección por atenuación. Se reclutaron 43 pacientes con pedido medico para PET/CT o CT, bajo la aprobación del Comité de Ética. Se adquirió el conocimiento necesario para desarrollar un algoritmo en MATLAB para procesar las imágenes de CT y elaborar pseudo-CTs basadas en atlas y en la segmentación de la ZTE para el estudio de los métodos para corrección por atenuación. La secuencia ZTE se estudio, conguro y optimizo, con el fin de reconocer las necesidades para su implementación clínica que actualmente no es comercial. Finalmente, el desarrollo mostró su eciencia para detectar hueso y patologías asociadas a tejido denso, validado por referentes médicos. Adicionalmente, algunos casos clínicos particulares fueron analizados para contrastar la información otorgada por distintos métodos de corrección de atenuación, mostrando la implementación de la ZTE y su potencial clínico.

Resumen en inglés

In order to obtain quantitative information with the PET technique, is necessary to make a correction of the acquired image due to the attenuation that the 511 keV photons have in their path from their origin to the detector (AC). With the conventional PET technique, the attenuation map was obtained from a transmission scan, in which a rotating radiant source (68"Ge o 137"Cs) is used. Currently the CT technique is used in hybrid PET/CT and SPECT/CT scanner. In PET/MR hybrid system the attenuation map must come from the MRI technique; there are several methods to generate the attenuation map, three of the most important are: segmentation-based methods, atlas-based methods and PET emission-based methods. Generating a direct attenuation map with the MRI technique is a complex task because its intensities are correlated with proton densities and tissues relaxation properties instead of electron density such as it is the case in CT. Converting the signals of the MRI image directly to linear attenuation data without using an atlas or another tool is still a challenge nowadays. In this work, head CT and PET/CT scan protocols were studied, which were congured for obtaining enough information for osseous reference and attenuation correction. By using the CT results, several atlases that could be used to correct PET/MR images were generated. These atlases were obtained from the CT studies of 40 patients with a medical requirement, who were recruited for this study with the Ethics Committee approval. The necessary knowledge for developing a MATLAB algorithm to process the acquired images and make the atlases was acquired. The ZTE sequence was studied, congured and enhanced to assess its needs for its clinical implementation, which currently is not commercially available. Finally, the development showed its efficiency to detect bone and dense tissue associated pathologies, which was validated for medical experts. Additionally, some particular clinical cases were analyzed to contrast the information given by different attenuation correction methods, showing the ZTE sequence implementation and its clinical potential.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Brain; Cerebro; Magnetic resonance; Resonancia magnética; [Positron emmission tomography; Tomografía de emisión de positrones; Magnetic resonance imaging; Imágenes de resonancia magnética nuclear]
Referencias:[1] Gamez, C. Positron Emission Tomography/Computed Tomography (PET/CT): present and future of a new imaging technique in oncology. Cirugía española, 77 (3), 111, 2005. 1 [2] Nuñez, R. Activities of the IAEA in Nuclear Medicine. En: Nuclear Medicine and Diagnostic Imaging section, tomo División of Human Health. International Atomic Energy Agency, 2017. 1 [3] Townsend, D. W. Combined positron emission tomography-computed tomography: the historical perspective. Semin Ultrasound CT MR, 29 (4), 232- 235, 2009. 2 [4] Buck, A. K., Nekolla, S., Ziegler, S., Beer, A., Krause, B. J., Herrmann, K., et al. Spect/ct. J Nucl Med, 49 (8), 1305-19, 2008. 2 [5] Patton, J. A., Turkington, T. G. Spect/ct physical principles and attenuation correction. Journal of nuclear medicine technology, 36 (1), 1-10, 2008. 2 [6] Nensa, F., Beiderwellen, K., Heusch, P., Wetter, A. Clinical applications of PET/MRI: current status and future perspectives. Diagnostic and Interventional Radiology, 20 (5), 438, 2014. 2 [7] Barrie Smith, N., Webb, A. Introduction to medical imaging: Physics, Engineering and Clinical Applications. New York: Cambridge University Press, 2011. 2, 3, 4, 11 [8] Koivisto, J., Van Eijnatten, M., Jarnstedt, J., Holli-Helenius, K., Dastidar, P., Wolff, J. Impact of prone, supine and oblique patient positioning on CBCT image quality, contrast-to-noise ratio and gure of merit value in the maxillofacial region. Dentomaxillofacial Radiology, 46 (6), 20160418, 2017. 3 [9] Hounseld, G. N. Computerized transverse axial scanning (tomography): Part 1. description of system. The British journal of radiology, 46 (552), 1016-1022, 1973. 4 [10] GE Healthcare. Discovery Dimension Series: Guía de aprendizaje y referencia. GE Medical Systems, 2008. 4, 6, 7 [11] Kimpe, T., Tuytschaever, T. Increasing the number of gray shades in medical display systems-how much is enough? Journal of digital imaging, 20 (4), 422- 432, 2007. 5 [12] Neuroradiology. Ct terminology. https://bit.ly/1gEnUvZ, 2011. 5 [13] Kalra, A. Developing FE Human Models From Medical Images. En: Basic Finite Element Method as Applied to Injury Biomechanics, pags. 389-415. Elsevier, 2018. 6 [14] Patton, J. A., Turkington, T. G. SPECT/CT physical principles and attenuation correction. Journal of nuclear medicine technology, 36 (1), 1-10, 2008. 6 [15] Burger, C., Goerres, G., Schoenes, S., Buck, A., Lonn, A., Von Schulthess, G. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. European journal of nuclear medicine and molecular imaging, 29 (7), 922-927, 2002. 6 [16] Zaidi, H. Optimisation of whole-body pet/ct scanning protocols. Biomedical imaging and intervention journal, 3 (2), 2007. 7, 41 [17] Musafargani, S., Ghosh, K. K., Mishra, S., Mahalakshmi, P., Padmanabhan, P., Gulyffas, B. Pet/mri: a frontier in era of complementary hybrid imaging. European journal of hybrid imaging, 2 (1), 12, 2018. 7, 10 [18] Miles, K. A., Voo, S. A., Groves, A. M. Additional clinical value for PET/MRI in oncology: moving beyond simple diagnosis. Journal of Nuclear Medicine, 59 (7), 1028-1032, 2018. [19] Mannheim, J. G., Schmid, A. M., Schwenck, J., Katiyar, P., Herfert, K., Pichler, B. J., et al. PET/MRI hybrid systems. Seminars in Nuclear Medicine, 48 (4), 332 - 347, 2018. URL http://www.sciencedirect.com/science/article/pii/ S0001299818300199, instrumentation. 7 [20] Wagenknecht, G., Kaiser, H., Mottaghy, F., Herzog, H. Mri for attenuation correction in PET: methods and challenges. MAGMA, 26 (1), 99-113, 2013. 7 [21] Delso, G., Nuyts, J. PET/MRI: Attenuation Correction, pags. 53-75. Cham: Springer International Publishing, 2018. URL https://doi.org/10.1007/ 978-3-319-68517-5_4. [22] Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. Journal of nuclear medicine, 49 (11), 1875, 2008. [23] Chen, Y., An, H. Attenuation correction of PET/MR imaging. Magnetic Resonance Imaging Clinics, 25 (2), 245-255, 2017. [24] Ehman, E., Johnson, G., Villanueva-Meyer, J., Cha, S., Leynes, A., Zufall, P., et al. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging, 46 (5), 1247-1262, 2017. 7 [25] Becker, E. D. A brief history of nuclear magnetic resonance. Analytical Chemistry, 65 (6), 295A-302A, 1993. 7 [26] Brown, R. W., Haacke, E. M., Cheng, Y.-C. N., Thompson, M. R., Venkatesan, R. Magnetic resonance imaging: physical principles and sequence design. John Wiley & Sons, 2014. 8, 9, 10, 12, 14, 15 [27] Moratal, D., Valles-Luch, A., Martí-Bonmatí, L., Brummer, M. E. k-space tutorial: an mri educational tool for a better understanding of k-space. Biomedical imaging and intervention journal, 4 (1), 2008. 8 [28] Vandenberghe, S., Marsden, P. K. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Physics in medicine and biology, 60 (4), R115, 2015. 10 [29] Sekine, T., Burgos, N., Warnock, G., Huellner, M., Buck, A., Ter Voert, E. E., et al. Multi-Atlas-Based Attenuation Correction for Brain 18F-FDG PET Imaging Using a Time-of-Flight PET/MR Scanner: Comparison with Clinical Single-Atlas- and CT-Based Attenuation Correction. Journal of Nuclear Medicine, 57 (8), 1258- 1264, 2016. 11, 12, 28, 33, 41, 44 [30] Izquierdo-Garcia, D., Hansen, A. E., Forster, S., Benoit, D., Schachoff, S., Furst, S., et al. An SPM8-based approach for attenuation correction combining segmentation and non-rigid template formation: application to simultaneous PET/MR brain imaging. Journal of nuclear medicine: oficial publication, Society of Nuclear Medicine, 55 (11), 1825, 2014. 12 [31] Dixon, W. T. Simple proton spectroscopic imaging. Radiology, 153 (1), 189-194, 1984. 12 [32] Bley, T. A., Wieben, O., Francois, C. J., Brittain, J. H., Reeder, S. B. Fat and water magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 31 (1), 4- 18, 2010. 12 [33] Yang, J., Jian, Y., Jenkins, N., Behr, S. C., Hope, T. A., Larson, P. E., et al. Quantitative evaluation of atlas-based attenuation correction for brain PET in an integrated time-of- flight PET/MR imaging system. Radiology, pag. 161603, 2017. 14, 20, 28, 31, 44 [34] Fernandez-Seara, M., Song, H., Wehrli, F. Trabecular bone volume fraction mapping by low-resolution MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 46 (1), 103-113, 2001. 14 [35] Cox, E., Gowland, P. Measuring T2 and T2' in the brain at 1.5 T, 3T and 7T using a hybrid gradient echo-spin echo sequence and EPI. En: Proceedings of the 16th annual meeting of ISMRM, Toronto, Canada, pag. 1411. 2008. 14, 15 [36] Wansapura, J. P., Holland, S. K., Dunn, R. S., Ball Jr, W. S. NMR relaxation times in the human brain at 3.0 tesla. Journal of Magnetic Resonance Imaging: An Offcial Journal of the International Society for Magnetic Resonance in Medicine, 9 (4), 531-538, 1999. [37] Du, J., Takahashi, A., Carl, M., Bydder, M., Szeverenyi, N., Chung, C., et al. T2 and T1p quantication of cortical bone in vivo using ultrashort TE (UTE) pulse sequences. En: Proceedings of the 18th Annual Meeting ISMRM, pag. 3199. 2010. [38] Krug, R., Larson, P. E. Z., Wang, C., Burghardt, A. J., Kelley, D. A., Link, T. M., et al. Ultrashort echo time MRI of cortical bone at 7 tesla eld strength: a feasibility study. Journal of Magnetic Resonance Imaging, 34 (3), 691-695, 2011. [39] Larson, P. E., Han, M., Krug, R., Jakary, A., Nelson, S. J., Vigneron, D. B., et al. Ultrashort echo time and zero echo time MRI at 7T. Magnetic Resonance Materials in Physics, Biology and Medicine, 29 (3), 359-370, 2016. 16, 18 [40] Martirosian, P., Grozinger, G., Rauscher, I., Wurslin, C., Pohmann, R., Springer, F., et al. Relaxometry of tendons, ligaments and menisci in the knee joint at 3 T. En: 20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2012). 2012. [41] Han, M., Rieke, V., Scott, S. J., Ozhinsky, E., Salgaonkar, V. A., Jones, P. D., et al. Quantifying temperature-dependent T1 changes in cortical bone using ultrashort echo-time MRI. Magnetic resonance in medicine, 74 (6), 1548-1555, 2015. [42] Gai, N. D., Malayeri, A. A., Bluemke, D. A. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE). Journal of Magnetic Resonance Imaging, 45 (4), 1097-1104, 2017. 14, 15, 20 [43] Universidad de Stanford. URL https://cni.stanford.edu/wiki/MR_Signal_ Equations. 15 [44] McRobbie, D., Moore, E., Graves, M., Prince, M. From picture to proton. 2a ed. Cambridge University Press, 2006. 15 [45] Li, C., Magland, J. F., Seifert, A. C., Wehrli, F. W. Correction of excitation prole in Zero Echo Time (ZTE) imaging using quadratic phase-modulated RF pulse excitation and iterative reconstruction. IEEE transactions on medical imaging, 33 (4), 961-969, 2014. 18, 19 [46] Wiesinger, F., Sacolick, L. I., Menini, A., Kaushik, S. S., Ahn, S., Veit-Haibach, P., et al. Zero TE MR bone imaging in the head. Magnetic resonance in medicine, 75 (1), 107-114, 2016. 19, 29, 38, 39, 41 [47] Sneag, D. B., Shah, P. H., Breighner, R., Koff, M. F. Diagnostic Accuracy of Zero Echo Time Magnetic Resonance Imaging for Cervical Spine Neuroforaminal Stenosis. 2017. 20 [48] Boydev, C., Demol, B., Pasquier, D., Saint-Jalmes, H., Delpon, G., Reynaert, N. Zero echo time MRI-only treatment planning for radiation therapy of brain tumors after resection. Physica Medica, 42, 332-338, 2017. 21 [49] Kimoto, S., Morita, K., Shoji, A., Hashimoto, N., Tsutsui, Y., Himuro, K., et al. The relationship between positron emitting nuclides and spatial resolution using clinical PET/CT scanner. Journal of Nuclear Medicine, 58 (supplement 1), 1139- 1139, 2017. 21 [50] Wikipedia. URL https://de.wikipedia.org/wiki/Datei:Human_skull_side_ bones_numbered.svg. 22 [51] GE Healthcare. MR Hardware. En: SIGNA PET/MR Technical Data, tomo DOC1545629. General Electric Company, 2014. 25, 35, 37, 38 [52] MathWorks. https://www.mathworks.com/products/matlab.html. 26 [53] Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., et al. N4ITK: improved N3 bias correction. IEEE transactions on medical imaging, 29 (6), 1310-1320, 2010. 26 [54] National Institutes of Health. https://imagej.nih.gov/ij/. 27 [55] Wollenweber, S., Ambwani, S., Delso, G., Lonn, A., Mullick, R., Wiesinger, F., et al. Evaluation of an atlas-based PET head attenuation correction using PET/CT & MR patient data. IEEE Transactions on Nuclear Science, 60 (5), 3383-3390, 2013. 31, 44 [56] Rubini, S. S., Kunthavai, A. Diabetic retinopathy detection based on eigenvalues of the hessian matrix. Procedia Computer Science, 47, 311-318, 2015. 31 [57] Meijering, E. https://imagescience.org/meijering/software/featurej/. 31 [58] Cox, R. W., Ashburner, J., Breman, H., Fissell, K., Haselgrove, C., Holmes, C. J., et al. a (sort of) New Image Data Format Standard: Nifti-1: we 150. Neuroimage, 22, e1440, 2004. 33 [59] Meijering, E. http://niftyweb.cs.ucl.ac.uk/. 33 [60] Prados Carrasco, F., Cardoso, M. J., Burgos, N., Wheeler-Kingshott, C., Ourselin, S. Niftyweb: web based platform for image processing on the cloud. International Society for Magnetic Resonance in Medicine (ISMRM), 2016. 33 [61] Burgos, N., Cardoso, M. J., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans. Med. Imaging, 33 (12), 2332-2341, 2014. 33, 34 [62] dcm2nii DICOM to NIfTI conversion. https://www.nitrc.org/projects/mricron/. 35 [63] The Ultimate Neuroscience Software Platform. http://neuro.debian.net/. 35 [64] Sekine, T., ter Voert, E. E., Warnock, G., Buck, A., Huellner, M., Veit-Haibach, P., et al. Clinical evaluation of zero-echo-time attenuation correction for brain 18F-FDG PET/MRI: comparison with atlas attenuation correction. Journal of Nuclear Medicine, 57 (12), 1927-1932, 2016. 36, 38, 39 [65] Catana, C., van der Kouwe, A., Benner, T., Michel, C. J., Hamm, M., Fenchel, M., et al. Towards implementing an MR-based PET attenuation correction method for neurological studies on the MR-PET brain prototype. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 51 (9), 1431, 2010. 36 [66] Forbes, K. P., Pipe, J. G., Bird, C. R., Heiserman, J. E. PROPELLER MRI: clinical testing of a novel technique for quantication and compensation of head[54] National Institutes of Health. https://imagej.nih.gov/ij/. 27 [55] Wollenweber, S., Ambwani, S., Delso, G., Lonn, A., Mullick, R., Wiesinger, F., et al. Evaluation of an atlas-based PET head attenuation correction using PET/CT & MR patient data. IEEE Transactions on Nuclear Science, 60 (5), 3383-3390, 2013. 31, 44 [56] Rubini, S. S., Kunthavai, A. Diabetic retinopathy detection based on eigenvalues of the hessian matrix. Procedia Computer Science, 47, 311-318, 2015. 31 [57] Meijering, E. https://imagescience.org/meijering/software/featurej/. 31 [58] Cox, R. W., Ashburner, J., Breman, H., Fissell, K., Haselgrove, C., Holmes, C. J., et al. a (sort of) New Image Data Format Standard: Nifti-1: we 150. Neuroimage, 22, e1440, 2004. 33 [59] Meijering, E. http://niftyweb.cs.ucl.ac.uk/. 33 [60] Prados Carrasco, F., Cardoso, M. J., Burgos, N., Wheeler-Kingshott, C., Ourselin, S. Niftyweb: web based platform for image processing on the cloud. International Society for Magnetic Resonance in Medicine (ISMRM), 2016. 33 [61] Burgos, N., Cardoso, M. J., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans. Med. Imaging, 33 (12), 2332-2341, 2014. 33, 34 [62] dcm2nii DICOM to NIfTI conversion. https://www.nitrc.org/projects/mricron/. 35 [63] The Ultimate Neuroscience Software Platform. http://neuro.debian.net/. 35 [64] Sekine, T., ter Voert, E. E., Warnock, G., Buck, A., Huellner, M., Veit-Haibach, P., et al. Clinical evaluation of zero-echo-time attenuation correction for brain 18F-FDG PET/MRI: comparison with atlas attenuation correction. Journal of Nuclear Medicine, 57 (12), 1927-1932, 2016. 36, 38, 39 [65] Catana, C., van der Kouwe, A., Benner, T., Michel, C. J., Hamm, M., Fenchel, M., et al. Towards implementing an MR-based PET attenuation correction method for neurological studies on the MR-PET brain prototype. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 51 (9), 1431, 2010. 36 [66] Forbes, K. P., Pipe, J. G., Bird, C. R., Heiserman, J. E. PROPELLER MRI: clinical testing of a novel technique for quantication and compensation of head motion. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 14 (3), 215-222, 2001. 38 [67] Park, D. J. B1 Mapping for Magnetic Resonance Imaging, 2014. 40 [68] Scheiner, S., Hellmich, C.,Muller, C., Bonitz, L., Kober, C. X-ray physics-and bone composition-based estimation of thickness characteristics from clinical mandibular radiographs. Computerized Medical Imaging and Graphics, 45, 36-46, 2015. 41 [69] Khan, S., Warkhedkar, R., Shyam, A. Analysis of Hounseld unit of human bones for strength evaluation. Procedia materials science, 6, 512-519, 2014. 41 [70] Sekine, T., Buck, A., Delso, G., Ter Voert, E., Huellner, M., Veit-Haibach, P., et al. Evaluation of atlas-based attenuation correction for integrated pet/mr in human brain: application of a head atlas and comparison to true ct-based attenuation correction. J Nucl med, 57 (2), 215-220, 2016. 42 [71] Kinehan, P., Fletcher, J. PET/CT+ standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR, 31 (6), 496-505, 2010. 44 [72] Thie, J. A. Understanding the standardized uptake value, its methods, and implications for usage. The Journal of Nuclear Medicine, 45 (9), 1431, 2004. 44
Materias:Medicina > Medicina nuclear
Medicina > Resonancia magnética
Medicina > Diagnóstico por imagen y medicina nuclear
Divisiones:FUESMEN
Código ID:818
Depositado Por:Tamara Cárcamo
Depositado En:14 Abr 2021 09:07
Última Modificación:14 Abr 2021 09:07

Personal del repositorio solamente: página de control del documento