Análisis de mercado de un servicio de información basado en imágenes aeroespaciales para seguridad. / Market analysis of an information service based on aerospace images for security.

Apablaza , Lautaro S. (2019) Análisis de mercado de un servicio de información basado en imágenes aeroespaciales para seguridad. / Market analysis of an information service based on aerospace images for security. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
18Mb

Resumen en español

La industria de la observación terrestre comprende el uso de diferentes tecnologías de detección remota para monitorear la tierra, el mar y la atmósfera. Esta industria tiene el potencial de generar información útil para muchos procesos del sector público y privado, relacionados con la agricultura, el monitoreo del medio ambiente, el manejo de desastres naturales, la seguridad y defensa, la silvicultura, las finanzas, la infraestructura y otras industrias. Por lo que, esta ciencia apoya la generación de políticas que regulan y mejoran la productividad operativa de manera significativa en estas diferentes actividades. En este estudio del mercado global de la observación terrestre, se va a hacer foco en las aplicaciones relacionadas con la seguridad y defensa. Es de destacar que los gobiernos y las organizaciones internacionales, consideran de extrema importancia utilizar diferentes conjuntos de sensores y plataformas para mantener la seguridad ante cualquier tipo de amenaza. Dentro de las tecnologías más utilizadas en este ámbito, se encontró que los desarrollos relacionados con los satélites con radares de apertura sintética impulsarán el mercado del sensado remoto en los próximos años. Esta situación se basa en las ventajas comparativas de esta tecnología vinculadas al funcionamiento del sensor en condiciones desfavorables (falta de luz, nubosidad y humo). El despegue de esta tecnología estará también asociado a la desaparición de las restricciones reglamentarias que limitaban la resolución del sensor. Otra condición habilitante de esta situación es el rápido avance que se está realizando en el procesamiento e interpretación de las imágenes mediante algoritmos de machine learning. Por lo tanto, para los próximos años se espera un impulso en la utilización de esta tecnología haciendo que crezca la demanda tanto en el ámbito tecnológico de los radares, como en la demanda de imágenes y los servicios de análisis de las mismas. Sin embargo, debido a los actuales programas de acceso libre a imágenes satelitales, el valor de las imágenes se ha reducido en los últimos años para resoluciones espaciales entre los 10 y 100 metros: es en el rango de resoluciones espaciales menores a 10 metros en donde el mercado parece más interesante. Por otro lado, esta creciente demanda del mercado atraerá nuevos competidores que también afectarán al precio de dichas imágenes.

Resumen en inglés

The Earth Observation industry comprises the use of diferent remote sensing technologies to monitor the earth, the sea and the atmosphere. This industry has the potential to generate useful information for many public and private sector processes, related to agriculture, environmental monitoring, natural disaster management, security and defense, forestry, finance, infrastructure and other industries. Therefore, this science supports the generation of policies that regulate and improve operational productivity in a significant way in these different activities. In this study of the global market of Earth Observation, we will focus on applications related to security and defense. It is noteworthy that governments and international organizations consider it extremely important to use different sets of sensors and platforms to maintain security against any type of threat. Among the most used technologies in this field, it was found that the developments related to satellites with synthetic aperture radars will boost the remote sensing market in the coming years. This situation is based on the comparative advantages of this technology linked to the performance of the sensor in unfavorable conditions (lack of light, cloudiness and smoke). The takeoff of this technology would also be associated with the disappearance of the regulatory restrictions that limited the resolution of the sensor. Another enabling condition of this situation is the rapid advance that is being made in the processing and interpretation of images by machine learning algorithms. Therefore, for the next few years, an impetus is expected in the use of this technology, making demand grow both in the technological field of radars, as well as in the demand for images and their analysis services. However, due to the current programs of free access to satellite images, the value of the images has been reduced in recent years for spatial resolutions between 10 and 100 meters: it is in the range of spatial resolutions less than 10 meters where the market seems more interesting. On the other hand, this growing market demand will attract new competitors that will also affect the price of these images

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Mecánica)
Palabras Clave:Safety; Seguridad; Remote sensing; Detección a distancia; [Market analysis; Análisis de mercado; Synthetic aperture radar; Radar de apertura sintética; Aerospace images; Imágenes aeroespaciales; Earth observation; Observación terrestre]
Referencias:[1] FLIR ® Systems, I. ALL-TERRAIN SELF-CONTAINED MOBILE SURVEILLANCE SYSTEM: FLIR LTV-X, 2019. URL https://www.flir.com/products/flir-ltv-x/, Accedido: 2019-04. ix, 18 [2] Daniel. These are the best long range drones of 2018, 2017. URL https://fpvdronereviews.com/guides/best-long-range-drones/, Accedido: 2019-04. ix, 20 [3] G. Santilli, C. V., P. Gessini. Remote Sensing based on CubeSats: is there any added value? URL ttp://www.unoosa.org/documents/pdf/psa/activities/2018/Symposium_Brazil_BSTI/presentations/poster/P46_Santilli_Giancarlo.pdf, Accedido: 2018-10. xiii, 39 [4] Parker, W. V. Discover the Benefits of RADAR IMAGING: THE TOP 10 CONSIDERATIONS for Buying and Using Synthetic Aperture Radar Imagery . Astrium GEO-Information Services from Earth Imaging Journal, 2012 September/October. 8 [5] W.T.Liu. SATELLITES AND SATELLITE REMOTE SENSING - Surface wind and stress. En: Encyclopedia of Atmospheric Sciences (Second Edition), págs.138-144. 10 [6] Philippe Blanc, L. W. A review of earth-viewing methods for in-ight assessment of modulation transfer function and noise of optical spaceborne sensors. pág. 21, 2009. 26 [7] Philippe Blanc, L. W. A review of earth-viewing methods for in-ight assessment of modulation transfer function and noise of optical spaceborne sensors, 2009. 27 [8] L. A. Maver, K. R., C. D. Erdman. National Image Interpretability Rating Scales. URL https://fas.org/irp/imint/niirs.htm, Accedido: 2018-10. 27 [9] Guide, C. N. R. Appendix II:Additional NIIRS Criteria. URL https://fas.org/irp/imint/niirs_c/app2.htm, Accedido: 2018-10. 27 [10] Leachtenauer, J., Malila, W., Irvine, J., Colburn, L., Salvaggio, N. General imagequality equation: Giqe. Applied optics, 36, 8322-8, 1997. 28 [11] FRONTEX. Migratory Routes. URL https://frontex.europa.eu/along-eu-borders/migratory-routes/central-mediterranean-route/, Accedido: 2019-05. 29 [12] FRONTEX. Eastren European Borders Annual Risk Analysis, 2015. 29 [13] Soa Lanfri, M. A. L. G. P. A. C. F., Marcelo Scavuzzo. Change Detection Methods in High Resolution Cosmo SkyMed images. Instituto Mario Gulich, Comision Nacional de Actividades Espaciales, Cordoba, Argentina. 30 [14] Abubakr Al-Sharif, S. J. H. N. M., Biswajeet Pradhan. Revisiting Methods and Potentials of SAR Change Detection . World Congress on Engineering 2013, 2013. 30 [15] Lloyd L. Coulter, D. A. S. R. W. M., Christopher D. Lippitt. NEAR REAL-TIME CHANGE DETECTION FOR BORDER MONITORING. ASPRS 2011 Annual Conference, 2011. 30 [16] De, S., Pirrone, D., Bovolo, F., Bruzzone, L., Bhattacharya, A. A novel change detection framework based on deep learning for the analysis of multi-temporal polarimetric SAR images, 2017. 30 [17] Group, T. Coherent Change Detection. URL https://www.thalesgroup.com/en/united-kingdom/defence/i-master#ccd, Accedido: 2019-03. 30 [18] GMBH, C. Z. O. Final Report Summary - AMASS (Autonomous maritime surveillance system). URL https://cordis.europa.eu/project/rcn/86259/reporting/en, Accedido: 2019-03. 30 [19] Zigmund Orlov, N. H., Wolfgang Kruger. Practical Results for Buoy-Based Automatic Maritime IR-Video Surveillance . 31 [20] FLYDOG. X-Buoy 450 Data Sheet. URL http://www.flydogmarine.com/files/X-Buoy-450-(Sea-monitoring-buoy)_Data_Sheet.pdf, Accedido: 2019-03. 31 [21] FLYDOG. RE-ENGINEERING INNOVATION. URL http://www.flydogmarine.com/wp-content/uploads/2015/03/Flydog-Brochure.pdf, Accedido: 2019-03. 31 [22] Nicolos, P. OLPHIN Report Summary. URL https://btn.frontex.europa.eu/system/files/private/project/dolphin.pdf, Accedido: 2019-03. 31 [23] Lombardo, P. Multichannel SAR. URL https://pdfs.semanticscholar.org/4ca8/88e2862976c1f1f03c6730e03265166eb464.pdf, Accedido: 2019-03. 31 [24] Lombardo, P., Sedehi, M., Colone, F. Multi channel SAR experiments from the space and from ground: Potential evolution of present generation spaceborne SAR, 2007. 31 [25] David J. Bier, M. F. Drones on the Border. Immigration RESEARCH AND POLICY BRIEF, 2018. 31 [26] David J. Bier, M. F. Supplemental environmental assessment for the sbinet tucson west tower project. U.S. BORDER PATROL, 2010. 32 [27] Elbit Systems. URL https://elbitsystems.com/, Accedido: 2019-04. 33 [28] Oce, G. A. Border Patrol Is Deploying Surveillance Technologies but Needs to Improve Data Quality and Assess Eectiveness, 2017. 34 [29] Solutions, F. DAS. Border Surveillance Perimeter Intrusion. URL http://www.fotechsolutions.com/index.php/products/security, Accedido: 2019-04. 34 [30] Security, D. H. Integrated Surveillance Intelligence System. ISIS. URL https://www.globalsecurity.org/security/systems/isis.htm, Accedido: 2019-04. 34 [31] Jifang Pei, W. H. Y. Z. J. Y. T.-S. Y., Yulin Huang. SAR Automatic Target Recognition Based on Multiview Deep Learning Framework. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018. 34 [32] Chaudhuri, B., Parui, S. Target Detection: Remote Sensing Techniques for Defence Applications. Defence Science Journal, 1995. 34 [33] Shiqi Huang, W. H. . T. Z. A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions. Scientic Reports, 2016. 34 [34] U.S, D. S. AIR STANDARD 80/15 MINIMUM RESOLVED OBJECT SIZES FOR IMAGERY INTERPRETATION AIR STANDARDIZATION COORDINATING COMMITTEE. URL http://cryptome.org/cartome/min-rez.htm, Accedido: 2018-10. 35 [35] Podest, E. Introduction to SAR Polarimetry. URL https://arset.gsfc.nasa.gov/sites/default/files/water/Brazil_2017/Day1/S1P3.pdf, Accedido: 2018-9. 43 [36] Commission, E. Big Data in Earth Observation, 2017. 47 [37] PwC. Study to examine the socioeconomic impact of Copernicus in the EU, 2016. 49 [38] Sima Fishman, E. U. EARTH OBSERVATION: STATE OF PLAY AND FUTURE PROSPECTS,. URL https://www.nesdis.noaa.gov/CRSRA/pdf/AACRES_meeting_2018_Euroconsult.pdf, Accedido: 2018-10. 50, 70, 73, 74 [39] von derDunk, F. United Nations Principles on Remote Sensing and the User. Copyright c Swets Zeitlinger B.V, pags. 29-40, 2002. 53 [40] V, J. A Global Perspective on Earth Observation: Emerging Trends Policy Challenges, pags. 1{25. 2014. 53 [41] Ankita Bhutani, P. W. Aerial Imaging Market Size By Platform. URL https://www.gminsights.com/industry-analysis/aerial-imaging-market, Accedido: 2019-2. 53 [42] Ronak Bora, E. . S. AERIAL IMAGING MARKET IN MILITARY DEFENSE SECTOR IS PROJECTED TO GROW AT OVER 15% CAGR BETWEEN 2018 AND 2024. URL http://technologymagazine.org/aerial-imaging-market-military-defense-sector-projected-grow-15-cagr-2018-2024/, Accedido: 2019-2. 54 [43] Globe, D. Digital Globe, company website. URL https://www.digitalglobe.com/, Accedido: 2018-9. 55 [44] E-geos. E-geos Price List. URL https://www.e-geos.it/EGEOS_Portal_Login?startURL=%2Fimages%2Fdocuments%2FPricelist-nov17%2FBDS-COM-17-002_e-GEOS%2520Official%2520Pricelist_October%252020th_2017.pdf, Accedido:2018-8. 56, 59 [45] PLanet. Planet, company website. URL https://www.planet.com/, Accedido: 2018-9. 57 [46] Sky, B. Black Sky, company website. URL https://www.blacksky.com/, Accedido: 2018-9. 58 [47] Sorensen, J. SPACEFLIGHT INDUSTRIES CELEBRATES SUCCESSFUL LAUNCH OF THE BLACKSKY PATHFINDER SATELLITE ABOARD INDIA'S PSLV. URL https://www.spaceflightindustries.com/2016/09/26/spaceflight-industries-celebrates-successful-launch-blacksky-pathfinder-satellitAccedido: 2019-5. 58 [48] Satellogic. Satellogic, company website. URL https://satellogic.com/, Accedido: 2018-9. 58 [49] Iceye. Iceye, company website. URL https://www.iceye.com/, Accedido: 2018-9. 59 [50] E-geos. E-geos, company website. URL https://www.e-geos.it/, Accedido: 2018-9. 59 [51] corporation, M. MDA corporation, company website. URL https://mdacorporation.com/, Accedido: 2018-9. 60 [52] Urthecast. Urthecast , company website. URL https://www.urthecast.com/, Accedido: 2018-9. 61 [53] Urthecast. General Services Administration Federal Acquisition Service. URL https://www.gsaadvantage.gov/ref_text/47QTCA18D002K/0TIN4T.3NOGEU_47QTCA18D002K_URTHECASTCORPGSAPRICELISTAUGUST2018.PDF, Accedido: 2019-5. 61 [54] SCS GI, I. D. Iris Price List. URL http://www.scsgi.com/images/iris-price-list/F, Accedido: 2018-8. 61 [55] Airbus. Airbus , company website. URL https://www.airbus.com/, Accedido: 2018-9. 61 [56] Defence, A. A., Intelligence, S. Price List. URL https://www.intelligence-airbusds.com/files/pmedia/public/r48725_9_airbusds_ intelligence_pricelist_1.1.19.pdf, Accedido: 2018-8. 62 [57] Space, C. Capella Space, company website. URL https://www.capellaspace.com/technology/, Accedido: 2019-5. 62 [58] Insight, O. Orbital Insight , company website. URL https://orbitalinsight.com/, Accedido: 2018-9. 63 [59] Space, U. Ursa Space , company website. URL https://www.ursaspace.com//,Accedido: 2018-9. 63 [60] Labs, D. Descartes Labs , company website. URL https://www.descarteslabs.com/, Accedido: 2018-9. 64 [61] View, E. Eagle View , company website. URL https://www.eagleview.com/,Accedido: 2018-9. 64 [62] Aerial, C. Cooper Aerial , company website. URL http://cooperaerial.com/,Accedido: 2018-9. 65 [63] Hawk, P. Precision Hawk , company website. URL https://www.precisionhawk.com/, Accedido: 2018-9. 65 [64] International, K. Kucera International , company website. URL http://www.kucerainternational.com/, Accedido: 2018-9. 65 [65] Miglarese, A. H. Government Satellite Data and Its Role in Advancing Global Development. URL http://www.kucerainternational.com/, Accedido: 2019-5. 66 [66] George Melillos, D. G. H., Kyriacos Themistocleous. Thermal remote sensing approach combined with eld spectroscopy for detecting underground structures intended for defence and security purposes in Cyprus. pags. 29{40, 2018. 69 [67] National Academies of Sciences, E., Medicine. A Strategy for Active Remote Sensing Amid Increased Demand for Radio Spectrum. Washington, DC: The National Academies Press, 2015. 70 [68] Sima Fishma, E. U. Earth observation: state of play and future prospects. URL https://www.nesdis.noaa.gov/CRSRA/pdf/euroconsult_presentation_for_accres.pdf, Accedido: 2019-5. 70 [69] PuyangWang, H. Z., Patel, V. M. TSAR Image Despeckling Using a Convolutional Neural Network, 2018. 72 [70] Patel, P. W. V. M. Generating High Quality Visible Images from SAR Images Using CNNs, 2018. 72 [71] Markus jochum, A. Big Birds and Small Satellites. URL https://livestream.com/accounts/362/events/8438584/videos/183553495, Accedido: 2019-3. 73
Materias:Ingeniería mecánica > Gestión de proyecto
Divisiones:INVAP
Código ID:838
Depositado Por:Tamara Cárcamo
Depositado En:15 Mar 2021 10:00
Última Modificación:15 Mar 2021 10:00

Personal del repositorio solamente: página de control del documento