Influencia de la estructura cristalina y de la mesoestructura sobre las propiedades físicas de películas delgadas y heteroestructuras basadas en β-FeSe. / Influence of the crystalline structure and the mesostructure on the physical properties β-FeSe based thin films and heterostructures.

Ale Crivillero, María Victoria (2019) Influencia de la estructura cristalina y de la mesoestructura sobre las propiedades físicas de películas delgadas y heteroestructuras basadas en β-FeSe. / Influence of the crystalline structure and the mesostructure on the physical properties β-FeSe based thin films and heterostructures. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
14Mb

Resumen en español

El β-FeSe, perteneciente a la familia de superconductores basados en Fe (FeSC), destaca notablemente como un sistema rico para estudiar fenómenos físicos emergentes pertenecientes a la frontera del conocimiento. Este material superconductor, caracterizado por una estructura tetragonal relativamente simple, posee una estructura electrónica multibanda compleja. Exhibe ademas algunas características disruptivas, como la formación a bajas temperaturas de una fase nematica no magnética que desafía muchos de los esquemas teóricos propuestos para describir a los FeSC. Posee una temperatura critica superconductora relativamente baja de 9K la cual es, sin embargo, muy susceptible a aumentar, por ejemplo con presión hidrostatica o stress residual. En el año 2012 se han reportado aumentos sorprendentes del orden de 50K en capas ultranas de β-FeSe sobre sustratos de SrTiO_3 que implicaron un nuevo record para los FeSC y la intensicación del estudio sobre películas delgadas. El propósito general del presente trabajo fue la investigacion experimental de las propiedades físicas de sistemas mesoestructurados basados en β-FeSe. Con tal n, emprendimos la tarea de fabricar por sputtering películas delgadas y heteroestructuras artificiales complejas como multicapas y superredes. Para caracterizar las muestras empleamos diferentes técnicas complementarias, con especial énfasis en la correlación entre las propiedades de transporte y las características estructurales en las escalas atómicas y mesoscopicas. Para fabricar y optimizar las propiedades de películas delgadas de β-FeSe crecidas por sputtering realizamos una exploración amplia e integral del espacio de parametros de control asociados al proceso de crecimiento. De este modo, avanzamos de forma iterativa, consiguiendo optimizar las propiedades de las muestras. Obtuvimos muestras superconductoras texturadas con propiedades semejantes a las observadas en muestras macroscopicas. En el rango de espesores nominales de 300 nm, conseguimos un onset superconductor a Tc,on ~12 K, lo que implica un aumento significativo respecto a los valores reportados en monocristales macroscopicos de muy buena calidad (~ 9 K) y con films obtenidos por sputtering ( ~10 K). Mediante un análisis detallado de la influencia de la estructura cristalina y de la mesoestructura sobre las propiedades de transporte eléctrico revelamos la susceptibilidad de los sistemas basados en β-FeSe a modificarse debido a distintos tipos de perturbaciones. Esta versatilidad nos permitió estudiar diferentes fenómenos físicos. Por ejemplo, al disminuir el espesor nominal de los films observamos un crossover superconductoraislante. Por otro lado, encontramos que films monocristalinos tetragonales delgados de β-FeSe pueden no presentar superconductividad y ser aislantes. A partir de la evolución asociada al cambio de espesor, estudiamos el crossover superconductor-aislante, develando el origen del mismo. En general, concomitante a dicho crossover existe una compleja evolución estructural y morfológica. Dentro de un esquema de crecimiento tipo Volmer-Weber, las islas iniciales están caracterizadas por una naturaleza epitaxial. Al aumentar el espesor nominal, la tensión relaja emergiendo un régimen texturado. Esto implica que la percolacion de granos es condición necesaria para que el mecanismo de conduccion macroscopico re eje la naturaleza semimetalica y superconductora del β-FeSe. Ademas, mostramos que en muestras monocristalinas la naturaleza aislante emerge correlacionada con una importante distorsión estructural. Por otro lado, probamos la influencia del desorden asociado a una morfologa texturada sobre algunas propiedades de transporte atribuidas a detalles sutiles de la estructura electronica multibanda del β-FeSe. En el estado normal, encontramos que algunas características distintivas de la fase nemática como cambios en la resistividad, magnetorresistencia transversal positiva y una inversión de signo del coeficiente Hall, son robustas frente al tipo y grado de desorden presente en los films. Sin embargo, no observamos otros indicios como un efecto Hall no lineal. El carácter multibanda también se manifiesta en las propiedades superconductoras, por ejemplo en una anisotrop a dependiente de temperatura. El grado de desorden se refleja en una anisotropa intermedia entre muestras monocristalinas macroscopicas con y sin mezclas de fases. Motivados por la perspectiva de inducir nuevos fenómenos físicos, propusimos usar capas de β-FeSe en la construcción de heteroestructuras artificiales complejas como multicapas y superredes. Abordamos diferentes estrategias con el fin de desarrollar dicha capacidad experimental. Por un lado, buscamos inducir superconductividad en muestras aislantes monocristalinas de β-FeSe. Ademas, estudiamos efectos de interfase entre el FeSe y otros materiales candidatos a formar parte de las heteroestructuras complejas como el FeTe y el Fe_3O_4. Encontramos indicios claros de que la implantación de iones de Li+ en muestras aislantes es una estrategia apropiada para modificar la densidad de portadores de carga y por lo tanto surge como una táctica viable para eventualmente inducir superconductividad en las mismas. Por otro lado, como primer paso para estudiar efectos de interfase entre el β -FeSe y el Fe_1+δTe logramos depositar, al menos parcialmente, FeSe sobre monocristales de Fe_1+δTe, encontrando indicios de superconductividad. Sin embargo, aun persisten ciertos desafíos como el control de la interdifusión y evitar la degradación de los cristales de FeTe debido al proceso. Para estudiar los efectos de interfase entre β-FeSe y Fe_3O_4, fabricamos bicapas de FeSe/Fe_3O_4. Los resultados obtenidos sugieren que las propiedades de transporte de la capa de FeSe se ven afectadas por la intensidad de la transición de Verwey propia del oxido. Dimos los primeros pasos hacia la fabricación de superredes de FeSe/STO. Este tipo de heteroestructura ha sido sugerida como una plataforma prometedora para desarrollar superconductividad de alta temperatura crtica. Construimos satisfactoriamente heteroestructuras complejas constituidas por arreglos periódicos de capas de FeSe y STO de unas pocas celdas unidad, resultado inédito, con perspectivas razonables de optimizar la epitaxialidad y llegar al límite de una sola celda unidad de FeSe. Si bien, en esta etapa inicial no encontramos indicios de superconductividad, nuestros resultados sugieren que dopar electronicamente estas superredes es una va plausible para inducir superconductividad en las mismas.

Resumen en inglés

The compound β-FeSe, belonging to the Fe-based superconductors family (FeSC), stands out as a rich system to study emergent phenomena at the frontier of knowledge. This superconducting material, characterized by a relatively simple tetragonal structure, has a complex multi-band electronic structure. It also exhibits some disruptive characteristics, such as the formation at low temperatures of a nonmagnetic nematic phase that challenges many of the theoretical scenarios proposed to describe FeSC. It has a relatively low superconducting critical temperature of 9K which is, however, very susceptible to increase, for example with hydrostatic pressure or residual stress. In the year 2012 surprising increases in the order of 50K which intensiced the study on thin films were reported in extremely thin films of β-FeSe grown on SrTiO_3, implying a new record for the FeSC. The general objective of this work was the experimental investigation of the physical properties of mesostructured systems based on FeSe. To do so, we undertook the task of growing sputtered thin films and complex articial heterostructures such as multilayers and superlattices. To characterize the samples, we used different complementary techniques, with particular emphasis on the correlation between the transport properties and the structural characteristics in the atomic and mesoscopic scales. To fabricate and optimize the properties of β-FeSe sputtering grown thin lms, we performed a comprehensive and integral exploration of the space of control parameters associated with the growth process. In this way, we progressed iteratively, achieving the optimization of the samples's properties. We obtained textured superconducting samples with properties similar to those observed in macroscopic samples. In the nominal thickness range of 300 nm, we found a superconducting onset at Tc;on ~12 K, which implies a signicant increase with respect to the values reported in macroscopic high-quality samples (~9 K) and in lms obtained by sputtering (~10 K). By means of a detailed analysis of the influence of the crystalline structure and the mesostructure on the electric transport properties, we revealed the susceptibility of the β-FeSe based systems to be modied due to different types of perturbations. This versatility allowed us to study different physical phenomena. For example, decreasing the nominal thickness of the films we observed a superconducting-insulating crossover. On the other hand, we found that tetragonal single-crystalline thin films of FeSe may not exhibit superconductivity and be insulating. From the evolution associated with the change in thickness, we study the superconductor to insulator crossover, revealing its origin. In general, concomitant to the mentioned crossover there is a complex structural and morphological evolution. Within a Volmer-Weber type growth scheme, in the early stage, the islands are characterized by an epitaxial nature. By increasing the nominal thickness, the tension relaxes by emerging a textured regime. This implies that percolation is a necessary condition for the macroscopic conduction mechanism to reffect the semimetallic and superconducting nature of β-FeSe. We show that the insulating nature of the monocrystalline samples emerges correlated with signicant structural distortion. Additionally, we show that the insulating nature of the monocrystalline samples emerges correlated with a significant structural distortion. On the other hand, we investigate the influence of the disorder associated with a textured morphology on some transport properties attributed to subtle details of the multi-band electronic structure of the β-FeSe. In the normal state, we find that some distinctive characteristics of the nematic phase as changes in the resistivity, a positive transverse magnetoresistance and a sign reversal of the Hall coefficient are robust against the type and degree of disorder present in the films. Nevertheless, we do not observe other features as a non-linear Hall effect. The multi-band character also manifests in the superconducting properties, for example in a temperature-dependent anisotropy. Motivated by the perspective of inducing new phenomena, we proposed to use layers of β-FeSe in the construction of complex artificial heterostructures as multilayers and superlattices. We tried different strategies to develop this capability. On the one hand, we seeked to induce superconductivity in monocrystalline insulating samples of β-FeSe. Moreover, we studied the interface effects between β-FeSe and other materials that might be part of the complex heterostructures, such as FeTe and Fe_3O_4. We found clear evidence that the implantation of Li+ ions in insulating samples is an appropriate strategy to modify the density of carriers and therefore arises as a viable tactic to eventually induce superconductivity. On the other hand, as a first step to study interface eects between the β-FeSe and Fe_1+δTe we managed to deposit FeSe onto Fe_1+δTe single-crystals, nding signs of superconductivity. However, some specic challenges persist such as the control of interdiusion and how to avoid the degradation of FeTe crystals due to the process. To study the interface effects between β-FeSe and Fe_3O_4, we fabricated FeSe/Fe_3O_4 bilayers. The results suggest that the transport properties of the β-FeSe layer are affected by the intensity of the Verwey transition of the oxide. We took the first steps towards the fabrication of FeSe/STO superlattices. This type of heterostructure has been suggested as a promising platform for developing high temperature superconductivity. We successfully constructed complex heterostructures consisting of periodic arrays of FeSe and STO layers of few unit cells, a novel result. There are reasonable perspectives to optimize the epitaxial nature of the layers and reach the limit of a single unit cell of FeSe. Although at this initial stage, we did not nd signs of superconductivity, our results suggest that electronic doping of these superlattices is a plausible way to induce superconductivity.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Superconductivity; Superconductividad; Thin Films; Capas finas; [Heterostructures; Heteroestructuras; Structural characterization; Caracterización estructural; Transport properties; Propiedades de transporte]
Referencias:[1] Hosono, H., et al. Materials Today, 21(3), 278 - 302, 2018. 1, 7 [2] Ohring, M. Materials science of thin lms: deposition and structure. Academic Press, London, 2002. 3, 29 [3] Anders, A. Thin Solid Films, 518(15), 4087 - 4090, 2010. 4 [4] Onnes, K. Commun. Leiden, 120b, 1911. 5 [5] Taylor, P., et al. A Quantum Approach to Condensed Matter Physics. Cambridge University Press, 2002. 5 [6] Tinkham, M. Introduction to superconductivity. McGraw-Hill, 1996. 5 [7] Annett, J. Superconductivity, Super fluids and Condensates. Oxford Master Series in Physics. OUP Oxford, 2004. 5 [8] Johnson, P. D., et al. Iron-Based Superconductivity. Springer Series in Materials Science. Springer International Publishing, 2015. 6, 8 [9] Kamihara, Y., et al. J. Am. Chem. Soc, 130, 2008. 6 [10] Kordyuk, A. A. Low Temp. Phys, 38, 888, 2012. 7, 8 [11] Pallecchi, I., et al. Supercond. Sci. Technol., 28, 114005, 2015. 7 [12] Zhang, X., et al. IEEE Transactions on Applied Superconductivity, 27(4), 1-5, 2017. 7 [13] Wang, C., et al. Europhys. Lett, 83, 2008. 7 [14] Wu, G., et al. Journal of Physics: Condensed Matter, 21(14), 142203, 2009. 7 [15] Hsu, F., et al. PNAS, 105, 2008. 8 [16] Lei, H., et al. Phys. Rev. B, 85, 094515, 2012. 8 [17] Watson, M. D., et al. Phys. Rev. Lett., 115, 027006, 2015. 8, 78 [18] Margadonna, S., et al. Chemical Communcation, 2009. 8, 9, 72 [19] McQueen, T. M., et al. Phys. Rev. Lett., 103, 057002, 2009. 8 [20] Bohmer, A. E., et al. Phys. Rev. B, 87, 180505, 2013. 8 [21] Bohmer, A. E., et al. Phys. Rev. Lett., 114, 027001, 2015. 8, 72 [22] Sun, J. P., et al. Nature Communications, 7, 12146, 2016. 8, 9, 12 [23] Medvedev, S., et al. Nature Materials, 8, 630 EP -, 2009. 8 [24] Nabeshima, F., et al. Applied Physics Letters, 103(2013), 2011{2015, 2013. 8, 12, 80 [25] Imai, Y., et al. Physica C: Superconductivity and its Applications, 530, 24-26, 2016. 8, 12 [26] Lu, X. F., et al. Nature Materials, 14, 325 EP -, 2014. 8, 10, 86 [27] Guo, J., et al. Phys. Rev. B, 82, 180520, 2010. 8, 10, 86 [28] Liu, D., et al. Nature communications, 3, 931, 2012. 8, 10, 12, 85 [29] Wang, Q.-Y., et al. Chinese Physics Letters, 29(3), 037402, 2012. 8, 10, 85 [30] Okamoto, H. Journal of Phase Equilibria, 12(3), 368-372, 1991. 8, 9 [31] Katayama, N., et al. J. Phys. Soc. J., 79, 2010. 9, 10 [32] Shi, X., et al. Nature Communications, 8, 14988 EP -, 2017. 9, 10 [33] Hagg, G., Kindstrom, A. Z. Phys. Chem. B, 22, 453-464, 1933. 8 [34] MacQueen, T. M. Physical Review B, 79(1), 014522, 2009. 9 [35] Wittlin, A. Supercond. Sci. Technol., 25(6), 065019, 2012. 9 [36] Chareev, D., et al. CrystEngComm, 15, 1989-1993, 2013. 9 [37] Kasahara, S., et al. Proceedings of the National Academy of Sciences, 111(46),16309-16313, 2014. 10, 78 [38] Kasahara, S., et al. Nature Communications, 7, 12843 EP -, 2016. 10 [39] Sales, B., et al. Phys. Rev. B, 79, 2009. 10 [40] Martinelli, A., et al. Phys. Rev. B, 81, 2009. 10 [41] Yeh, K., et al. Europhys. Lett., 84(3), 2008. 10 [42] Fang, M., et al. Phys. Rev. B, 78, 2008. 10 [43] Margadonna, S., et al. Phys. Rev. B, 80, 064506, 2009. 10 [44] Okazaki, A. J. Phys. Soc. Japan, 16, 1162-1170, 1961. 11 [45] Kamimura, T. J. Phys. Soc. Japan, 43, 1594-1599, 1977. 11 [46] Chen, T.-K., et al. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 63-8, 2014. 11, 12, 67, 68, 70 [47] Fang, Y., et al. Phys. Rev. B, 18(8), 184503, 2015. 11 [48] Haindl, S., et al. Rep Prog Phys., 77(4), 046502, 2014. 12, 48, 80 [49] Nie, Y. F., et al. Applied Physics Letters, 94(24), 242505, 2009. 12 [50] Tan, S., et al. Nature materials, 12(7), 634-40, 2013. 12 [51] Song, C.-L., et al. Science, 332(6036), 1410-3, 2011. 12 [52] Schneider, R., et al. Physical Review Letters, 108(25), 257003, 2012. 12, 14, 46, 56, 64, 70 [53] Schneider, R., et al. Superconductor Science and Technology, 26(5), 055014, 2013. 37, 46, 56 [54] Speller, S. C., et al. Superconductor Science and Technology, 24(7), 075023, 2011. 37, 89 [55] Venzmer, E., et al. Journal of Superconductivity and Novel Magnetism, 29(4), 897-903, 2016. 12, 46 [56] Imai, Y., et al. Condensed Matter, 2(3), 2017. 12 [57] Tilley, R. Understanding Solids: The Science of Materials. Wiley, 2004. 13 [58] Lin, Y.-H., et al. Physica C: Superconductivity and its Applications, 514, 130 - 141, 2015. 13 [59] Strelniker, Y. M., et al. Phys. Rev. B, 76, 224528, 2007. 14 [60] Wang, Q., et al. 2D Materials, 2(4), 044012, 2015. 14 [61] Schneider, R., et al. Journal of physics. Condensed matter : an Institute of Physics journal, 26(45), 455701, 2014. 14, 56 [62] Schneider, R., et al. The European Physical Journal B, 88(1), 2-7, 2015. 14, 56 [63] Chopra, K. Thin Film Phenomena. McGraw-Hill, 1979. 16 [64] Smith, D. Thin-Film Deposition: Principles and Practice. McGraw-Hill Education, 1995. 16, 87 [65] Nalwa, H. Handbook of Thin Film Materials: Characterization and spectroscopy of thin lms. Volume 2. Handbook of thin lm materials. Harcourt Academic, 2002. 16 [66] F. Pardo, G. B., Guimpel, J. Rev. Sci. Instrum., 67, 2370, 1996. 17 [67] www.mateck.com/info/strontium-titanium-substrate.html. 19 [68] http://www.mtixtl.com. [69] http://www.novawafers.com/resources-about-silicon.html. 19 [70] Goldstein, J., et al. Electron Microscopy and X-ray Microanalysis. Springer US, 1992. 20, 21, 22, 43 [71] FEI. Inspect s50 sem datasheet. Inf. tec., FEI, 2014. 21 [72] Brundle, C., et al. Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films. Characterization Series. Butterworth-Heinemann, 1992. 21 [73] Thompson, A., et al. X-ray data booklet. Lawrence Berkeley National Laboratory, 2001. 23 [74] https://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html. 23 [75] PANalytical. Empyrean technical specications. 24 [76] Quinteros, C., et al. Procedimiento para la medición de reflectometrías de rayos x empleando el difractometro empyrean. Inf. tec., CNEA, 2018. 24 [77] Cullity, B. D. Elements of X-Ray Difraction. Addison-Wesley, 1956. 24 [78] Yoneda, Y. Phys. Rev., 131, 2010-2013, 1963. 25 [79] Stoev, K., Sakurai, K. The Rigaku Journal, 14, 2, 1997. 25 [80] Shalom, D. Tesis Doctoral, Instituto Balseiro, 2005. 27 [81] Zarate, J. Tesis de Maestría, Instituto Balseiro, 2007. 27 [82] Amigo, M. L. Tesis de Maestría, Instituto Balseiro, 2011. 27 [83] McElfresh, M. Fundamentals of magnetism and magnetic measurements: Featuring quantum desing's magnetic property measurement system. Quantum Design. 28, 29 [84] http://sica.cab.cnea.gov.ar/resonancias/equipaminetoycapacidades/afm. 29 [85] Bruker. NanoScope Analysis 1.50 User Manual. 30 [86] Williams, D., Carter, C. Transmission Electron Microscopy: A Textbook for Materials Science. Cambridge library collection. Springer, 2009. 31 [87] Fultz, B., Howe, J. Transmission Electron Microscopy and Diffractometry of Materials. Graduate Texts in Physics. Springer Berlin Heidelberg, 2012. 31 [88] Kuzmany, H. Solid-State Spectroscopy: An Introduction. Springer, 2009. 32, 33 [89] Ziman, J. Electrons and Phonons: The Theory of Transport Phenomena in Solids. International series of monographs on physics. Clarendon Press, 1960. 35 [90] Okamoto, H. Journal of Phase Equilibria, 12(3), 383{389, 1991. 43 [91] Amigo, M. L., Ale Crivillero, M. V., et al., Supercond. Sci. Technol, 30, 085010, 2017. 46, 79 [92] Mousavi, T., et al. Materials Science and Technology, 30(15), 1929-1943, 2014. 58 [93] Phan, G. N., et al. Physical Review B, 95(22), 1-6, 2017. 69 [94] Hanzawa, K., et al. IEEE Transactions on Applied Superconductivity, 27(4), 1-5, 2017. 69, 70 [95] Chowdhury, U. K., et al. Cogent Physics, 3(1), 2016. 70 [96] Chandra, S., Islam, A. Physica C: Superconductivity, 470(22), 2072 - 2075, 2010. [97] Tanatar, M. A., et al. Phys. Rev. Lett., 117, 127001, 2016. 70 [98] Molatta, S., et al. Scientic Reports, 5, 16334, 2015. 70 [99] Hanzawa, K., et al. Proceedings of the National Academy of Sciences, 113(15), 3986-3990, 2016. 70 [100] Roy, A., et al. Phys. Rev. B, 39, 10185-10191, 1989. 71 [101] Ying, T., et al. Science Advances, 2(2), 2016. 71 [102] Coldea, A. I., Watson, M. D. Annual Review of Condensed Matter Physics, 9(1), 125-146, 2018. 72, 73 [103] Davis, J. C., Hirschfeld, P. J. Nature Physics, 10, 184, 2014. 72 [104] Amigo, L. Tesis Doctoral, Instituto Balseiro, 2017. 73, 74, 80, 81, 111 [105] Amigo, M. L., Ale Crivillero, M. V., et al., J. Low Temp. Phys., 179, 15, 2014. 74, 79, 80, 81 [106] Karlsson, S., et al. Superconductor Science and Technology, 28(10), 105009, 2015. 74 [107] Sadakov, A., et al. Physics Procedia, 75, 364 - 368, 2015. 20th International Conference on Magnetism, ICM 2015. 74 [108] Ale Crivillero, M. V., Amigo, M. L., et al., J. Low Temp. Phys., 179, 9, 2014. 79 [109] Amigo, M. L., Ale Crivillero, M. V., et al., Journal of Physics: Conference Series, 507, 012001, 2014. [110] Amigo, M. L., Ale Crivillero, M. V., et al., J. Phys.: Conf. Ser., 568, 022005, 2014. 79, 80, 81 [111] Werthamer, N. R., et al. Physical Review, 147, 1966. 80 [112] Blatter, G., et al. Rev. Mod. Phys., 66, 1994. 82 [113] Jiao, L., et al. Phys. Rev. B, 85, 064513, 2012. 83 [114] Coh, S., et al. Phys. Rev. B, 93, 245138, 2016. 85 [115] Lee, D.-H. Annual Review of Condensed Matter Physics, 9(1), 261-282, 2018. [116] Chang, C., et al. Physica C: Superconductivity and its Applications, 514, 423-434, 2015. 85 [117] Iida, K., et al. Applied Physics Reviews, 5(3), 031304, 2018. 86 [118] Lee, S., et al. Nature Materials, 12, 392 EP -, 2013. 86 [119] Nabeshima, F., et al. Japanese Journal of Applied Physics, 56(2), 020308, 2017. 86, 92 [120] Haberkorn, N., et al. Scripta Materialia, 61(8), 821-824, 2009. 87 [121] Yoshimoto, T., et al. Superconductor Science and Technology, 25(10), 105013, 2012. 87 [122] Qiu, W., et al. ACS Applied Materials & Interfaces, 8(12), 7891-7896, 2016. 89 [123] Miyata, Y., et al. Nature Materials, 14, 775 EP -, 2015. 90 [124] Kawazoe, H., et al. Journal of Applied Physics, 76(12), 7935-7941, 1994. 90 [125] Nakajima, T., et al. Phys. Rev. B, 91, 205125, 2015. 92 [126] Bishop, C. B., et al. Phys. Rev. Lett., 117, 117201, 2016. 92 [127] Liu, L., et al. Phys. Rev. B, 91, 134502, 2015. 92 [128] Okamoto, H., Tanner, L. Bulletin of Alloy Phase Diagrams, 11, 371, 1990. 94 [129] Chen, L., et al. Physica C: Superconductivity, 471(17), 515 - 519, 2011. 98 [130] Verwey, E. J. W. Nature, 144, 327 EP -, 1939. 98 [131] Walz, F. Journal of Physics: Condensed Matter, 14(12), R285, 2002. 98 [132] Coey, J. Magnetism and Magnetic Materials. Knovel Library. Cambridge University Press, 2010. 98 [133] Wolf, S. A., et al. Science, 294(5546), 1488-1495, 2001. 98 [134] Liu, X., et al. Npj Quantum Materials, 1, 16027 EP -, 2016. 98 [135] Ale Crivillero, M. V., et al. Materials Today: Proceedings, In Press. 99, 100, 101, 102 [136] Margulies, D. T., et al. Phys. Rev. Lett., 79, 5162-5165, 1997. 101 [137] Kelm, K., Mader, W. Zeitschrift fur anorganische und allgemeine Chemie, 631(12), 2383-2389, 2005. 111
Materias:Física > Materia condensada
Divisiones:Investigación y aplicaciones no nucleares > Física > Bajas temperaturas
Código ID:864
Depositado Por:Tamara Cárcamo
Depositado En:01 Mar 2021 11:58
Última Modificación:01 Mar 2021 11:58

Personal del repositorio solamente: página de control del documento