Interferencia y acoplamiento electrón-fonón en las propiedades de transporte de sistemas nanoscópicos fuertemente correlacionados. / Interference and electron-phonon coupling in the transport properties of strongly correlated nanoscopic system.

Tosi, Leandro (2015) Interferencia y acoplamiento electrón-fonón en las propiedades de transporte de sistemas nanoscópicos fuertemente correlacionados. / Interference and electron-phonon coupling in the transport properties of strongly correlated nanoscopic system. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
17Mb

Resumen en español

En esta tesis se ha abordado la cuestión del efecto de las correlaciones fuertes y del acoplamiento electrón-fonón en las propiedades de transporte de los sistemas nanoscópicos que exhiben fenómenos de interferencia. Hemos desarrollado un modelo para describir la interferencia en los sistemas interactuantes de muchos cuerpos y caracterizado este modelo en diferentes límites relevantes de alta simetría. El modelo consiste en dos dobletes que están acoplados a un par de cables de fuente-sumidero. De los cuatro coeficientes de acoplamiento, tres se pueden hacer reales y positivos. La fase compleja que queda en uno de los acoplamientos permite tener en cuenta la interferencia y puede ser relacionada con la simetría de los estados y la geometría de la conexión. Las propiedades de transporte se han calculado mediante la extensión de la aproximación non-crossing (NCA) fuera de equilibrio en el formalismo de Keldysh. Los resultados muestran las consecuencias de la interacción entre la interferencia cuántica y el efecto Kondo que puede conducir incluso a una conductancia cero causada por la interferencia total destructiva en el límite de alta simetría. También hemos explorado el papel de los grados de libertad orbitales en un sistema de dos puntos cuánticos. Hemos llevado a cabo un cálculo fuera de equilibrio de las propiedades de transporte que describen cualitativamente experimentos recientes. Con el fin de incluir el efecto de las vibraciones, que pueden ser muy importantes en las moléculas, hemos tratado primero el caso de un único doblete en el límite Kondo acoplado a un único modo bosónico. Hemos resuelto el problema completo del acoplamiento a los cables conductores y a los fonones en pie de igualdad con NCA y presentamos el efecto sobre las propiedades de transporte en el régimen Kondo. También presentamos los primeros resultados del efecto de las vibraciones en nuestro modelo de interferencia calculados en equilibrio. En la última parte presento mis resultados experimentales sobre el efecto Hall cuántico entero medido en gases de electrones bidimensionales.

Resumen en inglés

In this thesis we have addressed the question of the effect of strong correlations and electron-phonon coupling on the transport properties of nanoscopic systems exhibiting interference phenomena.We have developed a model to describe interference in many-body interacting systems and characterized this model in different relevant limits of high symmetry. The model consists on two doublets which are coupled to a pair of source-drain conducting leads. From the four coupling coefficients, three can be made real and positive. The remaining complex phase in one of the couplings allows to take into account the interference. It can be related with the symmetry of the states and with the geometry of the conection. The transport properties have been calculated using the extension of the non-crossing approximation (NCA) out of equilibrium in the Keldysh formalism. The results show the consequences of the interplay between quantum interference and Kondo effect which may lead to a zero conductance due to the total destructive interference in the high symmetry limit.We have also explored the role of orbital degrees of freedom in a double-quantum dot system. We have performed a full out of equilibrium calculation of the transport properties which describe cualitatively recent experiments. In order to include the effect of vibrations, which may be very important in molecules, we have first treated the case of one doublet in the Kondo limit coupled to a single bosonic mode. We have solved the complete problem of the coupling to the conducting leads and the phonons in equal footing with NCA and present here the effect of vibrations on the transport properties in the Kondo regime. We also present the first results of the effect of phonons in our interference model calculated in equilibrium. In the last part I present my experimental results on the integer quantum Hall effect measured on two-dimensional electron gases.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Kondo effect; Efecto Kondo; Hall effect; Efecto hall; [Quantum transport; Transporte cuántico; Quantum interference; Correlated systems; Sistemas correlacionados; Molecular electronics; Electrónica molecular]
Referencias:Aharonov, Y. and Bohm, D. (1959). Significance of electromagnetic potentials in the quantum theory. The Physical Review, 115:485. Aharonov, Y. and Casher, A. (1984). Topological quantum effects for neutral particles. Phys. Rev. Lett., 53:319. Aligia, A. A. and Salguero, L. A. (2004). Magnetotransport through a quantum wire side coupled to a quantum dot. Physical Review B, 70:075307. Amasha, S., Keller, A. J., Rau, I. G., Carmi, A., Katine, J. A., Shtrikman, H., Oreg, Y., and Goldhaber-Gordon, D. (2013). Pseudospin-resolved transport spectroscopy of the kondo effect in a double quantum dot. Phys. Rev. Lett., 110:046604. Anderson, P.W. (1961). Localized Magnetic States in Metals. Physical Review, 124:41–53. Anderson, P. W. (1970). A poor man’s derivation of scaling laws for the kondo problem. Journal of Physics C: Solid State Physics, 3:2436. Ando, T., Fowler, A. B., and Stern, F. (1982). Electronic properties of twodimensional systems. Rev. Mod. Phys., 54:437. Aradhya, S. V. and Venkataraman, L. (2013). Single-molecule junctions beyond electronic transport. Nature Nanotechnology, 8:399. Atatüre, M., Dreiser, J., Badolato, A., Högele, A., Karrai, K., and Imamoglu, A. (2006). Quantum-dot spin-state preparation with near-unity fidelity. Science, 312:551. Baca, A. G., Ren, F., Zolper, J. C., Briggs, R. D., and Pearton, S. J. (1997). A survey of ohmic contacts to iii-v compound semiconductors. Thin Solid Films, 308-309:599–60. Ballmann, S., Härtle, R., Coto, P. B., Elbing, M., Mayor, M., Bryce, M. R., Thoss, M., and Weber, H. B. (2012). Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions. Phys. Rev. Lett., 109:056801. Balseiro, C. A., Cornaglia, P. S., and Grempel, D. R. (2006). Electron-phonon correlation effects in molecular transistors. Phys. Rev. B, 74:235409. Bas, P. R. (2010). Universal scaling in transport out of equilibrium through a single quantum dot using the non-crossing approximation. Physical Review B, 81:155327. Bas, P. R. and Aligia, A. A. (2009). Nonequilibrium transport through a singlet-triplet anderson impurity. Physical Review B, 80:035308. Baym, G. (1962). Self-consistent approximations in many-body systems. Physical Review, 127:1391–1401. Baym, G. and Kadanoff, L. P. (1961). Conservation laws and correlation functions. Physical Review, 124:287. Beenakker, C.W. J. and van Houten, H. (1991). Quantum transport in semiconductor nanostructures. Solid State Physics, 44:1. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Caldren, L. A., and Awshalom, D. D. (2008). Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320:349. Bergsten, T., Kobayashi, T., Sekine, Y., and Nitta, J. (2006). Experimental demonstration of the time reversal aharonov-casher effect. Phys. Rev. Lett., 97:196803. Binosi, D. and Theussl, L. (2004). Jaxodraw: A graphical user interface for drawing feynman diagrams. Computer Physics Communications, 161:76. Borda, L., Zaránd, G., Hofstetter,W., Halperin, B. I., and von Delft, J. (2003). Su(4) fermi liquid state and spin filtering in a double quantum dot system. Phys. Rev. Lett., 90:026602–1. Brickers, N. E. (1987). Review of techniques in the large-n expansion for dilute magnetic alloys. Reviews of Modern Physics, 59:845. Brickers, N. E., Cox, D. L., and Wilkins, J. W. (1987). Self-consistent large-N expansion for normal-state properties of dilute magnetic alloys. Physical Review B, 36:2036–2079. Bruus, H. and Flensberg, K. (2004). Many-body quantum theory in condensed matter physics: an introduction. Oxford University Press. Büttiker, M. (1986). Four terminal phase-coherent conductance. Physical Review Letters, 57:1761. Cardamone, D. M., Stafford, C. A., and Mazumdar, S. (2006). Controlling quantum transport through a single molecule. Nano Lett., 6:2423. Chakraborty, T. and Pietiläinen, P. (2013). The Quantum Hall Effects: Integral and Fractional. Springer Science and Business Media. Chandrasekhar, V., Rooks, M. J., Wind, S., and Prober, D. E. (1985). Observation of aharonov-bohm electron interference effects with period h/e and h/2e in individual micron-size, normal-metal rings. Phys. Rev. Lett., 55:1610. Chen, J. C., Chang, A. M., and Melloch, M. R. (2004). Transition between quantum states in a parallel-coupled double quantum dot. Phys. Rev. Lett., 92:176801. Coleman, P. (1984). New approach to the mixed-valence problem. Physical Review B, 29:3035–3044. Cornaglia, P. S., Grempel, D. R., and Ness, H. (2005). Quantum transport through a deformable molecular transistor. Phys. Rev. B, 71:075320. Cornaglia, P. S., Ness, H., and Grempel, D. R. (2004). Many-body effects on the transport properties of single-molecule devices. Phys. Rev. Lett., 93:147201–1. Cornaglia, P. S., Usaj, G., and Balseiro, C. A. (2007). Electronic transport through magnetic molecules with soft vibrating modes. Phys. Rev. B, 76:241403(R). Costi, T. A. (2000). Kondo effect in a magnetic field and the magnetoresistivity of kondo alloys. Phys. Rev. Lett., 85:1504. Costi, T. A. (2010). Thermoelectric transport through strongly correlated quantum dots. Phys. Rev. B, 81:235127. Costi, T. A., Hewson, A. C., and Zlati´c, V. (1994). Transport coefficients of the anderson model via the numerical renormalization group. J. Phys. Cond. Matt., 6:2519. Costi, T. A., Kroha, J., and Wölfle, P. (1995). Spectral properties of the Anderson impurity model: Comparison of numerial-renormalization-group and non-crossing approximation results. Physical Review B, 53:1850–1865. Craig, N. J., Taylor, J. M., Lester, E. A., Marcus, C. M., Hanson, M. P., and Gossard, A. C. (2004). Tunable nonlocal spin control in a coupledquantum dot system. Science, 304:565. Cronenwett, S. M., Oesterkamp, T. H., and Kouwenhoven, L. P. (1998). A tunable kondo effect in quantum dots. Science, 281:540. Cuevas, J. C. and Scheer, E. (2010). Molecular Electronics. An Introduction to Theory and Experiment. World Scientific. Dadosh, T., Gordin, Y., Krahne, R., Khivrich, I., Mahalu, D., Frydman, V., Sperling, J., Yacoby, A., and Bar-Joseph, I. (2005). Measurement of the conductance of single conjugated molecules. Nature, 436:677. Danilov, A., Kubatkin, S., Kafanov, S., rd, P. H., Stuhr-Hansen, N., Moth-Poulsen, K., and rnholm, T. B. (2008). Electronic transport in single molecule junctions: Control of the molecule-electrode coupling through intramolecular tunneling barriers. Nano Lett., 8:1. Datta, S. (2003). Electronic transport in mesoscopic systems. Cambridge University Press. Datta, S. (2005). Quantum transport: atom to transistor. Cambridge University Press. Delgado, F., Shim, Y.-P., Korkusinski, M., Gaudreau, L., Studenikin, S. A., Sachrajda, A. S., and Hawrylak, P. (2008). Spin-selective aharonov-bohm oscillations in a lateral triple quantum dot. Phys. Rev. Lett., 101:226810. Devoret, M. and Glattli, C. (1998). Single-electron transistors. Phys. World, 11:22. Drummond, T. J., Masselink, W. T., and Morkoc, H. (1986). Modulationdoped gaas/(al,ga)as heterojunction field-effect transistors: Modfets. Proceedings of the IEEE, 74:773. Duruoz, C. I. (1996). low temperature transport in quantum dot arrays. PhD thesis, Stanford University. E. M. Lifshitz, L. P. P. (1981). Physical kinetics. Butterworth-Heinemann. Engel, H.-A., Kouwenhoven, L., Loss, D., and Marcus, C. (2004). Controlling spin qubits in quantum dots. Quantum Information Processing, page 115. Esteve, D. (1992). Transferring electrons one by one. pp. 109-138 in Single Charge Tunneling (Coulomb Blockade Phenomena in Nanostructures) edited by H. Grabert and M.H. Devoret, Plenum, New York. Fernández-Torrente, I., Franke, K. J., and Pascual, J. I. (2008). Vibrational kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett., 101:217203. Ferry, D. and Goodnick, S. (1997). Transport in Nanostructures. Cambridge U.P., Cambridge. Fetter, A. L. and Walecka, J. D. (2003). Quantum theory of many-particle systems. Courier Dover Publications. Fisher, D. S. and Lee, P. A. (1981). Relation between conductivity and transmission matrix. Phys. Rev. B, 23:6851. Florens, S., Freyn, A., Roch, N., Wernsdorfer, W., Balestro, F., Roura-Bas, P., and Aligia, A. A. (2011). Universal transport signatures in two-electron molecular quantum dots: gate-tunable hund’s rule, underscreened kondo effect and quantum phase transitions. J. Phys. Condens. Matter, 23:243202. Frey, T., Leek, P. J., Beck, M., Blais, A., Ihn, T., Ensslin, K., and Wallraff, A. (2012). Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett., 108:046807. Galpin, M. R., Logan, D. E., and Krishnamurthy, H. R. (2005). Quantum phase transition in capacitively coupled double quantum dots. Phys. Rev. Lett., 94:186406. Gaudreau, L., Granger, G., Kam, A., Aers, G. C., Studenikin, S. A., Zawadzki, P., Pioro-Ladrière, M., R.Wasilewski, Z., and Sachrajda, A. S. (2012). Coherent control of three-spin states in a triple quantum dot. Nature Physics, 8:54. Gaudreau, L., Studenikin, S. A., Sachrajda, A. S., Zawadzki, P., Kam, A., Lapointe, J., Korkusinski, M., and Hawrylak, P. (2006). Stability diagram of a few-electron triple dot. Phys. Rev. Lett., 97:036807. Gellmann, M. and Low, F. (1951). Bound states in quantum field theory. Physical Review, 84:350–354. Gerland, U., von Delft, J., Costi, T. A., and Oreg, Y. (2000). Transmission phase shift of a quantum dot with kondo correlations. Phys. Rev. Lett., 84:3710. Girvin, S. M. (1999). The Quantum Hall Effect: Novel Excitations and Broken Symmetries in Ecole d’Eté Les Houches 1998. Springer Verlag. Glazman, L. and Raikh, M. (1988). Resonant kondo transparency of a barrier with quasilocal impurity states. JETP Lett., 47:452. Goerbig, M. O. (2009). Quantum hall effects. arXiv: cond-mat/9907002. Goldhaber-Gordon, D., Göres, J., Kastner, M. A., Shtrikman, H., Mahalu, D., and Meirav, U. (1998a). From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor. Physical Review Letters, 81:5225. Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., Abusch-Magder, D., Meirav, U., and Kastner, M. A. (1998b). Kondo effect in a single-electron transistor. Nature, 391:156. Grabert, H. and Devoret, M. (1992). Single Charge Tunneling (Coulomb Blockade Phenomena in Nanostructures). Plenum, New York. Greilich, A., Oulton, R., Zhukov, E. A., Yugova, I. A., Yakovlev, D. R., Bayer, M., Shabaev, A., Efros, A. L., Merkulov, I. A., Stavarache, V., Reuter, D., and Wieck, A. (2006a). Optical control of spin coherence in singly charged (in; ga)as/gaas quantum dots. Phys. Rev. Lett., 96:227401. Greilich, A., Yakovlev, D. R., Shabaev, A., Efros, A. L., Yugova, I. A., Oulton, R., Stavarache, V., Reuter, D.,Wieck, A., and Bayer, M. (2006b). Mode locking of electron spin coherence in singly charged quantum dots. Science, 313:341. Greuter, L. (2009). Fabrication and Characterization of Ohmic Contacts. PhD thesis, University of Basel. Grobis, M., Rau, L. G., Potok, R. M., Shtrikman, H., and Goldhaber-Gordon, D. (2008). Universal scaling in nonequilibrium transport through a single channel kondo dot. Physical Review Letters, 100:246601. Guédon, C. M., Valkenier, H., Markussen, T., Thygesen, K. S., Hummelen, J. C., and van der Molen, S. J. (2012). Observation of quantum interference in molecular charge transport. Nature Nanotechnology, 7:305. Haldane, F. D. M. (1978a). Scaling theory of the asymmetric anderson model. Physical Review Letters, 40:417. Haldane, F. D. M. (1978b). Theory of the atomic limit of the anderson model: I. perturbation expansions re-examined. J. Phys. C: Solid State Phys., 11:5015. Halperin, B. I. (1982). Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25:2185. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S., and Vandersypen, L. M. K. (2007). Spins in few-electron quantum dots. Rev. Mod. Phys., 79:1217. Härtle, R., Butzin, M., Rubio-Pons, O., and Thoss, M. (2011). Quantum interference and decoherence in single-molecule junctions: How vibrations induce electrical current. Phys. Rev. Lett., 107:046802. Haule, K., Kirchner, S., Kroha, J., and Wölfle, P. (2001). Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation. Physical Review B, 64:155111. Hewson, A. and Meyer, D. (2002). Numerical renormalization group study of the anderson-holstein impurity model. J. Phys.: Condens. Matter, 14:427. Hewson, A. C. (1997). The Kondo Problem to Heavy Fermions. Cambridge University Press. Hofstetter, W., König, J., and Schoeller, H. (2001). Kondo correlations and the fano effect in closed aharonov-bohm interferometers. Phys. Rev. Lett., 87:156803. Holleitner, A. W., Blick, R. H., Hüttel, A. K., Eberl, K., and Kotthaus, J. P. (2002). Probing and controlling the bonds of an artificial molecule. Science, 297:70. Holleitner, A. W., Chudnovskiy, A., Pfannkuche, D., Eberl, K., and Blick, R. H. (2004). Pseudospin kondo correlations versus hybridized molecular states in double quantum dots. Phys. Rev. B, 70:075204. Hübel, A., Held, K., Weis, J., and v. Klitzing, K. (2008). Correlated electron tunneling through two separate quantum dot systems with strong capacitive interdot coupling. Phys. Rev. Lett., 101:186804. Huibers, A. G. A. (1999). Electron transport and dephasing in semiconductor quantum dots. PhD thesis, Stanford University. Hwang, H. Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., and Tokura, Y. (2012). Emergent phenomena at oxide interfaces. Nature Materials, 11:103. Imry, Y. (1997). Introduction to Mesoscopic Physics. Oxford U.P., Oxford. Ingold, G.-L. and Nazarov, Y. (1992). Charge tunneling rates in ultrasmall junctions. pp. 21-108 in Single Charge Tunneling (Coulomb Blockade Phenomena in Nanostructures) edited by H. Grabert and M.H. Devoret, Plenum, New York. Iqbal, M. J., Reuter, D., Wieck, A. D., and van der Wal, C. H. (2014). Robust recipe for low-resistance ohmic contacts to a two-dimensional electron gas in a gaas/algaas heterostructure. arXiv:1407.4781v1 [cond-mat.meshall]. Jagla, E. A. and Balseiro, C. A. (1993). Electron-electron correlations and the aharonov-bohm effect in mesoscopic rings. Phys. Rev. Lett., 70:639. Jamneala, T., Madhavan, V., and Crommie, M. F. (2001). Kondo response of a single antiferromagnetic chromium trimer. Phys. Rev. Lett., 87:256804. Jarillo-Herrero, P., Kong, J., van der Zant, H. S., Dekker, C., Kouwenhoven, L. P., and Franceschi, S. D. (2005). Orbital kondo effect in carbon nanotubes. Nature (London), 434:484. Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P., and van der Zant, H. S. J. (2004). Electron-hole symmetry in a semiconducting carbón nanotube quantum dot. Nature (London), 429:389. Jeong, H., Chang, A. M., , and Meloch, M. R. (2001). The kondo effect in an artificial quantum dot molecule. Science, 293:2221. Kang, K. and Shin, S.-C. (2000). Mesoscopic kondo effect in an aharonovbohm ring. Phys. Rev. Lett., 85:5619. Kastner, M. (1992). The single-electron transistor. Rev. Mod. Phys., 64:849. Kastner, M. (1993). Artificial atoms. Phys. Today, 46:24. Kastner, M. (2000). The single electron transistor and artificial atoms. Ann. Phys. (Leipzig), 9:885. Kawayami, N. and Okiji, A. (1981). Exact expression of the ground-state energy for the symmetric anderson model. Phys. Lett., 86A:483. Keldysh, L. V. (1964). no title. Sov. Phys. JETP, 20:1347. Keller, A. J., Amasha, S., I.Weymann, Moca, C. P., Rau1, I. G., Katine, J. A., Shtrikman, H., Zaránd, G., and Goldhaber-Gordon, D. (2014). Emergent su(4) kondo physics in a spin-charge-entangled double quantum dot. Nature Physics, 10:145. Kim, Y., Song, H., Strigl, F., Pernau, H.-F., Lee, T., and Scheer, E. (2011). Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett., 106:196804. Kondo, J. (1964). Resistence minimum in dilute magnetic alloys. Progress in Theoretical Physics, 32:37–49. König, J. and Gefen, Y. (2001). Coherence and partial coherence in interacting electron systems. Phys. Rev. Lett., 86:3855. König, J., Schoeller, H., and Schön, G. (1996). Zero-bias anomalies and boson-assisted tunneling through quantum dots. Phys. Rev. Lett., 76:1715. Koop, E. J., Iqbal, M. J., Limbach, F., Boute, M., vanWees, B. J., Reuter, D., Wieck, A. D., Kooi, B. J., and van derWal, C. H. (2013). On the annealing mechanism of auge/ni/au ohmic contacts to a two-dimensional electron gas in gaas/alxga1-xas heterostructures. Semicond. Sci. Technol., 28:025006. Kouwenhoven, L., Austing, D. G., and Tarucha, S. (2001). Few-electron quantum dots. Rep. Prog. Phys., 64:701. Kouwenhoven, L. and Glazman, L. (2001). Revival of the kondo effect. Physics World, January:33. Kouwenhoven, L. and Marcus, C. (1998). Quantum dots. Physics World, 11:35. Kouwenhoven, L. P., Hekking, F. W. J., van Wees, B. J., Harmans, C. J. P. M., Timmering, C. E., and Foxon, C. T. (1990). Transport through a finite onedimensional crystal. Phys. Rev. Lett., 65:361. Kouwenhoven, L. P., Marcus, C. M., Mceuen, P. L., Tarucha, S., Westervelt, R. M., and Wingreen, N. S. (1997). Electron Transport in Quantum Dots. Kluwer. Krishna-murthy, H. R., Wilkins, J. W., and Wilson, K. G. (1980a). Renormalization-group approach to the anderson model of dilute magnetic alloys. i. static properties for the symmetric case. Phys. Rev. B, 21:1003. Krishna-murthy, H. R., Wilkins, J. W., and Wilson, K. G. (1980b). Renormalization-group approach to the anderson model of dilute magnetic alloys. ii. static properties for the asymmetric case. Phys. Rev. B, 21:1044. Kroha, J. and Wölfle, P. (1998). Fermi and Non-Fermi liquid behavior in quantum impurity systems: conserving slave bosons theory. Acta Physica Polonica B, 29:3781. Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Brédas, J.-L., Stuhr-Hansen, N., rd, P. H., and rnholm, T. B. (1998). Dephasing in electron interference by a ’which-path’ detector. Nature, 391:871. Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Brédas, J.-L., Stuhr-Hansen, N., rd, P. H., and rnholm, T. B. (2003). Single-electron transistor of a single organic molecule with access to several redox states. Nature, 425:698. Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosofical Magazine, 21:863. Langreth, D. C. (1966). Friedel sum rule for anderson’s model of localized impurity states. Physical Review, 150:516–518. Langreth, D. C. (1967). Linear and Nonlinear Electron Transport in Solids, Vol.17 of NATOAdvanced Study Institute, Series B: Physics edited by J.T. Devreese and V.E. Van Doren. Plenum, New York. Laughlin, H. B. (1983). Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50:1395. Liang,W., Shores, M. P., Bockrath, M., Long, J. R., and Park, H. (2002). Kondo resonance in a single-molecule transistor. Nature (London), 417:725. Lobos, A. M. and Aligia, A. A. (2008). Effects of interactions in transport through aharonov-bohm-casher interferometers. Physical Review Letters, 100:016803. MacDonald, A. H. (1991). The Quantum Hall Effects in Quantum Coherence in Mesoscopic Systems (ed. B. Kramer). Plenum Press, New York. Mahan, G. D. (2000). Many-Particle Physics (Third Edition). Springer. Manoharan, H. C., Lutz, C. P., and Eigler, D. M. (2000). Quantum mirages formed by coherent projection of electronic structure. Nature (London), 403:512. Martin, C.-O. A. (2010). Inelastic mechanisms in mesocopic circuits realized in two dimensional electron gases. PhD thesis, Faculté des sciences d’Orsay, Université Paris-Sud 11. Martin-Rodero, A., Yeyati, A. L., Flores, F., and Monreal, R. C. (2008). Interpolative approach for electron-electron and electron-phonon interactions: From the kondo to the polaronic regime. Phys. Rev. B, 78:235112. Meir, Y. andWingreen, N. S. (1991). Transport though a strongly interacting electron system: Theory of periodic conductance oscillations. Phys. Rev. Lett., 66:3048. Meir, Y. and Wingreen, N. S. (1992). Landauer Formula for the Current through an Interacting Region. Phys. Rev. Lett., 68:2512. Meir, Y., Wingreen, N. S., and Lee, P. A. (1993). Low-temperature transport though a quantum dot: The anderson model out of equilibrium. Phys. Rev. Lett., 70:2601. Melloch, M. R. (1993). Molecular beam epitaxy for high electron mobility modulation-doped two-dimensional electron gases. Thin Solid Films, 231:74. Monreal, R. C., Flores, F., and Martin-Rodero, A. (2010). Nonequilibrium transport in molecular junctions with strong electron-phonon interactions. Phys. Rev. B, 82:235412. Monreal, R. C. and Martin-Rodero, A. (2009). Equation of motion approach to the anderson-holstein hamiltonian. Phys. Rev. B, 79:115140. Nagaoka, K., Jamneala, T., Grobis, M., and Crommie, M. F. (2002). Temperature dependence of a single kondo impurity. Phys. Rev. Lett., 88:077205. Nazarov, Y. and Blanter, Y. (2009). Quantum Transport, Introduction to Nanoscience. Cambridge University Press. Ng, T. K. and Lee, P. A. (1988). On-site coulomb repulsion and resonant tunneling. Phys. Rev. Lett., 61:1768. Nichols, R. J. and Higgins, S. J. (2012). Interference comes into view. Nature Nanotechnology, 7:281. Nitzan, A. and Ratner, M. A. (2003). Electron transport in molecular wire junctions. Science, 300:1384. Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. (2012). A roadmap for graphene. Nature, 490:192. Nygård, J., Cobden, D. H., and Lindelof, P. E. (2000). Kondo physics in carbon nanotubes. Nature (London), 408:342. Okazaki, Y., Sasaki, S., and Muraki, K. (2011). Spin-orbital kondo effect in a parallel double quantum dot. Phys. Rev. B, 84:161305(R). Okiji, A. and Kawakami, N. (1983). Thermodynamic properties of the Anderson model. Phys. Rev. Lett., 50:1157. Paaske, J. and Flensberg, K. (2005). Vibrational sidebands and the kondo effect in molecular transistors. Phys. Rev. Lett., 94:176801. Park, H., Park, J., Lim, A. K. L., Anderson, E. H., Alivisatos, A. P., and McEuen, P. L. (2000). Nano-mechanical oscillations in a single-c60 transistor. Nature (London), 407:57. Park, J., Pasupathy, A. N., Goldsmith, J. I., Chang, C., Yaish, Y., Petta, J. R., Rinkoski, M., Sethna, J. P., na, H. D. A., McEuen, P. L., and Ralph, D. C. (2002). Kondo resonance in a single-molecule transistor. Nature (London), 417:722. Parks, J. J., Champagne, A. R., Costi, T. A., Shum, W. W., Pasupathy, A. N., Neuscamman, E., Flores-Torres, S., Cornaglia, P. S., Aligia, A. A., Balseiro, C. A., Chan, G. K.-L., na, H. D. A., and Ralph, D. C. (2010). Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect. Science, 328:1370. Petta, J. R., Johnson, A. C., Taylor, J. M., E. A. Laird, A. Y., Lukin, M. D., Marcus, C. M., Hanson, M. P., and Gossard, A. C. (2005). Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309:2180. Pohjola, T., Schoeller, H., and Schön, G. (2001). Orbital and spin kondo effects in a double quantum dot. Europhys. Lett., 54:241. Prange, R. E. and Girvin, S. M. (1987). The Quantum Hall effect. Springer-Verlag. Rakhmilevitch, D., Korytár, R., Bagrets, A., Evers, F., and Tal, O. (2014). Electron-vibration interaction in the presence of a switchable kondo resonance realized in a molecular junction. Phys. Rev. Lett., 113:236603. Reed, M. A. (1993). Quantum dots. Scientific American, January:118. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., and Tour, J. M. (1997). Conductance of a molecular junction. Science, 278:252. Rincón, J., Hallberg, K., Aligia, A. A., and Ramasesha, S. (2009). Quantum interference in coherent molecular conductance. Phys. Rev. Lett., 103:266807. Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W., and Balestro, F. (2008). Quantum phase transition in a single-molecule quantum dot. Nature (London), 453:633. Roch, N., Florens, S., Costi, T. A., Wernsdorfer, W., and Balestro, F. (2009). Observation of the underscreened kondo effect in a molecular transistor. Phys. Rev. Lett., 103:197202. Roura-Bas, P., Tosi, L., and Aligia, A. A. (2012a). Nonequilibrium conductance through a benzene molecule in the kondo regime. J. Phys. Condens. Matter, 24:365301. Roura-Bas, P., Tosi, L., and Aligia, A. A. (2013). Nonequilibrium transport through magnetic vibrating molecules. Phys. Rev. B, 87:195136. Roura-Bas, P., Tosi, L., Aligia, A. A., and Cornaglia, P. S. (2012b). Thermopower of an su(4) kondo resonance under an su(2) symmetry-breaking field. Phys. Rev. B, 86:165106. Roura-Bas, P., Tosi, L., Aligia, A. A., and Hallberg, K. (2011). Interplay between quantum interference and kondo effects in nonequilibrium transport through nanoscopic systems. Phys. Rev. B, 84:073406. Sankar Das Sarma, A. P. (2004). Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures. WILEYVCH Verlag GmbH and Co. KGaA. Sasaki, S., Amaha, S., Asakawa, N., Eto, M., and Tarucha, S. (2004). Enhanced kondo effect via tuned orbital degeneracy in a spin 1=2 artificial atom. Phys. Rev. Lett., 93:017205. Sasaki, S., Franceschi, S. D., Elzerman, J. M., van der Wiel, W. G., Eto, M., Tarucha, S., and Kouwenhoven, L. P. (2000). Kondo effect in an integerspin quantum dot. Nature, 405:764. Schmid, J.,Weis, J., Eberl, K., and v. Klitzing, K. (1999). Absence of odd-even parity behavior for kondo resonances in quantum dots. Phys. Rev. Lett., 84:5824. Seo, M., Choi, H. K., Lee, S.-Y., Kim, N., Chung, Y., Sim, H.-S., Umansky, V., and Mahalu2, D. (2013). Charge frustration in a triangular triple quantum dot. Phys. Rev. Lett, 110:046803. Simmel, F., Blick, R. H., Kotthaus, J. P., Wegscheider, W., and Bichler, M. (1999). Anomalous kondo effect in a quantum dot at nonzero bias. Phys. Rev. Lett., 83:804. Smit, R. H. M., Noat, Y., Untiedt, C., Lang, N. D., van Hemert, M. C., and van Ruitenbeek, J. M. (2002). Measurement of the conductance of a hydrogen molecule. Nature (London), 419:906. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V., and Ratner, M. A. (2010). Exploring local currents in molecular junctions. Nature Chemestry, 2:223. Stafford, C. A., Cardamone, D. M., and Mazumdar, S. (2007). The quantum interference effect transistor. Nanotechnology, 18:424014. Steele, G. A., Gotz, G., and Kouwenhoven, L. P. (2009). Tunable few-electron double quantum dots and klein tunnelling in ultraclean carbon nanotubes. Nature Nanotechnology, 4:363. Stewart, D. R. (1999). Level spectroscopy of a quantum dot. PhD thesis, Stanford University. Stone, M. (1992). Quantum Hall Effect. World Scientific. Stormer, H. L. (1999). Nobel lecture: The fractional quantum hall effect. Reviews of Modern Physics, 71:875. Stormer, H. L., Tsui, D. C., and Gossard, A. C. (1999). The fractional quantum hall effect. Reviews of Modern Physics, 71:298. Switkes, M. (1999). Decoherence and adiabatic transport in semiconductor quantum dots. PhD thesis, Stanford University. Tao, N. J. (2006). Electron transport in molecular junctions. Nature Nanotechnology, 1:173. Taylor, R. P., Coleridge, P. T., Davies, M., Feng, Y., McCaffrey, J. P., and Marshall, P. A. (1994). Physical and electrical investigation of ohmic contacts to aigaas/gaas heterostructures. J. Appl. Phys., 76:7966. Tettamanzi, G. C., Verduijn, J., Lansbergen, G. P., Blaauboer, M., Calderón, M. J., Aguado, R., and Rogge, S. (2012). Magnetic-field probing of an su(4) kondo resonance in a single-atom transistor. Phys. Rev. Lett., 108:046803. Tosi, L. (2010). Técnicas diagramáticas en transporte a través de sistemas nanoscópicos altamente correlacionados. Master’s thesis, Instituto Balseiro, Universidad Nacional de Cuyo. Tosi, L. and Aligia, A. A. (2011). Spin selective transport through aharonovbohm and aharonov-casher triple quantum dot systems. Physica Status Solidi B, 248:732. Tosi, L., Bas, P. R., and Aligia, A. A. (2012a). Transition between su(4) and su(2) kondo effect. Physica B: Condensed Matter, 407:3259. Tosi, L., Bas, P. R., Llois, A. M., and Aligia, A. A. (2012b). Out of equilibrium anderson model: Conductance and kondo temperature. Physica B: Condensed Matter, 407:3263. Tosi, L., Bas, P. R., Llois, A. M., and Manuel, L. O. (2011). Effect of vertex corrections on diagrammatic approximations applied to the study of transport through a quantum dot. Phys. Rev. B, 83:073301. Tosi, L., Roura-Bas, P., and Aligia, A. A. (2013). Orbital kondo spectroscopy in a double quantum dot system. Phys. Rev. B, 88:235427. Tosi, L., Roura-Bas, P., and Aligia, A. A. (2015). Restoring the su(4) kondo regime in a double quantum dot system. sent to Phys. Rev. B. Tsui, D. C., Stormer, H. L., and Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48:1559. v. Klitzing, K., Dorda, G., and Pepper, M. (1980). New method for highaccuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45:494. Valkenier, H., Guédon, C. M., Markussen, T., Thygesen, K. S., van der Molen, S. J., and Hummelen, J. C. (2014). Cross-conjugation and quantum interference: a general correlation? Phys. Chem. Chem. Phys., 16:653. van derWiel,W. G., de Franceschi, S., Fujisawa, T., Elzerman, J. M., Tarucha, S., and Kouwenhoven, L. P. (2000). The kondo effect in the unitary limit. Science, 289:2105. van derWiel,W. G., Franceschi, S. D., Elzerman, J. M., Fujisawa, T., Tarucha, S., and Kouwenhoven, L. P. (2003). Electron transport through doublé quantum dots. Rev. Mod. Phys., 75:1. van Houten, H. and Beenakker, C. (1996). Quantum point contacts. Physics Today, July:22. vanWees, B., van Houten, H., Beenakker, C.,Williamson, J., Kouwenhoven, L., van der Marel, D., and Foxon, C. (1988). Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett., 60:848. Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., and Hybertsen, M. (2012). Probing the conductance superposition law in single-molecule circuits with parallel paths. Nature Nanotechnology, 7:663. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S., and Steigerwald, M. L. (2006). Dependence of single-molecule junction conductance on molecular conformation. Nature (London), 442:904. von Klitzing, K. (1986). The quantized hall effect. Reviews of Modern Physics, 58:519. von Klitzing, K. (2004). 25 years of quantum hall effect (qhe). a personal view on the discovery, physics and applications of this quantum effect. Séminaire Poincaré, 2:1–16. Waugh, F. R., Berry, M. J., Mar, D. J., Westervelt, R. M., Campman, K. L., and Gossard, A. C. (1995). Single-electron charging in double and triple quantum dots with tunable coupling. Phys. Rev. Lett., 75:705. Webb, R. A., Washburn, S., Umbach, C. P., and Laibowitz, R. B. (1985). Observation of h/e aharonov-bohm oscillations in normal-metal rings. Phys. Rev. Lett., 54:2696. Wharam, D., Thornton, T., Newbury, R., Pepper, M., Ahmed, H., Frost, J., Hasko, D., Peacock, D., Ritchie, D., and Jones, G. (1988). One-dimensional transport and the quantization of the ballistic resistance. J. Phys. C, 21:209. Wick, G. C. (1950). The evaluation of the collision matrix. Physical Review, 80:268–272. Wiegmann, P. B. (1980). Towards an exact solution of the anderson model. Phys. Lett., 80A:163. Wilhelm, U., Schmid, J., Weis, J., and Klitzing, K. (2002). Experimental evidence for spinless kondo effect in two electrostatically coupled quantum dot systems. Physica E, 14:385. Wilson, K. G. (1975). The renormalization group: Critical phenomena and the Kondo problem. Review Modern Physics, 47:773–840. Wingreen, N. S. and Meir, Y. (1994). Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. Physical Review B, 49:11040–11052. Xu, B. and Tao, N. J. (2003). Measurement of single-molecule resistance by repeated formation of molecular junctions. Science, 301:1221. Y. Ji, M. H., Sprinzak, D., Mahalu, D., , and Shtrikman, H. (2000). Phase evolution in a kondo-correlated system. Science, 290:779. Yafet, Y. and Varma, C. M. (1985). Ground state of an ion fluctuating between two magnetic valence states. Physical Review B, 32:360. Yeyati, A. L. (2010). Teoría de perturbaciones fuera de equilibrio. Notas asociadas al Curso “Quantum Transport in Atomic Size Conductors”. Yong, H.-C., Kai-Hua, Y., and Guang-Shan, T. (2007). Ac conductance through a vibrating molecular dot in kondo regime. Commun. Theor. Phys. (Beijing, China), 48:1107. Yu, H., Wen, T.-D., Liangb, J.-Q., and Sunc, Q. (2008). Phonon-assisted kondo effect in single-molecule quantum dots coupled to ferromagnetic leads. Physics Letters A, 372:6944. Zaffalon, M., Bid, A., Heiblum, M., Mahalu, D., and Umansky, V. (2008). Transmission phase of a singly occupied quantum dot in the kondo regime. Physical Review Letters, 100:226601. Zhitenev, N. B., Meng, H., and Bao, Z. (2002). Conductance of small molecular junctions. Phys. Rev. Lett., 88:226801–1
Materias:Física > Transporte cuántico
Divisiones:Investigación y aplicaciones no nucleares > Física > Bajas temperaturas
Código ID:865
Depositado Por:Tamara Cárcamo
Depositado En:24 Feb 2021 10:49
Última Modificación:24 Feb 2021 10:49

Personal del repositorio solamente: página de control del documento