Bases para el diseño y caracterización de láseres de cascada cuántica en el infrarrojo medio / Groundwork for the design and characterization of quantum cascade lasers in the mid-infrared

Simonetto, Matías (2019) Bases para el diseño y caracterización de láseres de cascada cuántica en el infrarrojo medio / Groundwork for the design and characterization of quantum cascade lasers in the mid-infrared. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
2984Kb

Resumen en español

El el presente trabajo se analizo en profundidad el calculo de estados electrónicos en heteroestructuras utilizando el método de la función envolvente. Dos modelos que resultan adecuados para el diseño de los estados electrónicos de un láser de cascada cuántica fueron extraídos de tal análisis para ser implementados computacionalmente. La implementación fue realizada utilizando el método de diferencias finitas. Adicionalmente, se implemento también el método iterativo de Schrödinger-Poisson para el calculo de heteroestructuras dopadas. Por otro lado, se estudiaron espectros de fotoluminiscencia a distintas temperaturas de heteroestructuras de pozos simples aislados y de pozos acoplados. Las energías de transición obtenidas de estos espectros fue contrastada con los datos de las simulaciones. Por ultimo, se logro realizar la primer medición en el ámbito del Laboratorio de Fotónica y Optoelectrónica de espectros de fotoluminiscencia con campo eléctrico externo aplicado.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Photoluminencence; Fotoluminiscencia; [Quantum cascade laser, Láser de cascada cuántica; Envelope function; Función envolvente; Heterostructure; Heteroestructuras; Electronic states; Estados electrónicos; Finite difference; Diferencias finitas]
Referencias:[1] Wagner, J., Ostendorf, R., Grahmann, J., Merten, A., Hugger, S., Jarvis, J.-P., et al. Widely tunable quantum cascade lasers for spectroscopic sensing. Procee- dings of SPIE - The International Society for Optical Engineering, 9370, 02 2015. 1 [2] Nelson, D. D., McManus, B., Urbanski, S., Herndon, S., Zahniser, M. S. High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (14), 3325-3335, 2004. URL http://www.sciencedirect.com/science/article/pii/S138614250400109X. 1 [3] Vitiello, M. S., Scalari, G., Williams, B., Natale, P. D. Quantum cascade lasers: 20 years of challenges. Opt. Express, 23 (4), 5167-5182, Feb 2015. URL http: //www.opticsexpress.org/abstract.cfm?URI=oe-23-4-5167. 1, 2 [4] Faist, J. Quantum Cascade Lasers. Oxford University Press, 2015. 1, 2 [5] Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., Cho, A. Y. Quantum cascade laser. Science, 264 (5158), 553-556, 1994. URL http://science.sciencemag.org/content/264/5158/553. 2 [6] Beck, M., Hofstetter, D., Aellen, T., Faist, J., Oesterle, U., Ilegems, M., et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 295 (5553), 301-305, 2002. URL http://science.sciencemag.org/content/295/5553/301. 2 [7] Capasso, F., Tredicucci, A., Gmachl, C., Sivco, D., Hutchinson, A., Cho, A., et al. High-performance superlattice quantum cascade lasers. Selected Topics in Quantum Electronics, IEEE Journal of, 5, 792 - 807, 06 1999. 2 [8] Kohler, R., Tredicucci, A., Beltram, F., Beere, H. E., Lineld, E. H., Davies, A. G., et al. Terahertz semiconductor-heterostructure laser. Nature, 417, 156 EP -, May 2002. URL https://doi.org/10.1038/417156a. 2 [9] Kruck, P., Page, H., Sirtori, C., Barbieri, S., Stellmacher, M., Nagle, J. Improved temperature performance of al0.33ga0.67as/gaas quantum-cascade lasers with emission wavelength at λ ' 11μm. Applied Physics Letters, 76, 3340 - 3342, 07 2000. 2 [10] Scalari, G., Ajili, L., Faist, J., Beere, H., Lineld, E., Ritchie, D., et al. Far-infrared (λ ' 87μm) bound-to-continuum quantum-cascade lasers operating up to 90 k. Applied Physics Letters, 82 (19), 3165-3167, 2003. URL https://doi.org/10. 1063/1.1571653. 2 [11] Williams, B. S. Terahertz quantum-cascade lasers. Nature Photonics, 1, 517 EP -, Sep 2007. URL https://doi.org/10.1038/nphoton.2007.166, review Article.3 [12] Casey, H. C. J., Woodall, J. M. Semiconductor heterostructures, 2018/12/10/ 2014. URL https://www.accessscience.com:443/content/ semiconductor-heterostructures/614030. 5 [13] Dingle, R., Wiegmann, W., Henry, C. H. Quantum states of conned carriers in very thin alxga1-xAs-gaas-alxga1-xAs heterostructures. Phys. Rev. Lett., 33, 827-830, Sep 1974. URL https://link.aps.org/doi/10.1103/PhysRevLett. 33.827. 6 [14] Bastard, G. Superlattice band structure in the envelope-function approximation. Phys. Rev. B, 24, 5693-5697, Nov 1981. URL https://link.aps.org/doi/10.1103/PhysRevB.24.5693. 6 [15] Bastard, G. Theoretical investigations of superlattice band structure in the envelope-function approximation. Phys. Rev. B, 25, 7584-7597, Jun 1982. URL https://link.aps.org/doi/10.1103/PhysRevB.25.7584. 6 [16] White, S. R., Sham, L. J. Electronic properties of at-band semiconductor heterostructures. Phys. Rev. Lett., 47, 879-882, Sep 1981. URL https://link.aps.org/doi/10.1103/PhysRevLett.47.879. 6 [17] Altarelli, M. Electronic structure and semiconductor-semimetal transition in inasgasb superlattices. Phys. Rev. B, 28, 842-845, Jul 1983. URL https://link.aps.org/doi/10.1103/PhysRevB.28.842. 6 [18] Schuurmans, M. F. H., 't Hooft, G. W. Simple calculations of connement states in a quantum well. Phys. Rev. B, 31, 804-8048, Jun 1985. URL https://link.aps.org/doi/10.1103/PhysRevB.31.8041. 6 [19] Burt, M. G. The justication for applying the effective-mass approximation to microstructures. Journal of Physics: Condensed Matter, 4 (32), 6651-6690, aug 1992. 9, 27 [20] Kane, E. O. Band structure of indium antimonide. Journal of Physics and Che- mistry of Solids, 1 (4), 249 - 261, 1957. URL http://www.sciencedirect.com/science/article/pii/0022369757900136. 12 [21] Parmenter, R. H. Symmetry properties of the energy bands of the zinc blende structure. Phys. Rev., 100, 573-579, Oct 1955. URL https://link.aps.org/doi/10.1103/PhysRev.100.573. 14 [22] Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. Band parameters for iii-v compound semiconductors and their alloys. Journal of Applied Physics, 89 (11), 5815-5875, 2001. URL https://doi.org/10.1063/1.1368156. 14, 19 [23] Jiang, M., Xiao, H., Peng, S., Qiao, L., Yang, G., Liu, Z., et al. First-principles study of point defects in gaas/alas superlattice: the phase stability and the effects on the band structure and carrier mobility. Nanoscale research letters, 13 (1), 301-301, Sep 2018. URL https://www.ncbi.nlm.nih.gov/pubmed/30259329,30259329[pmid]. 14 [24] Boyer-Richard, S., Raoua, F., Bondi, A., Pedesseau, L., Katan, C., Jancu, J., et al. 30-band k.p method for quantum semiconductor heterostructures. Applied Physics Letters, 98, 251913 - 251913, 07 2011. 14 [25] Ruf, T., Cardona, M. Nonparabolicity of the conduction band in gaas. Phys. Rev. B, 41, 10747-10753, May 1990. URL https://link.aps.org/doi/10.1103/ PhysRevB.41.10747. 19, 20 [26] Braun, M., Rossler, U. Magneto-optic transitions and non-parabolicity parameters in the conduction band of semiconductors. Journal of Physics C: Solid State Physics, 18 (17), 3365-3377, jun 1985. 19, 20 [27] Nelson, D. F., Miller, R. C., Kleinman, D. A. Band nonparabolicity effects in semiconductor quantum wells. Phys. Rev. B, 35, 7770-7773, May 1987. URL https://link.aps.org/doi/10.1103/PhysRevB.35.7770. 21 [28] Meney, A. T., Gonul, B., O'Reilly, E. P. Evaluation of various approximations used in the envelope-function method. Phys. Rev. B, 50, 10893-10904, Oct 1994. URL https://link.aps.org/doi/10.1103/PhysRevB.50.10893. 21 [29] Jirauschek, C., Kubis, T. Modeling techniques for quantum cascade lasers. Applied Physics Reviews, 1 (1), 011307, 2014. URL https://doi.org/10.1063/1.4863665. 22 [30] Mader, K., Zunger, A. Empirical atomic pseudopotentials for alas/gaas superlattices, alloys, and nanostructures. Physical review. B, Condensed matter, 50,17393-17405, 01 1995. 23, 25, 31 [31] Bassani, F., Yoshimine, M. Electronic band structure of group iv elements and of iii-v compounds. Phys. Rev., 130, 20-33, Apr 1963. URL https://link.aps.org/doi/10.1103/PhysRev.130.20. 25 [32] Schlosser, H. Symmetrized combinations of plane waves and matrix elements of the hamiltonian for cubic lattices. Journal of Physics and Chemistry of Solids, 23 (7), 963 - 969, 1962. URL http://www.sciencedirect.com/science/article/pii/0022369762901543. 25 [33] He, X.-F. Excitons in anisotropic solids: The model of fractional-dimensional space. Phys. Rev. B, 43, 2063-2069, Jan 1991. URL https://link.aps.org/doi/10.1103/PhysRevB.43.2063. 32 [34] Mathieu, H., Lefebvre, P., Christol, P. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Physical review. B, Condensed matter, 46, 4092-4101, 09 1992. 32, 33 [35] Rozas, G. Dispositivos de fonones acústicos en nanoestructuras semiconductoras piezoelectricas. Tesis Doctoral, Instituto Balseiro, 2005. 37 [36] Rapidjson, a fast json parser/generator for c++ with both sax/dom style api. http://rapidjson.org/. Accedida: 2019-11-29. 38 [37] Slepc, the scalable library for eigenvalue problem computations. http://slepc.upv.es/. Accedida: 2019-11-29. 38 [38] Petsc/tao, portable, extensible toolkit for scientic computation. https://www.mcs.anl.gov/petsc/. Accedida: 2019-11-29. 38 [39] Contour integral spectrum slicing method in slepc. http://slepc.upv.es/documentation/reports/str11.pdf. Accedida: 2019-11-29. 40 [40] Ma, X., Li, K., Zhang, Z., Hu, H., Wang, Q., Wei, X., et al. Two-band nite difference method for the bandstructure calculation with nonparabolicity effects in quantum cascade lasers. Journal of Applied Physics, 114 (6), 063101, 2013. URL https://doi.org/10.1063/1.4817795. 41 [41] Trellakis, A., Galick, A. T., Pacelli, A., Ravaioli, U. Iteration scheme for the solution of the two-dimensional schrodinger-poisson equations in quantum structures. Journal of Applied Physics, 81 (12), 7880-7884, 1997. URL https://doi.org/10.1063/1.365396. 43 [42] Christen, J., Bimberg, D. Line shapes of intersubband and excitonic recombination in quantum wells: Influence of nal-state interaction, statistical broadening, and momentum conservation. Phys. Rev. B, 42, 7213-7219, Oct 1990. URL https://link.aps.org/doi/10.1103/PhysRevB.42.7213. 45, 46, 49, 54 [43] Jiang, D. S., Jung, H., Ploog, K. Temperature dependence of photoluminescence from gaas single and multiple quantum-well heterostructures grown by molecularbeam epitaxy. Journal of Applied Physics, 64 (3), 1371-1377, 1988. URL https://doi.org/10.1063/1.341862. 46, 54, 58 [44] Donchev, V., Ivanov, T., Ivanov, I., Angelov, M., Germanova, K. High-temperature excitons in gaas quantum wells embedded in alas/gaas superlattices. Vacuum, 58 (2), 478 - 484, 2000. URL http://www.sciencedirect.com/science/article/pii/S0042207X00002086. 46, 47, 49 [45] Chomette, A., Deveaud, B., Clerot, F., Lambert, B., Regreny, A. Optical properties of small period superlattices. Journal of Luminescence, 48-49, 699, 02 1991. 46 [46] Yu, P., Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties, tomo-1. 1997. 47 [47] Ozeki, M., Nakai, K., Dazai, K., Ryuzan, O. Photoluminescence study of carbon doped gallium arsenide. Japanese Journal of Applied Physics, 13 (7), 1121-1126, jul 1974. 49 [48] Donchev, V., Shtinkov, N., Germanova, K., Ivanov, I., Brachkov, H., Ivanov, T. Photoluminescence line-shape analysis in quantum wells embedded in superlattices. Materials Science and Engineering: C, 15 (1), 75 - 77, 2001. URL http://www.sciencedirect.com/science/article/pii/S0928493101002399. 49 [49] Gupta, Y., Palakkandy, A. First step to ellipsometry. International Journal of Physics, 3, 8-11, 01 2015. 51 [50] Inc., J. W. C. Guide to using wvase32 software for spectroscopic ellipsometry data acquisition and analysis. 51 [51] Singh, J., Bajaj, K. K. Role of interface roughness and alloy disorder in photoluminescence in quantum-well structures. Journal of Applied Physics, 57 (12), 5433-5437, 1985. URL https://doi.org/10.1063/1.334818. 54 [52] Tu, C., Miller, R., Wilson, B., Petro, P., Harris, T., Kopf, R., et al. Properties of (al,ga)as/gaas heterostructures grown by molecular beam epitaxy with growth interruption. Journal of Crystal Growth, 81 (1), 159 - 163, 1987. URL http://www.sciencedirect.com/science/article/pii/0022024887903848. 55 [53] Bar-Joseph, I. Trions in GaAs quantum wells. Semiconductor Science and Technology, 20 (6), R29-R39, may 2005. 55 [54] Manassen, A., Cohen, E., Ron, A., Linder, E., Pfeiffer, L. N. Exciton and trion spectral line shape in the presence of an electron gas in gaas/alas quantum wells. Phys. Rev. B, 54, 10609-10613, Oct 1996. URL https://link.aps.org/doi/10.1103/PhysRevB.54.10609. 56 [55] Esser, A., Runge, E., Zimmermann, R., Langbein, W. Photoluminescence and radiative lifetime of trions in gaas quantum wells. Phys. Rev. B, 62, 09 2000. 56 [56] Birkedal, D., El Sayed, K., Sanders, G., Spiegelberg, C., Lyssenko, V. G., Stanton, C., et al. Interwell excitons in gaas superlattices. Phys. Rev. B, 54, 10316-10319, Oct 1996. URL https://link.aps.org/doi/10.1103/PhysRevB.54.10316. 59 [57] Khramtsov, E. S., Belov, P. A., Grigoryev, P. S., Ignatiev, I. V., Verbin, S. Y., Emov, Y. P., et al. Radiative decay rate of excitons in square quantum wells: Microscopic modeling and experiment. Journal of Applied Physics, 119 (18), 184301, 2016. URL https://doi.org/10.1063/1.4948664. 59 [58] Miller, R. C., Gossard, A. C., Tsang, W. T. Extrinsic photoluminescence from gaas quantum wells. Physica B+C, 117-118, 714 - 716, 1983. URL http://www. sciencedirect.com/science/article/pii/0378436383906320. 61 [59] Masselink, W., Chang, Y.-C., Morkoc, H., Reynolds, D., Litton, C., Bajaj, K., et al. Shallow impurity levels in algaas/gaas semiconductor quantum wells. Solid- State Electronics, 29 (2), 205 - 214, 1986. URL http://www.sciencedirect.com/science/article/pii/0038110186900419. 61 [60] Krahl, M., Christen, J., Bimberg, D., Weimann, G., Schlapp, W. Influence of coupling of wells on spontaneous emission line shape in gaas/gaalas multiple quantum wells. Applied Physics Letters, 52 (10), 798-800, 1988. URL https://doi.org/10.1063/1.99287. 61 [61] Krahl, M., Christen, J., Bimberg, D., Mars, D., Miller, J. Impact of well coupling on the spontaneous emission properties of gaas/algaas multiple-quantum-well structures. IEEE Journal of Quantum Electronics, 25 (11), 2281-2288, Nov 1989. 61 [62] Kajikawa, Y., haru Sugiyama, N., Kamijoh, T., Katayama, Y. Enhancement of quantum-conned stark effect in GaAs-AlGaAs quantum wells by quantization along the [111] axis. Japanese Journal of Applied Physics, 28 (Part 2, No. 6), L1022-L1024, jun 1989. 63 [63] Sivalertporn, K., Mouchliadis, L., Ivanov, A. L., Philp, R., Muljarov, E. A. Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric eld. Phys. Rev. B, 85, 045207, Jan 2012. URL https://link.aps.org/doi/10.1103/PhysRevB.85.045207. 67
Materias:Física > Fotónica
Física > Optoelectrónica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica
Código ID:885
Depositado Por:Tamara Cárcamo
Depositado En:28 Abr 2021 09:09
Última Modificación:28 Abr 2021 09:09

Personal del repositorio solamente: página de control del documento