Propiedades mecánicas de metales nanoporosos . / Mechanical properties of nonoporous metals.

Ruestes, Carlos J. (2015) Propiedades mecánicas de metales nanoporosos . / Mechanical properties of nonoporous metals. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
63Mb

Resumen en español

Este trabajo de tesis doctoral trata sobre el estudio de las propiedades mecánicas de espumas metálicas nanoporosas. Empleando simulaciones con la técnica de dinámica molecular se estudia la compresión a alta velocidad de un monocristal de tantalio bcc con poros distribuidos al azar. En comparación con estudios de un poro aislado, la interacción entre los poros produce una disminución en las tensiones necesarias para el inicio del régimen plástico. La plasticidad se manifiesta mediante la emisión de dislocaciones desde la superficie de los poros, en forma de lazos de corte, y su interacción deriva en endurecimiento. La evolución de la plasticidad conlleva a una disminución de la porosidad hasta que los poros desaparecen completamente. Las densidades de dislocaciones resultantes se corresponden con resultados experimentales. Con el fin de evaluar y cuantificar la evolución de la plasticidad se realizó un análisis de las dislocaciones observadas. Los nanoporos actúan como fuentes para la emisión de dislocaciones. Los lazos de corte se nuclean en la superficie de los poros y se expanden por el avance de la componente de borde. A partir de las simulaciones con dinámica molecular se predicen las configuraciones de las dislocaciones y sus densidades y éstas últimas resultan comparadas frente a modelos basados en dislocaciones geométricamente necesarias, con resultados satisfactorios. Se realizaron cálculos de tensiones críticas resueltas para todos los sistemas de deslizamiento, empleándose para identificar el vector de Burgers operante en los lazos de dislocación. Los cambios en la temperatura de la muestra durante la deformación plástica fueron empleados para estimar la densidad de dislocaciones móviles. Los resultados obtenidos son comparados con una variedad de modelos constitutivos basados en dislocaciones. Además, se estudió una nanoespuma de oro fcc, sobre la cual se realizó una caracterización empleando microscopía electrónica de transmisión y microscopía electrónica de barrido. En vista de los resultados de la caracterización experimental y empleando dinámica molecular, se estudiaron las propiedades mecánicas de una nanoespuma de oro fcc sujeta a compresión a alta velocidad. Para esta parte del estudio se empleó una nanoespuma con porosidad del orden del 75 %, identificándose distintas etapas en la deformación plástica. Con base en las simulaciones atomísticas, se ha observado un régimen de densificación en todas las muestras nanoporosas estudiadas. Con estos resultados, se propone un nuevo modelo de cambio de porosidad respecto a la deformación para su uso en simulaciones a escala del continuo.

Resumen en inglés

This thesis deals with the study of the mechanical properties of nanoporous metallic foams. High strain rate uniaxial compression of a bcc Ta single crystal containing randomly placed nanovoids was studied using molecular dynamics simulations. Interacting voids decrease the stress required for the onset of plasticity, in comparison with earlier studies for isolated voids. Dislocations resulting from loading are emitted from void surfaces as shear loops, with their interactions leading to hardening. Plastic activity leads to a decrease in porosity until voids disappear completely. The resulting dislocation densities agree well with experimental results. Dislocation analysis was also used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby's concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density. The results obtained are compared with a variety of dislocation-based constitutive models. An fcc gold nanofoam was characterized by transmission electron microscopy and scanning electron microscopy. In view of the experimental results, the mechanical behavior of nanoporous gold under high strain rate uniaxial compression was studied using molecular dynamics simulations. We considered the high porosity regime (porosity of 75%), which can be described by several stages of plastic deformation. Based on the atomistic simulations a densification regime was observed in all nanoporous samples studied. With these results, a new strain-based porosity model for metals is proposed to be used for simulations at the continuum scale.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Mechanical properties; Propiedades mecánicas; Molecular dynamics methods; Método dinámico molecular; [Nanoporous materials; Materiales porosos; Numerical simulations; Simulaciones numéricas]
Referencias:[1] Barton, N. R., Bernier, J. V., Becker, R., Arsenlis, A., Cavallo, R., Marian, J., et al. A multiscale strength model for extreme loading conditions. Journal of Applied Physics, 109 (7), 073501, 2011. 1, 16, 88, 89 [2] Tvergaard, V. Material failure by void growth to coalescence. Advances in Applied Mechanics, 27 (1), 83{151, 1990. 1, 4 [3] Bauer, R. W., Wilsdorf, H. G. Void initiation in ductile fracture. Scripta Metallurgica, 7 (11), 1213{1220, 1973. 1, 4 [4] Zinkle, S. J., Was, G. Materials challenges in nuclear energy. Acta Materialia, 61 (3), 735{758, 2013. 1, 97 [5] Beyerlein, I., Caro, A., Demkowicz, M., Mara, N., Misra, A., Uberuaga, B. Radiation damage tolerant nanomaterials. Materials Today, 16 (11), 443{449, 2013. 1, 2, 98 [6] Bringa, E. M., Monk, J. D., Caro, A., Misra, A., Zepeda-Ruiz, L., Duchaineau, M., et al. Are nanoporous materials radiation resistant? Nano Letters, 12 (7), 3351{3355, 2012. 2 [7] Belak, J., Cazamias, J., Chau, R., Haupt, D., Kinney, J., Kumar, M., et al. Incipient spallation fracture in light metals from 3d x-ray tomography, 2d microscopy, and molecular dynamic simulations. En: 11th International Conference on Fracture, Turin, Italia. 2005. 2 [8] Ahn, D., Sofronis, P., Kumar, M., Belak, J., Minich, R. Void growth by dislocation-loop emission. Journal of Applied Physics, 101 (6), 063514, 2007. 2, 20 [9] Curran, D. R., Seaman, L., Shockey, D. A. Dynamic failure in solids. Physics Today, 30, 46, 1977. 2, 16 [10] Meyers, M., Remington, B., Maddox, B., Bringa, E. Laser shocking of materials: Toward the national ignition facility. JOM, 62 (1), 24{30, 2010. 3 [11] Bringa, E. M., Rosolankova, K., Rudd, R. E., Remington, B. A.,Wark, J. S., Duchaineau, M., et al. Shock deformation of face-centered-cubic metals on subnanosecond timescales. Nature Materials, 5 (10), 805{809, 2006. 3, 59 [12] Yaakobi, B., Boehly, T., Meyerhofer, D., Collins, T., Remington, B., Allen, P., et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks. Physical Review Letters, 95 (7), 075501, 2005. 42 [13] Fish, J. Multiscale methods: bridging the scales in science and engineering. Oxford University Press, 2009. 3 [14] Schlick, T. From macroscopic to mesoscopic models of chromatin folding. Bridging The Scales in Science in Engineering, p_ags. 514{535, 2009. 3 [15] Yip, S. Synergistic science. Nature Materials, 2 (1), 3{5, 2003. 3 [16] Tang, Z., Zhao, H., Li, G., Aluru, N. Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Physical Review B, 74 (6), 064110, 2006. 4 [17] Coppens, M. Multiscale nature inspired chemical engineering. Bridging The Scales in Science in Engineering, 2009. 4 [18] Argon, A., Im, J., Safoglu, R. Cavity formation from inclusions in ductile fracture. Metallurgical Transactions A, 6 (4), 825{837, 1975. 4 [19] Johnson, J. N. Dynamic fracture and spallation in ductile solids. Journal of Applied Physics, 52 (4), 2812{2825, 1981. [20] Meyers, M. A., Taylor Aimone, C. Dynamic fracture (spalling) of metals. Progress in Materials Science, 28 (1), 1{96, 1983. 16, 18 [21] Aoki, S., Kishimoto, K., Takeya, A., Sakata, M. E_ects of microvoids on crack blunting and initiation in ductile materials. International Journal of Fracture, 24 (4), 267{278, 1984. 4 [22] Hill, R. The Mathematical Theory of Plasticity. Oxford: Clarendon Press, 1950. 4, 8 [23] Timoshenko, S. Theory of Elasticity. McGraw-Hill Book Co., 1934. 4 [24] Southwell, R. V. Introduction to the Theory of Elasticity. Clarendon Press, 1936. 4 [25] Barrett, C. S., Massalski, T. B. Structure of Metals: Gystallographic Methods, Principles and Data. Pergamon Press, 1980. 5 [26] Lubarda, V. A., Meyers, M. A. On plastic void growth in strong ductile materials. Crnogorska Akademija Nauka I Umjetnosti, 2003. 5, 6 [27] Gurson, A. L. Continuum theory of ductile rupture by void nucleation and growth. part i. yield criteria and ow rules for porous ductile media. Inf. t_ec., Brown Univ., Providence, RI (USA). Div. of Engineering, 1975. 5, 7, 8, 85, 136 [28] Tvergaard, V. Inuence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 17 (4), 389{407, 1981. 7 [29] Tvergaard, V. On localization in ductile materials containing spherical voids. International Journal of Fracture, 18 (4), 237{252, 1982. 7 [30] Tvergaard, V., Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 32 (1), 157{169, 1984. 7 [31] Needleman, A., Tvergaard, V. An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, 32 (6), 461{490, 1984. 7, 8, 86 [32] Wen, J., Huang, Y., Hwang, K., Liu, C., Li, M. The modi_ed gurson model accounting for the void size e_ect. International Journal of Plasticity, 21 (2), 381{395, 2005. 7, 8, 86 [33] Taylor, G. I. Plastic strain in metals. Int. J. Metals, 62, 307{324, 1938. 7 [34] Volterra, V. Sulle distorsioni dei solidi elastici piu volte connessi. Rend. Lincei, p_ags. 14{72, 1905. 9 [35] Orowan, E. Zur kristallplastizitat. i. Zeitschrift fur Physik, 89 (9-10), 605{613, 1934. 9, 12, 14 [36] Taylor, G. I. The mechanism of plastic deformation of crystals. part i. theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, p_ags. 362{ 387, 1934. 9, 47, 62, 87 [37] Polanyi, M. Über eine art gitterstorung, die einen kristall plastisch machen könnte. Zeitschrift für Physik, 89 (9-10), 660{664, 1934. 9 [38] Cottrell, A. Dislocations and plastic ow in crystals. Clarendon. Oxford, 1953. 9 [39] Friedel, J. Dislocations. Pergamon Pr., 1964. 9 [40] Nabarro, F. R. N., Basinski, Z. S., Holt, D. The plasticity of pure single crystals. Advances in Physics, 13 (50), 193{323, 1964. 9 [41] Seitz, F., Read, T. Theory of the plastic properties of solids. i. Journal of Applied Physics, 12 (2), 100{118, 1941. 9 [42] Meyers, M. A., Armstrong, R. W., Kirchner, H. O. Mechanics and materials: fundamentals and linkages. Wiley-VCH, 1999. 9, 10, 11, 14, 15 [43] Xu, B., Yue, Z., Chen, X. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test. Journal of Physics D: Applied Physics, 43 (24), 245401, 2010. 9 [44] Duhamel, C., Brechet, Y., Champion, Y. Activation volume and deviation from cottrell-stokes law at small grain size. International Journal of Plasticity, 26 (5), 747{757, 2010. 9 [45] Kamimura, Y., Edagawa, K., Takeuchi, S. Experimental evaluation of the peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Materialia, 61 (1), 294{309, 2013. 9 [46] Rhee, M., Lassila, D. H., Bulatov, V. V., Hsiung, L., de la Rubia, T. D. Dislocation multiplication in bcc molybdenum: a dislocation dynamics simulation. Philosophical Magazine Letters, 81 (9), 595{605, 2001. 11 [47] Meyers, M., Voehringer, O., Chen, Y., Ankem, S., Pande, C. Advances in twinning. Publication of TMS, Pennsylvania, p_ag. 43, 1999. 12 [48] Hoge, K., Mukherjee, A. The temperature and strain rate dependence of the ow stress of tantalum. Journal of Materials Science, 12 (8), 1666{1672, 1977. 12, 13, 89, 90 [49] Chen, Y.-J., Meyers, M., Nesterenko, V. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering: A, 268 (1), 70{82, 1999. 12, 13 [50] Johnston, W., Gilman, J. J. Dislocation velocities, dislocation densities, and plastic ow in lithium uoride crystals. Journal of Applied Physics, 30 (2), 129{144, 1959. 12 [51] Meyers, M., Jarmakani, H., Bringa, E., Remington, B. Dislocations in shock compression and release. Dislocations in Solids, 15, 91{197, 2009. 12, 39 [52] Langer, J., Bouchbinder, E., Lookman, T. Thermodynamic theory of dislocation-mediated plasticity. Acta Materialia, 58 (10), 3718{3732, 2010. 14 [53] Kocks, U., Argon, A., Ashby, M. Thermodynamics and kinetics of slip, 1975. Progress in Materials Science, 19. 15, 89, 90 [54] Follansbee, P., Kocks, U. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica, 36 (1), 81{93, 1988. 15, 89 [55] Hirth, J. P., Lothe, J. Theory of dislocations. John Wileyn & Sons, 1982. 15, 33, 35 [56] Weertman, J. High Velocity Dislocations. En: P. G. Shewmon, V. F. Zackay (eds.) Response of Metals to High Velocity Deformation, Metallurgical Society Conferences, p_ags. 205{247. New York: Interscience, 1961. 16 [57] Johnson, G. R., Cook, W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. En: Proceedings of the 7th International Symposium on Ballistics, tomo 21, págs. 541{547. The Netherlands, 1983. 16, 89 [58] Steinberg, D., Cochran, S., Guinan, M. A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics, 51 (3), 1498{ 1504, 1980. 16, 89, 90 [59] Steinberg, D., Lund, C. A constitutive model for strain rates from 10- 4 to 106 s- 1. Journal of Applied Physics, 65 (4), 1528{1533, 1989. 16, 89, 91 [60] Preston, D. L., Tonks, D. L., Wallace, D. C. Model of plastic deformation for extreme loading conditions. Journal of Applied Physics, 93 (1), 211{220, 2003. 16, 89, 91, 92, 136 [61] Zerilli, F. J., Armstrong, R. W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. Journal of Applied Physics, 61 (5), 1816{1825, 1987. 16, 89, 92 [62] Zerilli, F. J., Armstrong, R. W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Journal of Applied Physics, 68 (4), 1580{1591, 1990. [63] Armstrong, R. W., Arnold, W., Zerilli, F. J. Dislocation mechanics of copper and iron in high rate deformation tests. Journal of Applied Physics, 105 (2), 023511, 2009. 16, 89, 92 [64] Meyers, M. A., Gregori, F., Kad, B., Schneider, M., Kalantar, D., Remington, B., et al. Laser-induced shock compression of monocrystalline copper: characterization and analysis. Acta Materialia, 51 (5), 1211{1228, 2003. 16, 89 [65] Ashby, M. F. The deformation of plastically non-homogeneous materials. Philosophical Magazine, 21 (170), 399{424, 1970. 16, 17, 18, 49, 64 [66] Stevens, A., Davison, L., Warren, W. Spall fracture in aluminum monocrystals: a dislocation-dynamics approach. Journal of Applied Physics, 43 (12), 4922{4927, 1972. 16, 18 [67] Lubarda, V., Schneider, M., Kalantar, D., Remington, B., Meyers, M. Void growth by dislocation emission. Acta Materialia, 52 (6), 1397{1408, 2004. 16, 18, 19, 20 [68] Meyers, M., Murr, L., Staudhammer, K. Shock-wave and high-strain-rate phenomena in materials. Mercel Dekker, New York, 1992. 16 [69] Jones, D. A., Mitchell, J. W. Observations on helical dislocation in crystals of silver chloride. Philosophical Magazine, 3 (25), 1{7, 1958. 18 [70] Silcox, J., Hirsch, P. B. Direct observation of defects in quenched gold. Philosophical Magazine, 4 (37), 72{89, 1959. 18 [71] Humphreys, F. J., Hirsch, P. B. The deformation of single crystals of copper and copper-zinc alloys containing aluminum particles ii. microstructure and dislocation-particle interactions. Proc. Roy. Soc. Lond., 318, 73{92, 1970. 18 [72] Seitz, F. Prismatic dislocations and prismatic punching in crystals. Physical Review, págs. 723{724, 1950. 18 [73] Brown, L. M., Woolhouse, G. R. The loss of coherency of precipitates and the generation of dislocations. Philosophical Magazine, 21, 329{345, 1970. 18 [74] Schneider, M. S., Kad, B., Kalantar, D. H., Remington, B. A., Kenik, E., Jarmakani, H., et al. Laser shock compression of copper and copperaluminum alloys. Int. J. Impact Engineering, 32, 473{507, 2005. 18 [75] Remington, T., Ruestes, C., Bringa, E., Remington, B., Lu, C., Kad, B., et al. Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Materialia, 78, 378{393, 2014. 18 [76] Bulatov, V. V., Wolfer, W. G., Kumar, M. Shear impossibility: Comments on \Void growth by dislocation emission" and \Void growth in metals: Atomistic calculations". Scripta Materialia, 63 (1), 144{147, 2010. 18 [77] Bringa, E., Lubarda, V., Meyers, M. Response to \Shear Impossibility Comments on `Void growth by dislocation emission' and `Void growth in metals'". Scripta Materialia, 63 (1), 148{150, 2010. 18, 47, 50, 65, 72 [78] Cuitino, A., Ortiz, M. Ductile fracture by vacancy condensation in fcc single crystals. Acta Materialia, 44 (2), 427{436, 1996. 20 [79] Raj, R., Ashby, M. F. Intergranular fracture at elevated temperature. Acta Metallurgica, 23, 653{666, 1975. 20 [80] Tvergaard, V., Niordson, C. Nonlocal plasticity e_ects on interaction of di_erent size voids. International Journal of Plasticity, 20, 107{120, 2004. 20 [81] Ohashi, T. Crystal plasticity analysis of dislocation emission from micro voids. International Journal of Plasticity, 21, 2071{2088, 2005. 20 [82] Seppala, E., Belak, J., Rudd, R. Onset of void coalescence during dynamic fracture of ductile metals. Physical Review Letters, 93 (24), 2004. 20 [83] Seppala, E., Belak, J., Rudd, R. Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals. Physical Review B, 71 (6), 2005. 20 [84] Marian, J., Knap, J., Ortiz, M. Nanovoid cavitation by dislocation emission in aluminum. Physical Review Letters, 93 (16), 2004. 20 [85] Marian, J., Knap, J., Ortiz, M. Nanovoid deformation in aluminum under simple shear. Acta Materialia, 53 (10), 2893{2900, 2005. 20, 50, 65 [86] Srinivasan, S. G., Baskes, M. I., Wagner, G. J. Spallation of single crystal nickel by void nucleation at shock induced grain junctions. Journal of Materials Science, 41, 7838{7842, 2006. 20 [87] Davila, L. P., Erhart, P., Bringa, E. M., Meyers, M. A., Lubarda, V. A., Schneider, M. S., et al. Atomistic modeling of shock-induced void collapse in copper. Applied Physics Letters, 86 (16), 161902, 2005. 20, 57 [88] Traiviratana, S., Bringa, E. M., Benson, D. J., Meyers, M. A. Void growth in metals: Atomistic calculations. Acta Materialia, 56 (15), 3874{3886, 2008. 20, 50, 72 [89] Meyers, M. A., Traiviratana, S., Lubarda, V. A., Benson, D. J., Bringa, E. M. The role of dislocations in the growth of nanosized voids in ductile failure of metals. JOM, 61 (2), 35{41, 2009. [90] Bringa, E. M., Traiviratana, S., Meyers, M. A. Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects. Acta Materialia, 58 (13), 4458{4477, 2010. 57 [91] Tang, Y., Bringa, E. M., Remington, B. A., Meyers, M. A. Growth and collapse of nanovoids in tantalum monocrystals. Acta Materialia, 59 (4), 1354{1372, 2011. 21, 33, 41, 42, 45, 47, 50, 53, 55, 56, 57, 58, 65, 69 [92] Tang, Y., Bringa, E. M., Remington, B., Meyers, M., Elert, M. L., Buttler, W. T., et al. Growth and collapse of nanovoids in tantalum monocrystals loaded at high strain rate. En: AIP Conference Proceedings-American Institute of Physics, tomo 1426, pág. 1255. 2012. 20, 21, 74 [93] Potirniche, G. P., Horstemeyer, M. F., Wagner, G. J., Gullett, P. M. A molecular dynamics study of void growth and coalescence in single crystal nickel. International Journal of Plasticity, 22, 257{278, 2006. 20 [94] Horstemeyer, M. F., Baskes, M. I., Plimpton, S. J. Length scale and time scale effects on the plastic ow of FCC metals. Ann. Math., 49, 4363{4374, 2001. 20 [95] Fleck, N. A., Hutchinson, J. W. A phenomenological theory for strain gradient effects in plasticity. Journal of Mechanics and Physics of Solids, 41 (12), 1825{1857, 1993. 21 [96] Fleck, N., Muller, G., Ashby, M., Hutchinson, J. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42 (2), 475{487, 1994. 21 [97] Ashmawi, W. M., Zikry, M. A. Single void morphological and grainboundary effects on overall failure in F.C.C. polycrystalline systems. Materials Science and Engineering, A343, 126{142, 2003. 21 [98] Meyers, M., Mishra, A., Benson, D. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51 (4), 427{556, 2006. 21 [99] Belak, J. On the nucleation and growth of voids at high strain-rates. J. Comput.-Aided Mater. Design, 5, 193{206, 1998. 21 [100] Rudd, R. E., Belak, J. F. Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: an atomistic simulation. Computational Materials Science, 24, 148{153, 2002. [101] Belak, J. Molecular dynamics simulation of high strain-rate void nucleation and growth in copper. 429, 211{214, 1998. AIP Conf. Proc. [102] Moriarty, J. A., Belak, J. F., Rudd, R. E., Soderlind, P., Streitz, F. H., Yang, L. H. Quantum-based atomistic simulation of materials properties in transition metals. Journal of Physics: Condensed Matter, 14, 2825{2857, 2002. 21 [103] Erhart, P., Bringa, E. M., Kumar, M., Albe, K. Atomistic mechanism of shock-induced void collapse in nanoporous metals. Phys. Rev. B, 72 (052104), 1{4, 2005. 22 [104] Lebensohn, R., Idiart, M., Casta~neda, P. P., Vincent, P.-G. Dilatational viscoplasticity of polycrystalline solids with intergranular cavities. Philosophical Magazine, 91 (22), 3038{3067, 2011. 22 [105] Lebensohn, R. A., Escobedo, J. P., Cerreta, E. K., Dennis-Koller, D., Bronkhorst, C. A., Bingert, J. F. Modeling void growth in polycrystalline materials. Acta Materialia, 61 (18), 6918{6932, 2013. [106] Lebensohn, R. A., Pokharel, R. Interpretation of microstructural e_ects on porosity evolution using a combined dilatational/crystal plasticity computational approach. JOM, 66 (3), 437{443, 2014. 22 [107] Danas, K., Idiart, M. I., Casta~neda, P. P. A homogenization-based constitutive model for isotropic viscoplastic porous media. International Journal of Solids and Structures, 45 (11), 3392{3409, 2008. 22 [108] Idiart, M. I. Modeling the macroscopic behavior of two-phase nonlinear composites by in_nite-rank laminates. Journal of the Mechanics and Physics of Solids, 56 (8), 2599{2617, 2008. 22 [109] Allen, M. P., Tildesley, D. J. Computer simulation of liquids. Oxford University Press, 1989. 25 [110] Goldstein, H. Classical Mechanics, tomo 4. Pearson Education India, 1962. 26 [111] Hockney, R. W., Eastwood, J. W. Computer simulation using particles. CRC Press, 2010. 26 [112] Bulatov, V., Cai, W. Computer simulations of dislocations, tomo 3. Oxford University Press, 2006. 27, 28 [113] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117 (1), 1{19, 1995. 30, 40, 41, 106 [114] Daw, M., Baskes, M. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29 (12), 6443{6453, 1984. 31, 32, 40 [115] Daw, M. S., Baskes, M. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 50 (17), 1285{1288, 1983. 31, 40 [116] Finnis, M., Sinclair, J. A simple empirical n-body potential for transition metals. Philosophical Magazine A, 50 (1), 45{55, 1984. 32, 86 [117] Dai, X. D., Kong, Y., Li, J. H., Liu, B. X. Extended Finnis Sinclair potential for bcc and fcc metals and alloys. Journal of Physics: Condensed Matter, 18 (19), 4527{4542, 2006. 32, 33, 40, 41, 47, 52, 57 [118] Hale, L. M., Zimmerman, J. A., Weinberger, C. R. Simulations of bcc tantalum screw dislocations: Why classical inter-atomic potentials predict f112g slip. Computational Materials Science, 90, 106{115, 2014. 33 [119] Pan, Z., Li, Y., Wei, Q. Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Materialia, 56 (14), 3470{3480, 2008. 33 [120] Higginbotham, A., Suggit, M. J., Bringa, E. M., Erhart, P., Hawreliak, J. A., Mogni, G., et al. Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys. Rev. B, 88, 104105, Sep 2013. 33 [121] Phillips, R. Crystals, defects and microstructures: modeling across scales. Cambridge University Press, 2001. 33 [122] Hull, D., Bacon, D. J. Introduction to dislocations, tomo 257. Pergamon Press Oxford, 1984. 33, 34 [123] Kelchner, C., Plimpton, S., Hamilton, J. Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58 (17), 11085{ 11088, 1998. 36 [124] Rodríguez Nieva, J. Simulación atomística de nano-materiales bajo condiciones extremas. Instituto Balseiro, 2010. 37 [125] Tsuzuki, H., Branicio, P. S., Rino, J. P. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Computer Physics Communications, 177 (6), 518{523, 2007. 37, 38, 40, 58 [126] Honeycutt, J. D., Andersen, H. C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91 (19), 4950{4963, 1987. 38, 40, 58 [127] Stukowski, A., Albe, K. Dislocation detection algorithm for atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 18 (2), 025016, 2010. 38, 39 [128] Stukowski, A., Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 18 (8), 085001, 2010. 38, 39, 40, 42, 47, 59, 109, 139 [129] Stukowski, A., Bulatov, V. V., Arsenlis, A. Automated identi_cation and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 20 (8), 085007, 2012. 39, 59 [130] Gunkelmann, N., Bringa, E. M., Tramontina, D. R., Ruestes, C. J., Suggit, M. J., Higginbotham, A., et al. Shock waves in polycrystalline iron: Plasticity and phase transitions. Physical Review B, 89 (14), 140102, 2014. 39, 139 [131] Tramontina, D., Erhart, P., Germann, T., Hawreliak, J., Higginbotham, A., Park, N., et al. Molecular dynamics simulations of shock-induced plasticity in tantalum. High Energy Density Physics, 10, 9{15, 2014. 39 [132] Kalantar, D., Collins, G., Colvin, J., Eggert, J., Hawreliak, J., Lorenzana, H., et al. In situ di_raction measurements of lattice response due to shock loading, including direct observation of the α - ε phase transition in iron. International Journal of Impact Engineering, 33 (1-12), 343{352, 2006. 42 [133] Jarmakani, H., Bringa, E., Erhart, P., Remington, B., Wang, Y., Vo, N., et al. Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals. Acta Materialia, 56 (19), 5584{5604, 2008. 76 [134] Cao, B., Bringa, E. M., Meyers, M. A. Shock compression of monocrystalline copper: Atomistic simulations. Metallurgical and Materials Transactions A, 38 (11), 2681{2688, 2007. 42 [135] Henderson, A. ParaView Guide, A Parallel Visualization Application. Kitware Inc., 2007. 42 [136] Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO{the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18 (1), 015012, 2010. 42, 106 [137] Ruestes, C., Bringa, E., Stukowski, A., Rodr__guez Nieva, J., Bertolino, G., Tang, Y., et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal. Scripta Materialia, 68 (10), 817{ 820, 2013. 43, 49, 50, 51, 135, 139 [138] Ling, C.-B. On the stresses in a plate containing two circular holes. Journal of Applied Physics, 19 (1), 77{82, 1948. 43, 44, 45, 46 [139] Wu, L., Markenscoff, X. Singular stress amplification between two holes in tension. Journal of Elasticity, 44 (2), 131{144, 1996. 43, 44, 48 [140] Callias, C., Markenscoff, X. The singularity of the stress field of two nearby holes in a planar elastic medium. Quarterly of applied mathematics, 51 (3), 547{557, 1993. 44 [141] Rudd, R. E. Void growth in bcc metals simulated with molecular dynamics using the Finnis{Sinclair potential. Philosophical Magazine, 89 (34-36), 3133{3161, 2009. 47, 55, 57 [142] Nemat-Nasser, S., Isaacs, J. B., Liu, M. Microstructure of high-strain, highstrain- rate deformed tantalum. Acta Materialia, 46 (4), 1307{1325, 1998. 47, 77 [143] Hsiung, L. L. Shock-induced phase transformation in tantalum. Journal of Physics: Condensed Matter, 22 (38), 385702, 2010. 47, 77 [144] Ruestes, C., Bringa, E., Stukowski, A., Rodríguez Nieva, J., Tang, Y., Meyers, M. Plastic deformation of a porous bcc metal containing nanometer sized voids. Computational Materials Science, 88, 92{102, 2014. 48, 55, 56, 58, 59, 60, 61, 64, 67, 68, 135, 139 [145] Mitchell, T., Spitzig, W. Three-stage hardening in tantalum single crystals. Acta Metallurgica, 13 (11), 1169{1179, 1965. 47 [146] Rudd, R. E. High-rate plastic deformation of nanocrystalline tantalum to large strains: Molecular dynamics simulation. Materials Science Forum, 633-634, 3{19, 2009. 47 [147] Brown, L. Constant intermittent ow of dislocations: central problems in plasticity. Materials Science and Technology, 28 (11), 1209{1232, 2012. 49, 50 [148] Groger, R., Vitek, V. Directional versus central-force bonding in studies of the structure and glide of 1/2 h111i screw dislocations in bcc transition metals. Philosophical Magazine, 89 (34-36), 3163{3178, 2009. 49, 50, 85 [149] Ravelo, R., Germann, T., Guerrero, O., An, Q., Holian, B. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations. Physical Review B, 88 (13), 134101, 2013. 50, 57 [150] Vitek, V., Mrovec, M., Groger, R., Bassani, J., Racherla, V., Yin, L. Effects of non-glide stresses on the plastic ow of single and polycrystals of molybdenum. Materials Science and Engineering: A, 387, 138{142, 2004. 52 [151] Groger, R., Racherla, V., Bassani, J., Vitek, V. Multiscale modeling of plastic deformation of molybdenum and tungsten: Ii. yield criterion for single crystals based on atomistic studies of glide of 1/2 h111i screw dislocations. Acta Materialia, 56 (19), 5412{5425, 2008. [152] Bassani, J., Racherla, V. From non-planar dislocation cores to nonassociated plasticity and strain bursts. Progress in Materials Science, 56 (6), 852{863, 2011. 52 [153] Duesbery, M., Vitek, V. Plastic anisotropy in b.c.c. transition metals. Acta Materialia, 46 (5), 1481 { 1492, 1998. 52 [154] Sherwood, P., Guiu, F., Kim, H.-C., Pratt, P. L. Plastic anisotropy of tantalum, niobium, and molybdenum. Canadian Journal of Physics, 45 (2), 1075{1089, 1967. 52 [155] Cao, B., Lassila, D. H., Huang, C., Xu, Y., Meyers, M. A. Shock compression of monocrystalline copper: Experiments, characterization, and analysis. Materials Science and Engineering: A, 527 (3), 424 { 434, 2010. 53 [156] Nye, J. F. Physical properties of crystals: their representation by tensors and matrices. 1a ed_on. Oxford [Oxfordshire] : New York: Clarendon Press ; Oxford University Press, 1984. 53 [157] Murr, L., Meyers, M., Niou, C.-S., Chen, Y., Pappu, S., Kennedy, C. Shockinduced deformation twinning in tantalum. Acta Materialia, 45 (1), 157{ 175, 1997. 55 [158] Tramontina, D., Ruestes, C., Tang, Y., Bringa, E. Orientation-dependent response of defective tantalum single crystals. Computational Materials Science, 90, 82{88, 2014. 57 [159] Florando, J. N., Barton, N. R., El-Dasher, B. S., McNaney, J. M., Kumar, M. Analysis of deformation twinning in tantalum single crystals under shock loading conditions. Journal of Applied Physics, 113 (8), 083522{ 083522, 2013. 57, 88, 89 [160] Marian, J., Cai, W., Bulatov, V. V. Dynamic transitions from smooth to rough to twinning in dislocation motion. Nature Materials, 3 (3), 158{163, 2004. 57, 65 [161] Tang, Y., Bringa, E. M., Meyers, M. A. Ductile tensile failure in metals through initiation and growth of nanosized voids. Acta Materialia, 60 (12), 4856 { 4865, 2012. 57 [162] Tang, Y., Bringa, E. M., Meyers, M. A. Inverse hall{petch relationship in nanocrystalline tantalum. Materials Science and Engineering: A, 580 (0), 414 { 426, 2013. 57 [163] Deo, C., Srolovitz, D., Cai, W., Bulatov, V. Stochastic simulation of dislocation glide in tantalum and ta-based alloys. Journal of the Mechanics and Physics of Solids, 53 (6), 1223{1247, 2005. 57, 58 [164] Jin, Z., Gao, H., Gumbsch, P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten. Physical Review B, 77 (9), 2008. 57 [165] Shehadeh, M. A., Bringa, E. M., Zbib, H. M., McNaney, J. M., Remington, B. A. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Applied Physics Letters, 89 (17), 171918, 2006. 59 [166] Quinney, H., Taylor, G. The emission of the latent energy due to previous cold working when a metal is heated. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 163 (913), 157{181, 1937. 62, 63 [167] Higginbotham, A., Bringa, E. M., Marian, J., Park, N., Suggit, M., Wark, J. S. Simulations of copper single crystals subjected to rapid shear. Journal of Applied Physics, 109 (6), 063530, 2011. 62, 63 [168] Rittel, D., Kidane, A., Alkhader, M., Venkert, A., Landau, P., Ravichandran, G. On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper. Acta Materialia, 60 (9), 3719 { 3728, 2012. 63 [169] Ashby, M. F., Gelles, S. H., Tanner, L. E. The stress at which dislocations are generated at a particle-matrix interface. Philosophical Magazine, 19 (160), 757{771, 1969. 64 [170] Ashby, M. F., Johnson, L. On the generation of dislocations at mis_tting particles in a ductile matrix. Philosophical Magazine, 20 (167), 1009{1022, 1969. 64 [171] Lu, C., Remington, B., Maddox, B., Kad, B., Park, H., Prisbrey, S., et al. Laser compression of monocrystalline tantalum. Acta Materialia, 60 (19), 6601{6620, 2012. 77 [172] Maddox, B., Park, H.-S., Lu, C.-H., Remington, B., Prisbrey, S., Kad, B., et al. Isentropic/shock compression and recovery methodology for materials using high-amplitude laser pulses. Materials Science and Engineering: A, 578, 354{361, 2013. 77 [173] Mi, C., Buttry, D. A., Sharma, P., Kouris, D. A. Atomistic insights into dislocation-based mechanisms of void growth and coalescence. Journal of the Mechanics and Physics of Solids, 59 (9), 1858{1871, 2011. 85, 86 [174] Meyers, M. A., Chawla, K. K. Mechanical behavior of materials, tomo 547. Cambridge University Press Cambridge, 2009. 85, 112 [175] Huang, Y., Xue, Z., Gao, H., Nix, W., Xia, Z. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research, 15 (08), 1786{1796, 2000. 86 [176] Mecking, H., Kocks, U. Kinetics of ow and strain-hardening. Acta Metallurgica, 29 (11), 1865{1875, 1981. 87 [177] Rittel, D., Silva, M., Poon, B., Ravichandran, G. Thermomechanical behavior of single crystalline tantalum in the static and dynamic regime. Mechanics of Materials, 41 (12), 1323{1329, 2009. 89 [178] Bulatov, V. V., Hsiung, L. L., Tang, M., Arsenlis, A., Bartelt, M. C., Cai, W., et al. Dislocation multi-junctions and strain hardening. Nature, 440 (7088), 1174{1178, 2006. 89 [179] Lu, C.-H. Laser compression of tantalum. University of California, San Diego, 2013. 89 [180] Meyers, M. A. Dynamic behavior of materials. John Wiley & Sons, 1994. 89 [181] Remington, B. A., Allen, P., Bringa, E. M., Hawreliak, J., Ho, D., Lorenz, K. T., et al. Material dynamics under extreme conditions of pressure and strain rate. Materials science and technology, 22 (4), 474{488, 2006. 91, 92, 93, 95 [182] Armstrong, R., Arnold, W., Zerilli, F. Dislocation mechanics of shockinduced plasticity. Metallurgical and Materials Transactions A, 38 (11), 2605{2610, 2007. 93 [183] Swegle, J., Grady, D. Shock viscosity and the prediction of shock wave rise times. Journal of Applied Physics, 58 (2), 692{701, 1985. 93 [184] Sun, C., Bu_ord, D., Chen, Y., Kirk, M., Wang, Y., Li, M., et al. In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance. Scienti_c reports, 4, 2014. 97, 98 [185] Matsukawa, Y., Zinkle, S. J. One-dimensional fast migration of vacancy clusters in metals. Science, 318 (5852), 959{962, 2007. 98 [186] Alinger, M., Odette, G., Hoelzer, D. The development and stability of Y{Ti{O nanoclusters in mechanically alloyed Fe{Cr based ferritic alloys. Journal of Nuclear Materials, 329, 382{386, 2004. 98 [187] Hoelzer, D. T., Bentley, J., Sokolov, M. A., Miller, M. K., Odette, G. R., Alinger, M. Inuence of particle dispersions on the high-temperature strength of ferritic alloys. Journal of Nuclear Materials, 367, 166{172, 2007. [188] Yamamoto, T., Odette, G. R., Miao, P., Hoelzer, D., Bentley, J., Hashimoto, N., et al. The transport and fate of helium in nanostructured ferritic alloys at fusion relevant he/dpa ratios and dpa rates. Journal of Nuclear Materials, 367, 399{410, 2007. [189] Cunningham, N., Wu, Y., Etienne, A., Haney, E., Odette, G., Stergar, E., et al. Effect of bulk oxygen on 14ywt nanostructured ferritic alloys. Journal of Nuclear Materials, 444 (1), 35{38, 2014. 98 [190] Demkowicz, M., Hoagland, R., Hirth, J. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Physical Review Letters, 100 (13), 136102, 2008. 98 [191] Fu, E., Caro, M., Zepeda-Ruiz, L., Wang, Y., Baldwin, K., Bringa, E., et al. Surface effects on the radiation response of nanoporous Au foams. Applied Physics Letters, 101 (19), 191607{191607, 2012. 98 [192] Zepeda-Ruiz, L., Martinez, E., Caro, M., Fu, E., Caro, A. Deformation mechanisms of irradiated metallic nanofoams. Applied Physics Letters, 103 (3), 031909, 2013. 98, 112 [193] Fujita, T., Chen, M. W. Characteristic length scale of bicontinuous nanoporous structure by fast Fourier transform. Japanese Journal of Applied Physics, 47 (2R), 1161, 2008. 99 [194] Erlebacher, J., Sieradzki, K. Pattern formation during dealloying. Scripta materialia, 49 (10), 991{996, 2003. 99 [195] Abramoff, M. D., Magalhaes, P. J., Ram, S. J. Image processing with imagej. Biophotonics International, 11 (7), 36{43, 2004. 99 [196] Welch, P. D. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modi_ed periodograms. IEEE Transactions on Audio and Electroacoustics, 15 (2), 70{73, 1967. 99 [197] Ding, Y., Chen, M. Nanoporous metals for catalytic and optical applications. MRS Bulletin, 34 (08), 569{576, 2009. 105 [198] Snyder, J., Fujita, T., Chen, M., Erlebacher, J. Oxygen reduction in nanoporous metal{ionic liquid composite electrocatalysts. Nature Materials, 9 (11), 904{907, 2010. [199] Wittstock, A., Zielasek, V., Biener, J., Friend, C., Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 327 (5963), 319{322, 2010. 105 [200] Biener, J., Wittstock, A., Zepeda-Ruiz, L., Biener, M., Zielasek, V., Kramer, D., et al. Surface-chemistry-driven actuation in nanoporous gold. Nature Materials, 8 (1), 47{51, 2008. 105 [201] Jin, H.-J., Wang, X.-L., Parida, S., Wang, K., Seo, M., Weissmuller, J. Nanoporous au- pt alloys as large strain electrochemical actuators. Nano letters, 10 (1), 187{194, 2009. [202] Chen, L., Fujita, T., Chen, M. Biofunctionalized nanoporous gold for electrochemical biosensors. Electrochimica Acta, 67, 1{5, 2012. 105 [203] Mathur, A., Erlebacher, J. Size dependence of e_ective young's modulus of nanoporous gold. Applied Physics Letters, 90 (6), 061910, 2007. 105 [204] Biener, J., Hodge, A. M., Hayes, J. R., Volkert, C. A., Zepeda-Ruiz, L. A., Hamza, A. V., et al. Size effects on the mechanical behavior of nanoporous au. Nano Letters, 6 (10), 2379{2382, 2006. 105, 109 [205] Gibson, L. J., Ashby, M. F. Cellular solids: structure and properties. Cambridge University Press, 1999. 105, 111, 136 [206] Hodge, A., Biener, J., Hayes, J., Bythrow, P., Volkert, C., Hamza, A. Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia, 55 (4), 1343{1349, 2007. 106 [207] Feng, X.-Q., Xia, R., Li, X., Li, B. Surface e_ects on the elastic modulus of nanoporous materials. Applied Physics Letters, 94 (1), 011916, 2009. [208] Xia, R., Feng, X.-Q.,Wang, G.-F. E_ective elastic properties of nanoporous materials with hierarchical structure. Acta Materialia, 59 (17), 6801{6808, 2011. [209] Sun, X.-Y., Xu, G.-K., Li, X., Feng, X.-Q., Gao, H. Mechanical properties and scaling laws of nanoporous gold. Journal of Applied Physics, 113 (2), 023505, 2013. 106, 109 [210] Johnson, R. Phase stability of fcc alloys with the embedded-atom method. Physical Review B, 41 (14), 9717, 1990. 106 [211] Farkas, D., Caro, A., Bringa, E., Crowson, D. Mechanical response of nanoporous gold. Acta Materialia, 61 (9), 3249 { 3256, 2013. 106 [212] Stukowski, A. Computational analysis methods in atomistic modeling of crystals. JOM, 66 (3), 399{407, 2014. 109 [213] Edelsbrunner, H., Mucke, E. P. Three-dimensional alpha shapes. ACM Transactions on Graphics (TOG), 13 (1), 43{72, 1994. 109 [214] Jin, H.-J., Kurmanaeva, L., Schmauch, J., Rosner, H., Ivanisenko, Y., Weissmuller, J. Deforming nanoporous metal: Role of lattice coherency. Acta Materialia, 57 (9), 2665{2672, 2009. 109 [215] Tabor, D. The hardness of metals, tomo 10. ClarendonP, 1951. 109 [216] Carroll, M., Holt, A. Static and dynamic pore-collapse relations for ductile porous materials. Journal of Applied Physics, 43 (4), 1626{1636, 1972. 112, 137 [217] Wunnemann, K., Collins, G., Melosh, H. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus, 180 (2), 514{527, 2006. 117, 119, 120, 123, 134, 137, 138 [218] Herrmann, W. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics, 40 (6), 2490{2499, 1969. 118 [219] Carroll, M., Holt, A. C. Suggested modi_cation of the p-_ model for porous materials. J. Appl. Phys., 43, 759{761, 1972. 118 [220] Collins, G., Melosh, H., Wunnemann, K. Improvements to the _-_ porous compaction model for simulating impacts into high-porosity solar system objects. International Journal of Impact Engineering, 38 (6), 434{439, 2011. 119, 123, 138 [221] Amsden, A., Ruppel, H., Hirt, C. SALE: A simpli_ed ALE computer program for uid ow at all speeds. US Department of Commerce, National Technical Information Service, 1980. 121, 138 [222] Verhulst, P.-F. Recherches math_ematiques sur la loi d'accroissement de la population. Nouveaux M_emoires de l'Acad_emie Royale des Sciences et Belles-lettres de Bruxelles, 18, 14{54, 1845. 121 [223] Johnson, M. L. Why, when, and how biochemists should use least squares. Analytical Biochemistry, 206 (2), 215{225, 1992. 123 [224] Systat Software, I. Tablecurve 2d v5. 01 for Windowsc 2002., 2002. 123 [225] Gunkelmann, N., Bringa, E., Kang, K., Ackland, G., Ruestes, C., Urbassek, H. Polycrystalline iron under compression: Plasticity and phase transitions. Physical Review B, 86 (14), 2012. 139 [226] Gao, Y., Ruestes, C. J., Urbassek, H. M. Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions. Computational Materials Science, 90, 232{240, 2014. [227] Ruestes, C., Stukowski, A., Tang, Y., Tramontina, D., Erhart, P., Remington, B., et al. Atomistic simulation of tantalum nanoindentation: E_ects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Materials Science and Engineering: A, 613, 390{403, 2014. [228] Gao, Y., Ruestes, C. J., Tramontina, D. R., Urbassek, H. M. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids, 75, 58{ 75, 2015. 139
Materias:Ingeniería > Ciencia de los materiales
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:906
Depositado Por:Marisa G. Velazco Aldao
Depositado En:12 Feb 2021 10:15
Última Modificación:12 Feb 2021 10:15

Personal del repositorio solamente: página de control del documento