Nuevas ecuaciones de propagación en fibras ópticas con perfiles de no linealidad arbitrarios / Novel propagation equations for optical fibers with arbitrary nonlinearity profiles

Bonetti, Juan Ignacio (2021) Nuevas ecuaciones de propagación en fibras ópticas con perfiles de no linealidad arbitrarios / Novel propagation equations for optical fibers with arbitrary nonlinearity profiles. PhD Thesis in Engineering Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Preview
PDF (Tesis)
Spanish
1501Kb

Abstract in Spanish

Las fibras ópticas no lineales son un excelente medio para modificar las características de la luz, como por ejemplo su longitud de onda o su espectro, mediante distintos procesos de mezclado de frecuencias o modulación de fase. Entre las aplicaciones de dichas fibras se destaca la generación de supercontinuo: luz intensa y coherente de espectro ancho, de particular interés en áreas tales como la bióloga, la metróloga y las comunicaciones ópticas. Generalmente, la propagación de luz clásica en las fibras no lineales se describe mediante la generalized nonlinear Schrödinger equation (GNLSE), una aproximación de las ecuaciones de Maxwell que produce resultados consistentes y que permite su simulación numérica con un esfuerzo computacional razonable. Esta tesis se enfoca en la aplicación de la GNLSE en nuevos tipos de fibra, cuyas propiedades ópticas no lineales varan sensiblemente con la longitud de onda; en estos casos la GNLSE predice resultados físicamente inconsistentes. Partiendo de la teoría cuántica de las fibras no lineales se deriva una nueva ecuación de propagación, de complejidad computacional comparable a la de la GNLSE, pero adecuada para modelar estos nuevos tipos de fibra con resultados físicamente aceptables.

Abstract in English

Nonlinear optical fibers are a suitable medium to produce engineered light with singular features, such as wavelength ranges which are otherwise not achievable with conventional optical sources. A remarkable case is portrayed by supercontinuum generation, that is, high intensity and coherent light with a broad spectrum, nding applications in biology, metrology, and optical communications. The nonlinear ber theory is based on the generalized nonlinear Schrödinger equation (GNLSE), a simplication of Maxwell equations that lends to tractable numerical simulations. This thesis is focused on the application of the GNLSE to novel nonlinear bers whose nonlinearity is strongly dependent on the optical frequency; this equation is shown to produce unphysical results when applied to this new kind of fibers. In order to circumvent this problem, we start from a quantum theory of nonlinear fibers to derive a new propagation equation, preserving the numerical complexity of the GNLSE, but being suitable for modeling fibers with an arbitrary nonlinearity.

Item Type:Thesis (PhD Thesis in Engineering Sciences)
Keywords:Fiber optics; Nonlinear optics; Óptica nolinear; Quantum optics; Óptica quántica; Schroedinger equation; Ecuación de Schroedinger; [Supercontinuum; Supercontinuo; Modulation instability; Inestabilidad modulacional]
References:[1] Weldon, M. The future X network: a Bell Labs perspective. CRC Press, 2016. [2] Essiambre, R., Foschini, G., Kramer, G., Winzer, P. Capacity limits of information transport in fiber-optic networks. Physical Review Letters, 101, 163901, 2008. [3] Boyd, R. Nonlinear optics. Academic Press, 2008. [4] Dudley, J., Taylor, J. Supercontinuum generation in optical fibers. Cambridge University Press, 2010. [5] Dudley, J., Genty, G., Coen, S. Supercontinuum generation in photonic crystal ber. Reviews of Modern Physics, 78 (4), 1135, 2006. [6] Alfano, R. The supercontinuum laser source. Springer, 1989. [7] Moon, S., Kim, D. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Optics Express, 14 (24), 11575{11584, 2006. [8] Humbert, G., Wadsworth, W., Leon-Saval, S., Knight, J., Birks, T., Russell, P., et al. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 14 (4), 1596{1603, 2006. [9] Kawagoe, H., Ishida, S., Aramaki, M., Sakakibara, Y., Omoda, E., Kataura, H., et al. Development of a high power supercontinuum source in the 1:7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography. Biomedical Optics Express, 5 (3), 932{943, 2014. [10] Nishiura, M., Kobayashi, T., Adachi, M., Nakanishi, J., Ueno, T., Ito, Y., et al. In vivo ultrahighresolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum. Ja- panese Journal of Applied Physics, 49 (1R), 012701, 2010. [11] Nishizawa, N., Chen, Y., Hsiung, P., Ippen, E., Fujimoto, J. Real-time, ultrahigh-resolution, optical coherence tomography with an all-ber, femtosecond ber laser continuum at 1:5 μm. Optics Letters, 29 (24), 2846{2848, 2004. [12] Ishida, S., Nishizawa, N., Ohta, T., Itoh, K. Ultrahigh-resolution optical coherence tomography in 1.7 m region with ber laser supercontinuum in low-water-absorption samples. Applied Physics Express, 4 (5), 052501, 2011. [13] Morioka, T., Takara, H., Kawanishi, S., Kamatani, O., Takiguchi, K., Uchiyama, K., et al. 1 Tbit/s (100 Gbit/s/spl times/10 channel) OTDM/WDM transmission using a single supercontinuum WDM source. Electronics Letters, 32 (10), 906{907, 1996. [14] Morioka, T., Mori, K., Saruwatari, M. More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical bres. Electronics Letters, 29 (10), 862{864, 1993. [15] Nakasyotani, T., Toda, H., Kuri, T., Kitayama, K. Wavelength-division-multiplexed millimeterwaveband radio-on-ber system using a supercontinuum light source. Journal of Lightwave Tech- nology, 24 (1), 404, 2006. [16] Ohara, T., Takara, H., Yamamoto, T., Masuda, H., Morioka, T., Abe, M., et al. Over-1000- channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology, 24 (6), 2311, 2006. [17] Takara, H., Ohara, T., Mori, K., Sato, K., Yamada, E., Inoue, Y., et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letters, 36 (25), 2089{2090, 2000. [18] Smirnov, S., Ania-Castañon, J., Kobtsev, S., Turitsyn, S. Supercontinuum in telecom applications, pags. 371{403. Springer, 2016. [19] Zewail, A. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture). Angewandte Chemie International Edition, 39 (15), 2586{2631, 2000. [20] Hansch, T. Nobel lecture: passion for precision. Reviews of Modern Physics, 78 (4), 1297, 2006. [21] Russell, P. Photonic crystal bers. Science, 299 (5605), 358{362, 2003. [22] Birks, T., Knight, J., Russell, P. Endlessly single-mode photonic crystal ber. Optics Letters, 22 (13), 961{963, 1997. [23] Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E. Chromatic dispersion control in photonic crystal bers: application to ultra- attened dispersion. Optics Express, 11 (8), 843{852, 2003. [24] Kyei, K., Jensen, M., Engelsholm, R., Dasa, M., Deepak, J., Bowen, P., et al. In-amplier and cascaded mid-infrared supercontinuum sources with low noise through gain-induced soliton spectral alignment. Scientic Reports, 10 (1), 2020. [25] Dai, S., Wang, Y., Peng, X., Zhang, P., Wang, X., Xu, Y. A review of mid-infrared supercontinuum generation in chalcogenide glass bers. Applied Sciences, 8 (5), 707, 2018. [26] Petersen, C., Moselund, P., Huot, L., Hooper, L., Bang, O. Towards a table-top synchrotron based on supercontinuum generation. Infrared Physics & Technology, 91, 182{186, 2018. [27] Pendry, J., Smith, D. Reversing light with negative refraction. Physics Today, 57, 37{43, 2004. [28] Scalora, M., Syrchin, M., Akozbek, N., Poliakov, E., D'Aguanno, G., Mattiucci, N., et al. Generalized nonlinear Schrodinger equation for dispersive susceptibility and permeability: application to negative index materials. Physical Review Letters, 95 (1), 013902, 2005. [29] Wen, S., Wang, Y., Su, W., Xiang, Y., Fu, X., Fan, D. Modulation instability in nonlinear negative-index material. Physical Review E, 73 (3), 036617, 2006. [30] Wen, S., Xiang, Y., Su, W., Hu, Y., Fu, X., Fan, D. Role of the anomalous self-steepening eect in modulation instability in negative-index material. Optics Express, 14 (4), 1568{1575, 2006. [31] Xiang, Y., Wen, S., Dai, X., Tang, Z., Su, W., Fan, D. Modulation instability induced by nonlinear dispersion in nonlinear metamaterials. Journal of the Optical Society of America B, 24 (12), 3058{3063, 2007. [32] Wen, S., Xiang, Y., Dai, X., Tang, Z., Su, W., Fan, D. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials. Physical Review A, 75 (3), 033815, 2007. [33] Driben, R., Husakou, A., Herrmann, J. Low-threshold supercontinuum generation in glasses doped with silver nanoparticles. Optics Express, 17 (20), 17989{17995, 2009. [34] Driben, R., Herrmann, J. Solitary pulse propagation and soliton-induced supercontinuum generation in silica glasses containing silver nanoparticles. Optics Letters, 35 (15), 2529{2531, 2010. [35] Bose, S., Chattopadhyay, R., Samudra, R., Bhadra, S. Study of nonlinear dynamics in silvernanoparticle- doped photonic crystal ber. Journal of the Optical Society of America B, 33 (6), 1014{1021, 2016. [36] Bose, S., Sahoo, A., Chattopadhyay, R., Roy, S., Bhadra, S., Agrawal, G. Implications of a zero-nonlinearity wavelength in photonic crystal bers doped with silver nanoparticles. Physical Review A, 94, 043835, 2016. [37] Arteaga-Sierra, F., Antikainen, A., Agrawal, G. Soliton dynamics in photonic-crystal bers with frequency-dependent kerr nonlinearity. Physical Review A, 98, 013830, 2018. [38] Arteaga-Sierra, F., Antikainen, A., Agrawal, G. Soliton mitosis across a zero-nonlinearity wavelength in photonic crystal bers. En: Frontiers in Optics. Optical Society of America, 2017. [39] Korzh, B., Lim, C., Ci, W., Houlmann, R., Gisin, N., Li, M., et al. Provably secure and practical quantum key distribution over 307 km of optical bre. Nature Photonics, 9 (3), 163{168, 2015. [40] Hiskett, P., Rosenberg, D., Peterson, C., Hughes, R., Nam, S., Lita, A., et al. Long-distance quantum key distribution in optical bre. New Journal of Physics, 8 (9), 193, 2006. [41] Namekata, N., Mori, S., Inoue, S. Quantum key distribution over an installed multimode optical ber local. Optics Express, 13 (25), 9961{9969, 2005. [42] Peng-Xiang, W., Qiang, Z., Wei, Z., Yi-Dong, H., Jiang-De, P. High-quality ber-based heralded single-photon source at 1:5 μm. Chinese Physics Letters, 29 (5), 054215, 2012. [43] McGuinness, H., Raymer, M., McKinstrie, C., Radic, S. Quantum frequency translation of singlephoton states in a photonic crystal ber. Physical Review Letters, 105 (9), 093604, 2010. [44] Bonetti, J., Hernandez, S., Fierens, P., Grosz, D. Analytical study of coherence in seeded modulation instability. Physical Review A, 94, 033826, 2016. [45] Hernandez, S., Fierens, P., Bonetti, J., Sanchez, A., Grosz, D. A geometrical view of scalar modulation instability in optical bers. IEEE Photonics Journal, 9 (5), 1{8, 2017. [46] Bonetti, J., Hernandez, S., Fierens, P., Grosz, D. A higher-order perturbation analysis of the nonlinear schrodinger equation. Communications in Nonlinear Science and Numerical Simulation, 72, 152{161, 2019. [47] Sanchez, A., Fierens, P., Hernandez, S., Bonetti, J., Brambilla, G., Grosz, D. Anti-Stokes Raman gain enabled by modulation instability in mid-IR waveguides. Journal of the Optical Society of America B, 35 (11), 2828{2832, 2018. [48] Sanchez, A., Hernandez, S., Bonetti, J., Fierens, P., Grosz, D. Tunable Raman gain in mid-IR waveguides. Journal of the Optical Society of America B, 35 (1), 95{99, 2018. [49] Sanchez, A., Linale, N., Bonetti, J., Hernandez, S., Fierens, P., Brambilla, G., et al. Simple method for estimating the fractional Raman contribution. Optics Letters, 44 (3), 538{541, 2019. [50] Bonetti, J., Linale, N., Sanchez, A., Hernandez, S., Fierens, P., Grosz, D. Modied nonlinear schrodinger equation for frequency-dependent nonlinear proles of arbitrary sign. Journal of the Optical Society of America B, 36 (11), 3139{3144, 2019. [51] Linale, N., Bonetti, J., Sanchez, A., Hernandez, S., Fierens, P., Grosz, D. Modulation instability in waveguides with an arbitrary frequency-dependent nonlinear coecient. Optics letters, 45 (9), 2498{2501, 2020. [52] Sanchez, A., Linale, N., Bonetti, J., Grosz, D. Modulation instability in waveguides doped with anisotropic nanoparticles. Optics Letters, 45 (11), 3119{3122, 2020. [53] Linale, N., Fierens, P., Bonetti, J., Sanchez, A., Hernandez, S., Grosz, D. Measuring the selfsteepening coecient with the photon-conserving nonlinear Schrodinger equation. Optics letters, 45 (16), 4535{4538, 2020. [54] Hernandez, S. M., Bonetti, J., Linale, N., Grosz, D. F., Fierens, P. I. Soliton solutions and self-steepening in the photon-conserving nonlinear Schrodinger equation. Waves in Random and Complex Media, pags. 1{17, 2020. [55] Linale, N., Fierens, P., Hernandez, S., Bonetti, J., Grosz, D. Narrowband and utra-wideband modulaation instability in nonlinear waveguides. Journal of the Optical Society of America B, 37 (9), to be assigned, 2020. [56] Bonetti, J., Linale, N., Sanchez, A., Hernandez, S., Fierens, P., Grosz, D. Photon-conserving generalized nonlinear Schrodinger equation for frequency-dependent nonlinearities. Journal of the Optical Society of America B, 37 (2), 445{450, 2020. [57] Linale, N., Bonetti, J., Sparapani, A., Sanchez, A., Grosz, D. Equation for modeling two-photon absorption in nonlinear waveguides. Journal of the Optical Society of America B, 37 (6), 1906{ 1910, 2020. [58] Bonetti, J., Hernandez, S. M., Grosz, D. F. Master equation approach to propagation in nonlinear bers. Optics Letters, 46 (3), 665{668, 2021. [59] Agrawal, G. Nonlinear ber optics. Academic press, 2007. [60] Marcuse, D. Theory of dielectric optical waveguides. Elsevier, 2013. [61] Snyder, A., Love, J. Optical waveguide theory. Springer Science & Business Media, 2012. [62] Buck, J. Fundamentals of optical bers. John Wiley & Sons, 2004. [63] Shabat, A., Zakharov, V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP, 34 (1), 62, 1972. [64] Kivshar, Y., Agrawal, G. Optical solitons: from bers to photonic crystals. Academic Press, 2003. [65] Fisher, R., Bischel, W. Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. Journal of Applied Physics, 46 (11), 4921{4934, 1975. [66] Hult, J. A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical bers. Journal of Lightwave Technology, 25 (12), 3770{3775, 2007. [67] Lan, G., Banerjee, P., Mitra, S. Raman scattering in optical bers. Journal of Raman spectros- copy, 11 (5), 416{423, 1981. [68] Messiah, A. Quantum mechanics. North-Holland, Amsterdam, 1961. [69] Hasegawa, A., Brinkman, W. Tunable coherent IR and FIR sources utilizing modulational instability. IEEE Journal of Quantum Electronics, 16 (7), 694{697, 1980. [70] Anderson, D., Lisak, M. Modulational instability of coherent optical-ber transmission signals. Optics Letters, 9 (10), 468{470, 1984. [71] Tai, K., Hasegawa, A., Tomita, A. Observation of modulational instability in optical bers. Physical Review Letters, 56, 135{138, 1986. [72] Potasek, M. Modulation instability in an extended nonlinear schrodinger equation. Optics Letters, 12 (11), 921{923, 1987. [73] Potasek, M., Agrawal, G. Self-amplitude-modulation of optical pulses in nonlinear dispersive bers. Physical Review A, 36, 3862{3867, 1987. [74] Nakazawa, M., Suzuki, K., Kubota, H., Haus, H. High-order solitons and the modulational instability. Physical Review A, 39, 1989. [75] Agrawal, G. Modulation instability in erbium-doped ber ampliers. IEEE Photonics Technology Letters, 4 (6), 562{564, 1992. [76] Blow, K., Wood, D. Theoretical description of transient stimulated Raman scattering in optical bers. IEEE Journal of Quantum Electronics, 25 (12), 2665{2673, 1989. [77] Zheltikov, A. Optical shock wave and photon-number conservation. Physical Review A, 98 (4), 043833, 2018. [78] Li, S., Chen, J., Cao, A., Song, J. A nonlinear Schrodinger equation for gravity waves slowly modulated by linear shear ow. Chinese Physics B, 2019. [79] Pitaevskii, L., Stringari, S. Bose-Einstein Condensation. Oxford University Press, 2003. [80] Lgsgaard, J. Mode prole dispersion in the generalized nonlinear Schrodinger equation. Optics Express, 15 (24), 16110{16123, 2007. [81] Sheik-Bahae, M., Said, A., Wei, T., Hagan, D., Stryland, E. V. Sensitive measurement of optical nonlinearities using a single beam. IEEE Journal of Quantum Electronics, 26 (4), 760{769, 1990. [82] Lai, Y., Haus, H. Quantum theory of solitons in optical bers. i. time-dependent hartree approximation. Physical Review A, 40, 844{853, 1989. [83] Blow, K., Loudon, R., Phoenix, S. Exact solution for quantum self-phase modulation. Journal of the Optical Society of America. B, 8 (8), 1750{1756, 1991. [84] Boivin, L., Kartner, F., Haus, H. Analytical solution to the quantum eld theory of self-phase modulation with a nite response time. Physical Review Letters, 73, 240{243, 1994. [85] Lai, Y., Yu, S. General quantum theory of nonlinear optical-pulse propagation. Physical Review A, 51, 817{829, 1995. [86] Saleh, B., Teich, M. Fundamentals of photonics. john Wiley & sons, 1991. [87] Carter, S. Quantum theory of nonlinear ber optics: Phase-space representations. Physical Review A, 51, 3274{3301, 1995. [88] Drummond, P., Corney, J. Quantum noise in optical bers. I. Stochastic equations. Journal of the Optical Society of America B, 18 (2), 139{152, 2001. [89] Mlmer, K., Castin, Y., Dalibard, J. Monte Carlo wave-function method in quantum optics. Journal of the Optical Society of America B, 10 (3), 524{538, 1993. [90] Drummond, P., Hillery, M. The quantum theory of nonlinear optics. Cambridge University Press, 2014. [91] Lindblad, G. On the generators of quantum dynamical semigroups. Communications in Mathe- matical Physics, 48 (2), 119{130, 1976. [92] Breuer, H., Petruccione, F. The theory of open quantum systems. Oxford University Press on Demand, 2002. [93] Bonetti, J., Sanchez, A., Hernandez, S., Grosz, D. A simple approach to the quantum theory of nonlinear ber optics, 2019. URL https://arxiv.org/abs/1902.00561. [94] Friis, S., Mejling, L., Rottwitt, K. Eects of Raman scattering and attenuation in silica berbased parametric frequency conversion. Optics Express, 25 (7), 7324{7337, 2017. [95] Rottwitt, K., Bromage, J., Stentz, A., Leng, L., Lines, M., Smith, H. Scaling of the Raman gain coecient: applications to germanosilicate bers. Journal of Lightwave Technology, 21 (7), 1652, 2003. [96] Buck, J. Fundamentals of optical bers, tomo 50. John Wiley & Sons, 2004.
Subjects:Ingeniería en telecomunicaciones > Óptica no lineal
Divisions:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
ID Code:976
Deposited By:Marisa G. Velazco Aldao
Deposited On:07 Sep 2021 16:13
Last Modified:08 Sep 2021 11:36

Repository Staff Only: item control page