Aspectos de la entropía de entrelazamiento en teoría algebraica de campos. / Aspects of entanglement entropy in algebraic quantum field theory.

Pontello, Diego E. (2019) Aspectos de la entropía de entrelazamiento en teoría algebraica de campos. / Aspects of entanglement entropy in algebraic quantum field theory. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
3819Kb

Resumen en español

En esta tesis, estudiamos aspectos de la entropía de entrelazamiento en teorías cuánticas de campos siguiendo un enfoque algebraico. La principal motivación del trabajo es explorar y comprender mejor la estructura general del entrelazamiento en teorías de campos relativistas, con el objetivo ultimo de buscar una formulación axiomática de la teoría cuántica de campos en términos de cantidades puramente entrópicas y elementos de la teoría de información. Por otro lado, también estamos interesados en explorar las consecuencias del entrelazamiento en teoría algebraica de campos, con el propósito de descubrir propiedades no conocidas de las teorías cuánticas de campos y entender aun mejor las ya conocidas. Esto nos ayudaría con el propósito de encontrar un "principio dinámico" que nos permita construir, de forma rigurosa, modelos no triviales de teorías de campos relativistas. Como veremos a lo largo de esta tesis, el enfoque algebraico es el esquema natural para definir y estudiar el entrelazamiento en teoría cuántica de campos, y por lo tanto, para plantear y realizar estas investigaciones. En los primeros capítulos de la tesis realizamos una revisión autocontenido de la teoría algebraica de campos y la teoría de información cuántica, mientras que en los capítulos finales nos centramos en los resultados obtenidos. Entre ellos, destacamos los cálculos, de forma matemáticamente rigurosa, de medidas de entrelazamiento y Hamiltonianos modulares para algunos modelos específicos de teorías de campos, usando técnicas de la teoría algebraica de campos y la teoría modular de algebras de von Neumann. Los resultados obtenidos nos muestran explícitamente aspectos no locales y universales de los Hamiltonianos modulares, y nos ayuda a resolver ambiguedades que aparecen cuando uno realiza cálculos similares usando técnicas y métodos no rigurosos. También estudiamos, de forma general, las consecuencias e implicancias de la entropía de entrelazamiento en teorías de campos que presentan una estructura no trivial de sectores de superselección proveniente de simetrías globales. Para esto seguimos el enfoque algebraico desarrollado por Doplicher, Haag y Roberts. Como resultado, encontramos un parámetro de orden entrópico que \mide" el tamaño del grupo de simetría y el cual esta formado por la diferencia de dos informaciones mutuas. Mas aun, logramos identificar, para una teoría de campos general, cuales son los operadores responsables de esta diferencia, y encontramos una relación desconocida (que involucra dichos operadores) de la teoría de información en teoría de campos: la relación de certidumbre entrópica. También argumentamos que esta relación puede ser extendida a contextos mas generales y mantiene una relación estrecha con la teoría de subfactores de algebras de von Neumann.

Resumen en inglés

In this thesis, we study aspects of entanglement theory of quantum field theories from an algebraic point of view. The main motivation is to gain insights about the general structure of the entanglement in QFT, towards a definition of an entropic version of QFT. In the opposite direction, we are also interested in exploring any consequence of the entanglement in algebraic QFT. This may help us to reveal unknown features of QFT, with the nal aim of nding a dynamical principle which allows us to construct non-trivial and rigorous models of QFT. The algebraic approach is the natural framework to dene and study entanglement in QFT, and hence, to pose the above inquiries. After a self-contained review of algebraic QFT and quantum information theory in operator algebras, we focus on our results. We compute, in a mathematically rigorous way, exact solutions of entanglement measures and modular Hamiltonians for specic QFT models, using algebraic tools from modular theory of von Neumann algebras. These calculations show explicitly non-local features of modular Hamiltonians and help us to solve ambiguities that arise in other non-rigorous computations. We also study aspects of entanglement entropy in theories having superselection sectors coming from global symmetries. We follow the algebraic perspective of Doplicher, Haag, and Roberts. In this way, we find an entropic order parameter that \measures" the size of the symmetry group, which is made out of a difference of two mutual informations. Moreover, we identify the main operators that take account of such a difference, and we obtain a new quantum information quantity, the entropic certainty relation, involving algebras containing such operators. This certainty relation keeps an intrinsic connection with subfactor theory of von Neumann algebras.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Information theory; Teoría de la información; Quantum information; Información cuántica; [Von Neumann algebras; Álgebras de Von Neumann; Quantum information theory; Teoría de información cuántica; Entanglement entropy; Entropía de entrelazamiento; Modular hamiltonians; Hamiltonianos modulares ]
Referencias:[1] Bogolyubov, N. N., Logunov, A. A., Oksak, A. I., Todorov, I. T. General principles of quantum eld theory. Dordrecht, Netherlands: Kluwer (1990) 694 p. (Mathematical physics and applied mathematics, 10), 1990. 1, 17, 21, 22, 252 [2] Haag, R. Local Quantum physics: Fields, Particles, Algebras. Berlin, Germany: Springer-Verlag, 1992. 1, 4, 16, 18, 25, 28, 40, 51, 52, 56, 198, 209, 236, 281, 285 [3] Kitaev, A., Preskill, J. Topological entanglement entropy. Phys. Rev. Lett., 96, 110404, 2006. 3, 227 [4] Levin, M., Wen, X.-G. Detecting Topological Order in a Ground State Wave Function. Phys. Rev. Lett., 96, 110405, 2006. 3, 227 [5] Calabrese, P., Cardy, J. Entanglement entropy and conformal eld theory. J. Phys., A42, 504005, 2009. 3, 281 [6] Holzhey, C., Larsen, F., Wilczek, F. Geometric and renormalized entropy in conformal field theory. Nucl. Phys., B424, 443-467, 1994. [7] Vidal, G., Latorre, J. I., Rico, E., Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90, 227902, 2003. [8] Fradkin, E., Moore, J. E. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum. Phys. Rev. Lett., 97, 050404, 2006. 3 [9] Ryu, S., Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96, 181602, 2006. 3 [10] Jafferis, D. L., Lewkowycz, A., Maldacena, J., Suh, S. J. Relative entropy equals bulk relative entropy. JHEP, 06, 004, 2016. 3, 289 [11] Faulkner, T., Lewkowycz, A., Maldacena, J. Quantum corrections to holographic entanglement entropy. JHEP, 11, 074, 2013. [12] Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H., Oz, Y. Large N eld theories, string theory and gravity. Phys. Rept., 323, 183-386, 2000. [13] Maldacena, J. M. The Large N limit of superconformal eld theories and supergravity. Int. J. Theor. Phys., 38, 1113-1133, 1999. [Adv. Theor. Math. Phys.2,231(1998)].3 [14] Van Raamsdonk, M. Building up spacetime with quantum entanglement II: It fromBC-bit, 2018. 3 [15] Wolf, M. M., Verstraete, F., Hastings, M. B., Cirac, J. I. Area Laws in Quantum Systems: Mutual Information and Correlations. Phys. Rev. Lett., 100 (7), 070502, 2008. 3, 51, 81 [16] Srednicki, M. Entropy and area. Phys. Rev. Lett., 71, 666-669, 1993. [17] Eisert, J., Cramer, M., Plenio, M. B. Area laws for the entanglement entropy - areview. Rev. Mod. Phys., 82, 277-306, 2010. 3, 81 [18] Bombelli, L., Koul, R. K., Lee, J., Sorkin, R. D. A Quantum Source of Entropy for Black Holes. Phys. Rev., D34, 373-383, 1986. 3 [19] Susskind, L., Uglum, J. Black hole entropy in canonical quantum gravity and superstring theory. Phys. Rev., D50, 2700-2711, 1994. [20] Solodukhin, S. N. Entanglement entropy of black holes. Living Rev. Rel., 14, 8, 2011. 3 [21] Bratteli, O., Robinson, D. W. Operator Algebras and Quantum Statistical Mechanics 1: C* and W* Algebras, Symmetry Groups, Decomposition of States. Springer-Verlag New York), 1979. 4, 11, 12, 15, 16, 20, 23, 24, 51, 52, 53 [22] Faulkner, T., Lewkowycz, A. Bulk locality from modular flow. JHEP, 07, 151, 2017.4 [23] Faulkner, T., Li, M., Wang, H. A modular toolkit for bulk reconstruction. JHEP, 04, 119, 2019. 4 [24] Araki, H. Relative Entropy of States of von Neumann Algebras, 1974. 4, 57, 58 [25] Araki, H. Relative entropy of states of von Neumann algebras II. Publ. RIMS Kyoto Univ., 13, 173-192, 1977. 4, 58, 60 [26] Casini, H., Huerta, M. A Finite entanglement entropy and the c-theorem. Phys. Lett., B600, 142-150, 2004. 4, 83, 181, 261 [27] Casini, H., Huerta, M. A c-theorem for the entanglement entropy. J. Phys., A40, 7031-7036, 2007. [28] Myers, R. C., Sinha, A. Seeing a c-theorem with holography. Phys. Rev., D82, 046006, 2010. [29] Casini, H., Huerta, M. On the RG running of the entanglement entropy of a circle. Phys. Rev., D85, 125016, 2012. [30] Casini, H., Landea, I. S., Torroba, G. The g-theorem and quantum information theory. JHEP, 10, 140, 2016. [31] Casini, H., Testffe, E., Torroba, G. Markov Property of the Conformal Field Theory Vacuum and the a Theorem. Phys. Rev. Lett., 118 (26), 261602, 2017. [32] Casini, H., Teste, E., Torroba, G. All the entropies on the light-cone, 2018. 4, 83, 88 [33] Bisognano, J. J., Wichmann, E. H. On the Duality Condition for a Hermitian Scalar Field. J. Math. Phys., 16, 985-1007, 1975. 4, 75 [34] Hislop, P. D., Longo, R. Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory. Commun. Math. Phys., 84, 71, 1982. 4, 76, 157 [35] Casini, H., Huerta, M., Myers, R. C. Towards a derivation of holographic entanglement entropy. JHEP, 05, 036, 2011. 4, 76, 83, 157, 273 [36] Casini, H., Huerta, M. Reduced density matrix and internal dynamics for multicomponent regions. Class. Quant. Grav., 26, 185005, 2009. 4, 6, 133, 137, 138, 143, 146, 147, 170, 260, 287 [37] Arias, R., Blanco, D., Casini, H., Huerta, M. Local temperatures and local terms in modular Hamiltonians. Phys. Rev., D95 (6), 065005, 2017. 4, 76, 179 [38] Arias, R., Casini, H., Huerta, M., Pontello, D. Anisotropic Unruh temperatures. Phys. Rev., D96 (10), 105019, 2017. 4, 138, 179, 264, 267, 287, 288 [39] Arias, R. E., Casini, H., Huerta, M., Pontello, D. Entropy and modular Hamiltonian for a free chiral scalar in two intervals. Phys. Rev., D98 (12), 125008, 2018. 4, 95, 96, 265 [40] Blanco, D., Pérez-Nadal, G. Modular Hamiltonian of a chiral fermion on the torus. Phys. Rev., D100 (2), 025003, 2019. 4 [41] Streater, R. F., Wightman, A. S. PCT, spin and statistics, and all that. Redwood City, USA: Addison-Wesley (1989) 207 p. (Advanced book classics), 1989. 4, 29, 30, 31, 194 [42] Casini, H., Grillo, S., Pontello, D. Relative entropy for coherent states from Araki formula. Phys. Rev., D99 (12), 125020, 2019. 5, 102 [43] Longo, R. Index of subfactors and statistics of quantum elds. I. Commun. Math. Phys., 126, 217{247, 1989. 6, 211, 233, 261 [44] Longo, R. Index of subfactors and statistics of quantum elds. 2: Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys., 130, 285-309, 1990. 6, 233 [45] Doplicher, S., Haag, R., Roberts, J. E. Fields, observables and gauge transformations I. Commun. Math. Phys., 13, 1-23, 1969. 6, 190, 198, 208, 281 [46] Doplicher, S., Haag, R., Roberts, J. E. Fields, observables and gauge transformations II. Commun. Math. Phys., 15, 173-200, 1969. 34, 189, 202, 209, 281 [47] Doplicher, S., Haag, R., Roberts, J. E. Local observables and particle statistics I. Commun. Math. Phys., 23, 199-230, 1971. 199, 204 [48] Doplicher, S., Roberts, J. E. Fields, statistics and non-abelian gauge groups. Commun. Math. Phys., 28, 331-348, 1972. 189 [49] Doplicher, S., Haag, R., Roberts, J. E. Local observables and particle statistics II. Commun. Math. Phys., 35, 49-85, 1974. 281 [50] Doplicher, S., Roberts, J. E. Why there is a eld algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys., 131, 51-107, 1990. 6, 34, 189, 190, 198, 209 [51] Reed, M., Simon, B. Methods of Modern Mathematical Physics: Functional analysis, tomo 1. Academic Press, 1980, 1975. 8, 30, 125 [52] Bratteli, O., Robinson, D. W. Operator algebras and quantum statistical mechanics 2: Equilibrium states. Models in quantum statistical mechanics. Springer-Verlag Berlin, Germany, 1996. 13, 14, 17, 55, 56 [53] Haag, R., Kastler, D. An Algebraic approach to quantum eld theory. J. Math. Phys., 5, 848-861, 1964. 19 [54] Sakai, S. C*-Algebras and W*-Algebras. Springer-Verlag Berlin Heidelberg, 1998. 23 [55] Hollands, S., Sanders, K. Entanglement measures and their properties in quantum field theory, 2017. 28, 42, 67, 69, 246 [56] Carpi, S., Kawahigashi, Y., Longo, R. Structure and classication of superconformal nets. Annales Henri Poincare, 9, 1069-1121, 2008. 28 [57] Halvorson, H., Muger, M. Algebraic quantum eld theory. En: J. Buttereld, J. Earman (eds.) Philosophy of physics, pags. 731-864. 2007. 28, 38, 198, 202, 209, 214, 285 [58] Araki, H. Mathematical Theory of Quantum Fields, tomo 101. Oxford University Press, 2000. 29, 198, 209, 213 [59] Horuzhy, S. Introduction to algebraic quantum eld theory, tomo 19. Netherlands: Kluwer, 1990. 30, 31, 36, 75, 110, 115, 285 [60] Fredenhagen, K., Hertel, J. Local Algebras of Observables and Point - Like Localized Fields. Commun. Math. Phys., 80, 555, 1981. 31 [61] Bostelmann, H. Phase space properties and the short distance structure in quantum field theory. J. Math. Phys., 46, 052301, 2005. 31 [62] Longo, R., Xu, F. Relative Entropy in CFT. Adv. Math., 337, 139-170, 2018. 33, 74, 147, 183, 191, 215, 260, 261 [63] Lindblad, G. Entropy, Information, and Quantum Measurements. Commun. Math. Phys., 33, 305-322, 1973. 42 [64] Petz, D. Quantum information theory and quantum statistics. Springer Science & Business Media, 2007. 45, 49, 61, 284 [65] Ohya, M., Petz, D. Quantum entropy and its use. Springer Science & Business Media, 2004. 45, 46, 47, 48, 58, 59, 284 [66] Cover, T., Thomas, J. Elements of Information Theory. 2a editon. John Wiley & Sons, Inc., 2006. 45 [67] Nielsen, M., Cuang, I. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2011. 45, 66 [68] Jain, R., Radhakrishnan, J., Sen, P. A theorem about relative entropy of quantum states with an application to privacy in quantum communication, 2007. 48 [69] Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys., 74, 197-234, 2002. 49 [70] Buchholz, D., Fredenhagen, K., D'Antoni, C. The Universal Structure of Local Algebras. Commun. Math. Phys., 111, 123, 1987. 51 [71] Haaherup, U. THE STANDARD FORM OF VON NEUMANN ALGEBRAS. Mathematica Scandinavica, 37, 271-283, 1976. 52, 57 [72] Longo, R., Rehren, K.-H. Nets of subfactors. Rev. Math. Phys., 7, 567-598, 1995. 62, 189, 218, 233, 261, 307, 308, 309 [73] Bell, J. S. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1, 195-200, Nov 1964. URL https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195. 63 [74] Clauser, J. F., Horne, M. A., Shimony, A., Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, 880{884, Oct 1969. URL https://link.aps.org/doi/10.1103/PhysRevLett.23.880. 63, 64 [75] Freedman, S. J., Clauser, J. F. Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett., 28, 938-941, 1972. 66 [76] Aspect, A., Grangier, P., Roger, G. Experimental tests of realistic local theories via bell's theorem. Phys. Rev. Lett., 47, 460-463, Aug 1981. URL https://link.aps.org/doi/10.1103/PhysRevLett.47.460. [77] Aspect, A., Dalibard, J., Roger, G. Experimental test of bell's inequalities using time-varying analyzers. Phys. Rev. Lett., 49, 1804-1807, Dec 1982. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.1804. [78] Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N. Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A, 57, 3229-3232, May 1998. URL https://link.aps.org/doi/10.1103/PhysRevA.57. 3229. [79] Tittel, W., Brendel, J., Zbinden, H., Gisin, N. Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett., 81, 3563-3566, Oct 1998. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.3563. [80] Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A. Violation of bell's inequality under strict einstein locality conditions. Phys. Rev. Lett., 81, 5039-5043, Dec 1998. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.5039. [81] Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A. Experimental test of quantum nonlocality in three-photon greenberger-horne-zeilinger entanglement. Nature, 403 (6769), 515-519, 2000. URL https://doi.org/10.1038/35000514.[82] Rowe, M. A., Kielpinski, D., Meyer, V., Sackett, C. A., Itano, W. M., Monroe, C., et al. Experimental violation of a bell's inequality with efficient detection. Nature, 409 (6822), 791-794, 2001. [83] Groblacher, S., Paterek, T., Kaltenbaek, R., Brukner, C*., Z_ ukowski, M., Aspelmeyer, M., et al. An experimental test of non-local realism. Nature, 446 (7138), 871-875, 2007. [84] Salart, D., Baas, A., van Houwelingen, J. A. W., Gisin, N., Zbinden, H. Spacelike separation in a bell test assuming gravitationally induced collapses. Phys. Rev. Lett., 100, 220404, Jun 2008. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.220404. [85] Ansmann, M., Wang, H., Bialczak, R. C., Hofheinz, M., Lucero, E., Neeley, M., et al. Violation of bell's inequality in josephson phase qubits. Nature, 461 (7263), 504-506, 2009. [86] Giustina, M., Mech, A., Ramelow, S., Wittmann, B., Koer, J., Beyer, J., et al. Bell violation using entangled photons without the fair-sampling assumption. Nature, 497, 227 EP -, 04 2013. [87] Larsson, J.-A., Giustina, M., Koer, J., Wittmann, B., Ursin, R., Ramelow, S. Bellinequality violation with entangled photons, free of the coincidence-time loophole. Phys. Rev. A, 90, 032107, Sep 2014. URL https://link.aps.org/doi/10.1103/PhysRevA.90.032107. [88] Christensen, B. G. e. a. Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett., 111, 130406, Sep 2013. URL https://link.aps.org/doi/10.1103/PhysRevLett.111.130406. [89] Shalm, L. K. e. a. Strong loophole-free test of local realism. Phys. Rev. Lett., 115, 250402, Dec 2015. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.250402. 66 [90] Einstein, A., Podolsky, B., Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47, 777-780, May 1935. URL https://link.aps.org/doi/10.1103/PhysRev.47.777. 66 [91] Takesue, H., Dyer, S. D., Stevens, M. J., Verma, V., Mirin, R. P., Nam, S. W. Quantum teleportation over 100 km of ber using highly efficient superconducting nanowire single-photon detectors. Optica, 2 (10), 832-835, Oct 2015. URL http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-10-832. 66 [92] Summers, S. J. On the independence of local algebras in quantum field theory. Rev. Math. Phys., 2, 201-247, 1990. 72, 73 [93] Buchholz, D. Product States for Local Algebras. Commun. Math. Phys., 36, 287-304, 1974. 73 [94] Buchholz, D., Wichmann, E. H. Causal Independence and the Energy Level Density of States in Local Quantum Field Theory. Commun. Math. Phys., 106, 321, 1986. 73 [95] Davidson, D. R. Modular covariance and the algebraic PCT / spin statistics theorem, 1995. 76, 286 [96] Verch, R., Werner, R. F. Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys., 17, 545-576, 2005. 77 [97] Casini, H. Geometric entropy, area and strong subadditivity. Classical and Quantum Gravity, 21 (9), 2351, 2004. 80 [98] Liu, H., Mezei, M. A Renement of entanglement entropy and the number of degrees of freedom. JHEP, 04, 162, 2013. 81 [99] Cardy, J. L. Is There a c Theorem in Four-Dimensions? Phys. Lett., B215, 749-752, 1988. 83 [100] Casini, H., Huerta, M., Myers, R. C., Yale, A. Mutual information and the Ftheorem. JHEP, 10, 003, 2015. 83, 86, 88, 281 [101] Jafferis, D. L., Klebanov, I. R., Pufu, S. S., Safdi, B. R. Towards the F-Theorem: N=2 Field Theories on the Three-Sphere. JHEP, 06, 102, 2011. 83 [102] Myers, R. C., Singh, A. Entanglement Entropy for Singular Surfaces. JHEP, 09, 013, 2012. 84 [103] Bueno, P., Myers, R. C., Witczak-Krempa, W. Universality of corner entanglement in conformal eld theories. Phys. Rev. Lett., 115, 021602, 2015. [104] Elvang, H., Hadjiantonis, M. Exact results for corner contributions to the entanglement entropy and Renyi entropies of free bosons and fermions in 3d. Phys. Lett., B749, 383-388, 2015. 84 [105] Casini, H., Huerta, M. Entanglement entropy in free quantum field theory. J. Phys., A42, 504007, 2009. 84, 91, 94, 139, 155, 183 [106] Hollands, S. Relative entropy close to the edge, 2018. 88 [107] Araki, H. On quasifree states of car and bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. Kyoto, 6, 385-442, 1971. 90 [108] Gaudin, M. Une demonstration simplifee du theorieme de wick en mecanique statistique. Nuclear Physics, 15, 89-91, 1960. URL http://www.sciencedirect.com/science/article/pii/0029558260902856. 91 [109] Chung, M.-C., Peschel, I. Density-matrix spectra for two-dimensional quantum systems. Physical Review B, 62 (7), 4191-4193, Aug 2000. URL http://dx.doi.org/10.1103/PhysRevB.62.4191. 93 [110] Peschel, I. Calculation of reduced density matrices from correlation functions. Journal of Physics A: Mathematical and General, 36 (14), L205-L208, Mar 2003. URL http://dx.doi.org/10.1088/0305-4470/36/14/101. 93 [111] Sorkin, R. D. Expressing entropy globally in terms of (4D) field-correlations. J. Phys. Conf. Ser., 484, 012004, 2014. 94 [112] Seeley, R. T. Extension of c1 functions dened in a half space. Proc. Amer. Math. Soc., 15, 625-626, 1964. URL https://doi.org/10.1090/S0002-9939-1964-0165392-8. 107 [113] Araki, H. A lattice of von neumann algebras associated with the quantum theory of a free bose field. Journal of Mathematical Physics, 4 (11), 1343-1362, 1963. URL https://doi.org/10.1063/1.1703912. 110, 113, 114 [114] Araki, H. Von neumann algebras of local observables for free scalar field. Journal of Mathematical Physics, 5 (1), 1-13, 1964. URL https://doi.org/10.1063/1.1704063. 112, 113, 115, 116 [115] Guido, D. Modular theory for the von Neumann algebras of Local Quantum Physics. Contemp. Math., 534, 97-120, 2011. 110 [116] Camassa, P. Relative Haag duality for the free field in Fock representation. Annales Henri Poincare, 8, 1433-1459, 2007. 116 [117] Lashkari, N. Modular Hamiltonian for Excited States in Conformal Field Theory. Phys. Rev. Lett., 117 (4), 041601, 2016. 119 [118] Lashkari, N., Liu, H., Rajagopal, S. Modular Flow of Excited States, 2018. 131 [119] Ruggiero, P., Tonni, E., Calabrese, P. Entanglement entropy of two disjoint intervals and the recursion formula for conformal blocks. J. Stat. Mech., 1811 (11), 113101, 2018. 133 [120] Coser, A., Tonni, E., Calabrese, P. Spin structures and entanglement of two disjoint intervals in conformal field theories. J. Stat. Mech., 1605 (5), 053109, 2016. [121] Alba, V., Tagliacozzo, L., Calabrese, P. Entanglement entropy of two disjoint intervals in c=1 theories. J. Stat. Mech., 1106, P06012, 2011. [122] Calabrese, P., Cardy, J., Tonni, E. Entanglement entropy of two disjoint intervals in conformal field theory. J. Stat. Mech., 0911, P11001, 2009. 171 [123] Calabrese, P., Cardy, J., Tonni, E. Entanglement entropy of two disjoint intervals in conformal field theory II. J. Stat. Mech., 1101, P01021, 2011. 171 [124] Dupic, T., Estienne, B., Ikhlef, Y. Entanglement entropies of minimal models from null-vectors. SciPost Phys., 4 (6), 031, 2018. 133 [125] Cardy, J., Tonni, E. Entanglement hamiltonians in two-dimensional conformal eld theory. J. Stat. Mech., 1612 (12), 123103, 2016. 133 [126] Cardy, J., Maloney, A., Maxeld, H. A new handle on three-point coefficients: OPE asymptotics from genus two modular invariance. JHEP, 10, 136, 2017. 133, 183, 261, 288 [127] Mack, G. Introduction to conformal Invariant quantum field theory in two-dimensions and more dimensions. En: NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute) Cargese, France, July 16-30, 1987. 1988. URL http://www-library.desy.de/cgi-bin/showprep.pl? DESY-88-120. 134 [128] Fewster, C. J., Hollands, S. Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys., 17, 577, 2005. 134, 135, 136 [129] Muskhelishvili, N. I. Singular Integral Equations. Groningen Holland, 1990. 138 [130] Wong, G. Gluing together Modular flows with free fermions. JHEP, 04, 045, 2019. 147 [131] V., K. Vertex Algebras for Beginners: Second Edition, tomo 10. American Mathematical Society (University Lecture Series), 1998. 152 [132] Bischo, M., Tanimoto, Y. Construction of wedge-local nets of observables through Longo-Witten endomorphisms. II. Commun. Math. Phys., 317, 667-695, 2013. 152 [133] Casini, H., Fosco, C. D., Huerta, M. Entanglement and alpha entropies for a massive Dirac field in two dimensions. J. Stat. Mech., 0507, P07007, 2005. 170, 260 [134] Cardy, J. Some results on the mutual information of disjoint regions in higher dimensions. Journal of Physics A: Mathematical and Theoretical, 46 (28), 285402, 2013. URL http://stacks.iop.org/1751-8121/46/i=28/a=285402. 171 [135] Agon, C., Faulkner, T. Quantum Corrections to Holographic Mutual Information. JHEP, 08, 118, 2016. 171 [136] Cvitkovic, M., Smith, A.-S., Pande, J. Asymptotic expansions of the hypergeometric function with two large parameters|application to the partition function of a lattice gas in a eld of traps. Journal of Physics A: Mathematical and Theoretical, 50 (26), 265206, jun 2017. 175 [137] Kawahigashi, Y., Longo, R., Muger, M. Multiinterval subfactors and modularity of representations in conformal eld theory. Commun. Math. Phys., 219, 631-669, 2001. 183, 261 [138] Rehren, K.-H., Tedesco, G. Multilocal fermionization. Lett. Math. Phys., 103, 19-36, 2013. 187, 287 [139] Buchholz, D., Fredenhagen, K. Locality and the Structure of Particle States. Commun. Math. Phys., 84, 1, 1982. 190, 234 [140] Ghosh, S., Soni, R. M., Trivedi, S. P. On The Entanglement Entropy For Gauge Theories. JHEP, 09, 069, 2015. 191 [141] Soni, R. M., Trivedi, S. P. Entanglement entropy in (3 + 1)-d free U(1) gauge theory. JHEP, 02, 101, 2017. [142] Soni, R. M., Trivedi, S. P. Aspects of Entanglement Entropy for Gauge Theories. JHEP, 01, 136, 2016. [143] Van Acoleyen, K., Bultinck, N., Haegeman, J., Marien, M., Scholz, V. B., Verstraete, F. The entanglement of distillation for gauge theories. Phys. Rev. Lett., 117 (13), 131602, 2016. [144] Donnelly, W., Wall, A. C. Entanglement entropy of electromagnetic edge modes. Phys. Rev. Lett., 114 (11), 111603, 2015. [145] Donnelly, W. Decomposition of entanglement entropy in lattice gauge theory. Phys. Rev., D85, 085004, 2012. [146] Donnelly, W., Wall, A. C. Geometric entropy and edge modes of the electromagnetic field. Phys. Rev., D94 (10), 104053, 2016. [147] Donnelly, W. Entanglement entropy and nonabelian gauge symmetry. Class. Quant. Grav., 31 (21), 214003, 2014. [148] Camps, J. Superselection Sectors of Gravitational Subregions. JHEP, 01, 182, 2019. 191 [149] Casini, H., Huerta, M., Rosabal, J. A. Remarks on entanglement entropy for gauge fields. Phys. Rev., D89 (8), 085012, 2014. 191 [150] Xu, F. Some Results On Relative Entropy in Quantum Field Theory, 2018. 191, 261 [151] K. Yu. Dadashyan, S. S. H. Algebras of observables of the free Dirac eld. Theoret. and Math. Phys., 36, 665-675, 1978. 194 [152] Borchers, H.-J. A remark on a theorem of b. misra. Comm. Math. Phys., 4 (5), 315-323, 1967. URL https://projecteuclid.org:443/euclid.cmp/1103839939. 209 [153] D'Antoni, C. Technical properties of the quasilocal algebra. En: In *Palermo 1989, Proceedings, The algebraic theory of superselection sectors and field theory* 248-258. 1989. 209 [154] Doplicher, S., Longo, R. Standard and split inclusions of von Neumann algebras. Invent. Math., 75, 493-536, 1984. 213, 279 [155] Guido, D., Longo, R. An Algebraic spin and statistics theorem. Commun. Math. Phys., 172, 517, 1995. 221 [156] Coles, P. J., Berta, M., Tomamichel, M., Wehner, S. Entropic uncertainty relations and their applications. Reviews of Modern Physics, 89 (1), 015002, 2017. 233 [157] Berta, M., Wehner, S., Wilde, M. M. Entropic uncertainty and measurement reversibility. New Journal of Physics, 18 (7), 073004, 2016. 233 [158] Harlow, D., Ooguri, H. Symmetries in quantum eld theory and quantum gravity, 2018. 236 [159] Hamermesh, M. Group theory and its application to physical problems. Courier Corporation, 2012. 239 [160] Lewkowycz, A., Maldacena, J. Exact results for the entanglement entropy and the energy radiated by a quark. JHEP, 05, 025, 2014. 246 [161] Dong, S., Fradkin, E., Leigh, R. G., Nowling, S. Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids. JHEP, 05, 016, 2008. [162] Caputa, P., Simon, J., Stikonas, A., Takayanagi, T. Quantum Entanglement of Localized Excited States at Finite Temperature. JHEP, 01, 102, 2015. [163] Nozaki, M., Numasawa, T., Takayanagi, T. Quantum Entanglement of Local Operators in Conformal Field Theories. Phys. Rev. Lett., 112, 111602, 2014. [164] Alcaraz, F. C., Berganza, M. I., Sierra, G. Entanglement of low-energy excitations in Conformal Field Theory. Phys. Rev. Lett., 106, 201601, 2011. [165] Longo, R. Entropy distribution of localised states, 2018. 246 [166] Roberts, J. E. Spontaneously Broken Gauge Symmetries and Superselection Rules. 1974. 247 [167] Doplicher, S. Local observables, gauge symmetries and broken symmetries. Nucl. Phys. Proc. Suppl., 18B, 73-77, 1990. [168] Buchholz, D., Doplicher, S., Longo, R., Roberts, J. E. A New look at Goldstone's theorem. Rev. Math. Phys., 4 (spec01), 49-83, 1992. 247, 249, 252 [169] Roberts, J. E. Net Cohomology and Its Applications to Field Theory. pags. 239-268, 1978. 247 [170] Casini, H., Huerta, M. Entanglement entropy for a Maxwell eld: Numerical calculation on a two dimensional lattice. Phys. Rev., D90 (10), 105013, 2014. 258 [171] Agon, C. A., Headrick, M., Jaeris, D. L., Kasko, S. Disk entanglement entropy for a Maxwell eld. Phys. Rev., D89 (2), 025018, 2014. 259 [172] Metlitski, M. A., Grover, T. Entanglement Entropy of Systems with Spontaneously Broken Continuous Symmetry, 2011. 259 [173] Kallin, A. B., Hastings, M. B., Melko, R. G., Singh, R. R. Anomalies in the entanglement properties of the square-lattice heisenberg model. Physical Review B, 84 (16), 165134, 2011. 259 [174] Xu, F. On Relative Entropy and Global Index, 2018. 261 [175] Carpi, S., Kawahigashi, Y., Longo, R. Structure and classication of superconformal nets. En: Annales Henri Poincare, tomo 9, pags. 1069-1121. Springer, 2008. 263 [176] Gleason, A. M. Measures on the closed subspaces of a hilbert space. Journal of Mathematics and Mechanics, 6 (6), 885{893, 1957. 285 [177] Beltrametti, E. G., Cassinelli, G. The logic of quantum mechanics. D. Reidel Publishing Company, Dordrecht, 1978. [178] Mittelstaedt, P. Quantum logic. Compendium of Quantum Physics. Springer, Berlin, Heidelberg, 2009. 285 [179] Casini, H., Huerta, M., Magan, J. M., Pontello, D. On the logarithmic coefficient of the entanglement entropy of a Maxwell eld, 2019. 289 [180] Casini, H., Huerta, M., Magan, J. M., Pontello, D. Entanglement entropy and superselection sectors. Part I. Global symmetries. JHEP, 2020 (2), 14, 2020. 289 [181] Evans, L. C. Partial Differential Equations. Graduates Studies in Mathematics, American Mathematical Society, 2010. 295 [182] Scholtes, S. Introduction to Piecewise Dierentiable Equations. Springer-Verlag New York, 2012. 296
Materias:Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:994
Depositado Por:Tamara Cárcamo
Depositado En:24 Ene 2022 10:01
Última Modificación:24 Ene 2022 10:01

Personal del repositorio solamente: página de control del documento