Fagiano, Florencia P. (2022) Mejora de las propiedades de almacenamiento de hidrógeno de un hidruro complejo / Improvement of the hydrogen storage properties of a complex hydride. Master in Engineering, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Spanish 9Mb |
Abstract in Spanish
Esta Tesis de Maestría en Ingeniería se centró en el estudio de materiales para almacenamiento de hidrógeno. Específicamente, se investigaron materiales compuestos del sistema Li-Mg-B-N-H, basados en amiduro de magnesio (Mg(NH_2)_2) e hidruro de litio (LiH) junto con un conductor iónico, Li_4(NH_2)_3BH_4. En una primera parte se analizó el efecto de variar la proporción molar de los materiales de partida utilizados. Se sintetizaron los sistemas almacenadores utilizando los reactivos LiNH_2 : MgH_2 : LiBH_4 en las proporciones molares 2,6:1:0,2; 2:1:0,2 y 2:1,5:0,2 y se estudió su efecto en las propiedades de almacenamiento de hidrógeno. Se demostró que trabajar con las cantidades estequiométricas de reactivos no permite alcanzar la conversión completa en las reacciones de síntesis y se observa un remanente del reactivo LiNH_2. El sistema sintetizado en proporciones 2:1:0,2 mostró la mayor capacidad de almacenamiento de hidrógeno (4,2% p/p), mayor estabilidad al ciclado y cinéticas de liberación de hidrógeno más rápidas. Además, se comprobó un efecto beneficioso en la estabilidad al ciclado de los sistemas 2,6:1:0,2 y 2:1:0,2 al realizar un tratamiento térmico prolongado. En una segunda parte la investigación se focalizó en el efecto de la temperatura en la interacción con hidrógeno y las propiedades microestucturales del sistema 2:1:0,2, ya que este es el material que presentó mejores propiedades como almacenador de hidrógeno. Se realizaron estudios cinéticos, donde se analizó el efecto de la temperatura (rango: 140-220 ◦C) en la velocidad de reacción con hidrógeno y se calculó la energía de activación de las reacciones de hidrogenación y deshidrogenación. Los estudios microestructurales permitieron observar la formación de diversas estructuras y láminas delgadas, las cuales podrían asociarse a las buenas propiedades cinéticas mostradas por el sistema. En la ultima parte se estudió el efecto del contenido de LiBH_4 en las propiedades de almacenamiento del sistema Li-Mg-B-N-H, debido a que se realizaron cálculos de capacidad teórica que indican que se podría alcanzar una mayor capacidad de almacenamiento de hidrógeno en el sistema 2:1:0,1. Para ello se sintetizó este nuevo material, se lo caracterizó y se estudió su interacción con hidrógeno. Disminuir la cantidad de LiBH_4 genero que la formación del conductor iónico fuera menor, lo que afecta la cinética de reacción. Sin embargo, no se ve afectada la capacidad de almacenamiento del sistema ni las propiedades termodinámicas de las reacciones involucradas. Estos resultados permiten confirmar que la formación de Li_4(NH_2)_3BH_4 mejora el comportamiento cinético del sistema.
Abstract in English
This Master’s Thesis in Engineering was focused on the study of composite materials for hydrogen storage. Specifically, the Li-Mg-B-N-H system was investigated, based on magnesium amide (Mg(NH_2)_2), lithium hydride (LiH) and an ionic conductor, Li_4(NH_2)_3BH_4. In the first part, the effect of the stoichiometry of the starting materials was analyzed. The materials were synthesized using the reagents LiNH_2 : MgH_2 : LiBH_4 in the molar ratios 2.6:1:0.2; 2:1:0.2 and 2:1.5:0.2 and their effect on hydrogen storage properties was studied. It was not possible to reach complete conversion in the synthesis reactions working with the stoichiometric amounts of reagents and an excess of LiNH_2 was observed. The 2:1:0.2 system showed the highest hydrogen storage capacity (4,2 wt%), highest cycling stability, and fastest hydrogen desorption kinetics. In addition, a beneficial effect on the cycling stability of the 2.6:1:0.2 and 2:1:0.2 systems was verified by applying extended annealing following ball milling. In the second part, the investigation was focused on the effect of temperature on the interaction with hydrogen and the microstructural characterization of the 2:1:0.2 system, since this material presented the best storage properties. Kinetic studies were carried out, where the effect of temperature (range: 140-220 ºC) on the rate of reaction with hydrogen was analyzed and the activation energy of the hydrogenation and dehydrogenation reactions were determined. The microstructural studies exhibited the formation of various structures and regions with laminar morphology, which could be associated with the good kinetic properties of the system. In the last part, the effect of the LiBH_4 content on the storage properties of the Li-Mg-B-N-H system was studied, since theoretical capacity calculations indicated that a greater hydrogen storage capacity could be achieved in the 2:1:0.1 system. This new material was synthesized, characterized and its interaction with hydrogen was studied. Decreasing the amount of LiBH_4 reduced the formation of the ionic conductor, which affected the kinetics of the system. However, neither the storage capacity of the system nor the thermodynamic properties of the reactions were modified. These results confirm that the formation of Li_4(NH_2)_3BH_4 improves the kinetic behavior of the system.
Item Type: | Thesis (Master in Engineering) |
---|---|
Keywords: | Hidrogen; Hidrogeno; Storage; Almacenamiento; Hydrides; Hidruros; Energy; Energía; Kinetic; Cinética; Thermodynamics; Termodinámica |
References: | [1] New Zeland’s Energy Mix, Energy Resources. Global consumption. https://www.energymix.co.nz/our-consumption/global-consumption/., 2022. [Ultimo acceso: 30-09-2022.]. vii, vii, 2, 3, 4 [2] Ritchie, H. and Roser, M. CO2 emissions. https://ourworldindata.org/ co2-emissions, 2022. [ Ultimo acceso: 01-10-2022.]. vii, 1, 2 [3] IEA. Global energy review: CO2 emissions in 2021. Report, IEA, 2022. Https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2. vii, 3, 4 [4] National Oceanic and Atmospheric Administration (NOAA). Climate change: Global temperature. https://www.climate.gov/., 2022. [Ultimo acceso: 27-09-2022.]. vii, 4, 5 [5] IPCC. Summary for policymakers. En: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, p´ags. 3–32. Cambridge University Press, 2021. vii, 4, 5 [6] Office of energy efficiency and renewable energy. Hydrogen storage. https://www.energy.gov/eere[10] Fritsch sample preparation and particle sizing, planetary mono mill pulverisette 6 classic line. https://www.fritsch-international.com/. [Ultimo acceso: 01-09-2022.]. [11] Klell, M. Storage of hydrogen in the pure form. En: Handbook of Hydrogen Storage, págs. 1–37. Wiley-VCH, 2010. 7, 9 [12] Walker, G. Hydrogen storage technologies. En: Solid-state hydrogen storage, págs. 3–15. Woodhead Publishing Limited, Cambridge England, 2008. 7, 9, 12 [13] Sund´en, B. Chapter 3 - hydrogen. En: Hydrogen, Batteries and Fuel Cells, págs. 37–55. Academic Press, 2019. 9 [14] Huot, J. Metal hydrides. En: Handbook of Hydrogen Storage, págs. 81–116. Wiley-VCH, 2010. 11 [15] Amica, G. Preparación, estudio y optimización de amiduros de litio y magnesio para almacenamiento de hidrógeno. Tesis Doctoral, Instituto Balseiro, 2018. 12, 20, 25, 36, 43, 50, 60 [16] Office of energy efficiency and renewable energy. Doe technical targets for onboard hydrogen storage for lightduty vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles, 2022. [Ultimo acceso: 08-10-2022.]. 12 [17] Reilly, J. J., Wiswall, R. H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic chemistry, 7, 2254–2256, 1968.14 [18] Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature, 420, 302–304, 2002. 15, 16 [19] Walker, G. Imides and amides as hydrogen storage materials. En: Solid-state hydrogen storage, p´ags. 450–477. Woodhead Publishing Limited, Cambridge England, 2008. 15, 17 [20] Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K. L. Interaction between lithium amide and lithium hydride. J. Phys. Chem., 107, 10967–10970, 2003. 15, 17 [21] Pinkerton, F. E., Meisner, G. P., Meyer, M. S., Balogh, M. P., Kundrat, M. D. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. J. Phys. Chem. B, 109, 6–8, 2005. 15 /fuelcells/hydrogen-storage, 2022. [Ultimo acceso: 01-10-2022.]. [7] Zuttel, A. Materials for hydrogen storage. Materials Today, 6, 24–33, 2003. vii, vii, 12, 14 [8] Schlapbach, L., Zuttel, A. Hydrogen-storage materials for mobile applications. Nature, 414, 353–358, 2001. vii, 9, 12 [9] Garroni, S., Santoru, A., Cao, H., Dornheim, M., Klassen, T., Milanese, C., et al. Recent progress and new perspectives on metal amide and imide systems for solidstate hydrogen storage. Energies, 11, 1–28, 2018. vii, 16, 17 [22] Meisner, G. P., Pinkerton, F. E., Meyer, M. S., Balogh, M. P., Kundrat, M. D. Study of the lithium–nitrogen–hydrogen system. Journal of Alloys and Compounds, 404-406, 24–26, 2005. 17 [23] Hino, S., Ichikawa, T., Ogita, N., Udagawaa, M., Fujii, H. Quantitative estimation of NH3 partial pressure in H2 desorbed from the Li–N–H system by Raman spectroscopy. Chemical Communications, 24, 3038–3040, 2005. 17 [24] Ikeda, S., Kuriyama, N., Kiyobayash, T. Simultaneous determination of ammonia emission and hydrogen capacity variation during the cyclic testing for LiNH2–LiH hydrogen storage system. Chemical Communications, 33, 6201–6204, 2008. 17 [25] Shaw, L. L., Ren, R., Markmaitree, T., Osborn, W. Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system. Journal of Alloys and Compounds, 448, 263–271, 2008. 17 [26] Ichikawa, T., Hanada, N., Isobe, S., Leng, H., Fujii, H. Hydrogen storage properties in Ti catalyzed Li–N–H system. Journal of Alloys and Compounds, 404–406, 435–438, 2005. 17 [27] Yao, J. H., Shang, C., Aguey-Zinsou, K. F., Guo, Z. X. Hydrogen storage properties in Ti catalyzed Li–N–H system. Journal of Alloys and Compounds, 432, 277–282, 2007. 17 [28] Rijssenbeek, T., Gao, Y., Hanson, J., Huang, Q., Jones, C., Toby, B. Crystal structure determination and reaction pathway of amide–hydride mixtures. Journal of Alloys and Compounds, 454, 233–244, 2008. 17, 18 [29] Fernandez Albanesi, L., Arneodo Larochette, P., Gennari, F. C. Destabilization of the LiNH2−LiH hydrogen storage system by aluminum incorporation. International Journal of Hydrogen Energy, 38, 12325–12334, 2013. 17 [30] Chu, H., Xiong, Z., Wu, G., He, T., Wu, C., Chen, P. Hydrogen storage properties of Li − Ca − N − H system with different molar ratios of LiNH2/CaH2. International Journal of Hydrogen Energy, 35, 8317–8321, 2010. 17 [31] Hirscher, M., Yartys, V. A., et al. Materials for hydrogen-based energy storage -past, recent progress and future outlook. Journal of Alloys and Compounds, 827, 1535–1548, 2020. 17 [32] Luo, W. LiNH2–MgH2: a viable hydrogen storage system. Journal of Alloys and Compounds, 381, 284–287, 2004. 17[33] Ziong, Z., Wu, G., Hu, J., Chen, P. Ternary imides for hydrogen storage. Advanced Materials, 16, 1522–1525, 2004. 18 [34] Amica, G., Cova, F., Arneodo Larochette, P., Gennari, F. C. Effective participation of Li4(NH2)3BH4 in the dehydrogenation pathway of the Mg(NH2)2–2LiH composite. Physical Chemistry Chemical Physics, 18, 17997–18005, 2016. 18, 20, 35, 38, 44, 70 [35] Hu, J., Liu, G., Wu, G., Xiong, Z., Chen, P. Structural and compositional changes during hydrogenation/dehydrogenation of the Li–Mg − N–H system. J. Phys. Chem., 111, 18439–18443, 2007. 18 [36] Markmaitree, T., Shaw, L. L. Synthesis and hydriding properties of Li2Mg(NH)2. Journal of Power Sources, 195, 1984–1991, 2010. 19 [37] Yang, J., Sudik, A., Siegel, D. J., Halliday, D., Drews, A., Carter, R. O., et al. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li − Mg − N − H system. Angewandte Chemie - International Edition, 47, 882–887, 2008. 19, 44 [38] Hu, J., Liu, Y., Wu, G., Xiong, Z., Chua, Y. S., Chen, P. Improvement of hydrogen storage properties of the Li−Mg −N −H system by addition of LiBH4. Chem. Mater., 20, 4398–4402, 2008. 19 [39] Li, B., Liu, Y., Gu, J., Gu, Y., Gao, M., Pan, H. Mechanistic investigations on significantly improved hydrogen storage performance of the Ca(BH4)2-added 2LiNH2/MgH2 system. International Journal of Hydrogen Energy, 38, 5030–5038, 2013. 19 [40] Pan, H., Shi, S., Liu, Y., Li, B., Yang, Y., Gao, M. Improved hydrogen storage kinetics of the Li–Mg–N–H system by addition of Mg(BH4)2. Dalton Transactions, 42, 3802–3811, 2013. 19 [41] Cao, H., Wu, G., Zhang, Y., Xiong, Z., Qiu, J., Chen, P. Effective thermodynamic alteration to Mg(NH2)2 −LiH system: Achieving near ambient-temperature hydrogen storage. Journal of Materials Chemistry A, 2, 15816–15822, 2014. 19 [42] Anderson, P. A., Chater, P. A., Hewett, D. R., Slater, P. R. Hydrogen storage and ionic mobility in amide–halide systems. Faraday Discussions, 151, 271–284, 2011. 20 [43] Puszkiel, J. A. Preparación, estudio y optimización de hidruros complejos para almacenamiento de hidrógeno. Tesis Doctoral, Instituto Balseiro, 2012. 26 [44] Suryanarayana, C., Grant Norton, M. X-Ray Diffraction, A Practical Approach. Springer Science+Business Media, LLC, 1998. 31 [45] Brandon, D., Kaplan, W. D. Microstructural Characterization of Materials. John Wiley and Sons Ltd, 2008. 31 [46] Fullprof program. https://www.ill.eu/sites/fullprof/index.html. [Ultimo acceso: 03-09-2022.]. 32 [47] Khan, S. A., Khan, S. B., Khan, L. U., Farooq, A., Akhtar, K., Asiri, A. M. Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. En: Handbook of Materials Characterization, págs. 317–344. Springer International Publishing AG, 2018. 32 [48] Akhtar, K., Khan, S. A., Khan, S. B., Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. En: Handbook of Materials Characterization, pág. 113–145. Springer International Publishing AG, 2018. 34 [49] Fernández Albanesi, L. Hidruros complejos del sistema Li − N − H para almacenamiento y purificación de hidrógeno: preparación, caracterización y estudio de factibilidad. Tesis Doctoral, Instituto Balseiro, 2017. 35, 60 [50] Hu, J., Weidner, E., Hoelzel, M., Fichtner, M. Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH–Mg(NH2)2 system. Dalton Transactions, 39, 9100–9107, 2020. 57 [51] Amica, G., Arneodo Larochette, P., Gennari, F. C. Hydrogen storage properties of LiNH2 −LiH system with MgH2, CaH2 and TiH2 added. International Journal of Hydrogen Energy, 40, 9335–9346, 2015. 70 [52] Makepeace, J. W., Jones, M. O., Callear, S. K., Edwards, P. P., David, W. I. F. In situ x-ray powder diffraction studies of hydrogen storage and release in the Li–N–H system. Phys. Chem. Chem. Phys., 16, 4061–4070, 2014. 70 [53] Wang, H., Cao, H., Pistidda, C., Garroni, S., Wu, G., Klassen, T., et al. Effects of stoichiometry on the H2-storage properties of Mg(NH2)2–LiH–LiBH4 tri-component systems. Chem. Asian J., 12, 1758–1764, 2017. 70 |
Subjects: | Engineering > Almacenamiento de hidrógeno |
Divisions: | Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Fisicoquímica de materiales |
ID Code: | 1139 |
Deposited By: | Tamara Cárcamo |
Deposited On: | 11 Aug 2023 15:27 |
Last Modified: | 11 Aug 2023 15:27 |
Repository Staff Only: item control page