Aplicación de velocimetría por imágenes de partículas a flujos sobre medios porosos / Application of particle image velocimetry to flow over porous media

Carovano, Iván R. (2023) Aplicación de velocimetría por imágenes de partículas a flujos sobre medios porosos / Application of particle image velocimetry to flow over porous media. Master in Engineering, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

En el presente trabajo fue abordada la problemática de la medición del campo de velocidades de un fluido que circula a través de un medio poroso, mediante la técnica de Velocimetría por Imágenes de Partículas (PIV) en un plano. Se llevó a cabo un estudio exhaustivo de esta técnica, con la finalidad de desarrollar un conjunto de herramientas de procesamiento, buscando optimizar la aplicación del método PIV al caso particular de flujo en medios porosos. Estas herramientas fueron incorporadas a un software con interfaz de usuario que también fue desarrollado en el marco del trabajo. Se llevaron a cabo ensayos por medio de imágenes sintéticas y el método de Montecarlo para caracterizar el desempeño de los distintos algoritmos implementados. También se realizaron mediciones experimentales aplicando las herramientas desarrolladas. Los medios porosos empleados en los experimentos fueron producidos mediante impresión 3D. Estos medios fueron caracterizados a partir del coeficiente de permeabilidad de Darcy. Los resultados obtenidos demuestran la aplicabilidad del modelo de Darcy en las condiciones estudiadas. A su vez, se demuestra la factibilidad para la medición del campo de velocidades dentro de los poros del medio. Se comprobó que el uso de técnicas como la aplicación de máscaras, técnica de mascara digital y el método PIV Super Resolución permiten resolver algunas de las dificultades que surgen en la determinación del campo de velocidades dentro de los poros.

Abstract in English

In the present work, the problem of measuring the velocity field of a fluid that circulates through a porous medium was addressed, using the Particle Imaging Velocimetry (PIV) technique in a plane. An exhaustive study of this technique was carried out, in order to develop a set of processing tools, looking forward to the optimization of the PIV method application to the particular case of flow in porous media. These tools were incorporated into a software with a user interface that was also developed in the framework of the work. Tests were carried out using synthetic images and the Monte Carlo method to characterize the performance of the different implemented algorithms. Experimental measurements were also carried out applying the developed tools. The porous media used in the experiments were produced by 3D printing. These were characterized using the Darcy coefficient of permeability. The results obtained demonstrate the applicability of the Darcy model in the studied conditions. In turn, the feasibility for the measurement of the velocity field within the pores of the medium is demonstrated. It was verified that the use of techniques such as the application of masks, the digital mask technique and the Super Resolution PIV method allows to solve some of the difficulties that arise in the determination of the velocity field inside the pores.

Item Type:Thesis (Master in Engineering)
Keywords:Images; Imágenes; Correlations; Correlaciones; Monte Carlo methods; Método de Monte Carlo; [ Pouros media; Medios porosos; Velocimetry; Velocimetría]
References:Adrian, R. J. (1997). Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Measurement Science and Technology, 8(12), 1393. Agüí, J. C., & Jimenez, J. (1987). On the performance of particle tracking. Journal of fluid mechanics, 185, 447-468. Al-Nahhal, I., Dobre, O. A., Basar, E., Moloney, C., & Ikki, S. (2019). A fast, accurate, and separable method for fitting a Gaussian function [tips & tricks]. IEEE Signal Processing Magazine, 36(6), 157-163. Angele, K. P., & Muhammad-Klingmann, B. (2005). A simple model for the effect of peak-locking on the accuracy of boundary layer turbulence statistics in digital PIV. Experiments in fluids, 38(3), 341-347. Blais, F., & Rioux, M. (1986). Real-time numerical peak detector. Signal processing, 11(2), 145-155. Brady, M. R. (2006). Subpixel resolution schemes for multiphase flows. (Doctoral dissertation, Virginia Tech). Brady, M. R. (2009). Methods for digital particle image sizing (DPIS): comparisons and improvements. Flow Measurement and Instrumentation, 20(6), 207-219. Caruana, R. A., Searle, R. B., Heller, T., & Shupack, S. I. (1986). Fast algorithm for the resolution of spectra. Analytical chemistry, 58(6), 1162-1167. Chavarin, A., Efstathiou, C., Vijay, S., & Luhar, M. (2020). Resolvent-based design and experimental testing of porous materials for passive turbulence control. International Journal of Heat and Fluid Flow, 86, 108722. Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. Paris: V. Dalmont. Duncan, J., Dabiri, D., Hove, J., & Gharib, M. (2010). Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data. Measurement Science and Technology, 21(5), 057002. Durlofsky, L., & Brady, J. F. (1987). Analysis of the Brinkman equation as a model for flow in porous media. The Physics of fluids, 30(11), 3329-3341. Eckstein, A., & Vlachos, P. P. (2009). Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Measurement Science and Technology, 20(7), 075402. Fincham, A. M., & Spedding, G. R. (1997). Low cost, high resolution DPIV for measurement of turbulent fluid flow. Experiments in Fluids, 23(6), 449-462. Fisher, R. B., & Naidu, D. K. (1996). A comparison of algorithms for subpixel peak detection. En Image technology (págs. 385-404). Berlin: Springer. Garcia, D. (2011). A fast all-in-one method for automated post-processing of PIV data. Experiments in fluids, 50(5), 1247-1259. Grant, I. (1997). Particle image velocimetry: a review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(1), 55-76. Gui, L. (1997). Evaluation of low image density recordings with the MQD method and application to the flow in a liquid bridge. Journal of Flow Visualization & Image Processing, 4, 333-343. Gui, L., & Merzkirch, W. (1996a). A method of tracking ensembles of particle images. Experiments in fluids, 21(6), 465-468. Gui, L., & Merzkirch, W. (1996b). Phase-separation of PIV measurements in two-phase flow by applying a digital mask technique. ERCOFTAC Bull, 30, 45-48. Gui, L., & Merzkirch, W. (1998). Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings. Experiments in fluids, 24(1), 66-69. Gui, L., & Wereley, S. T. (2002). A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation. Experiments in Fluids, 32(4), 506-517. Gui, L., Merzkirch, W., & Fei, R. (2000). A digital mask technique for reducing the bias error of the correlation-based PIV interrogation algorithm. Experiments in fluids, 29(1), 30-35. Gui, L., Wereley, S. T., & Kim, Y. H. (2003). Advances and applications of the digital mask technique in particle image velocimetry experiments. Measurement Science and Technology, 14(10), 1820. Guo, H. (2011). A simple algorithm for fitting a Gaussian function [DSP tips and tricks]. IEEE Signal Processing Magazine, 28(5), 134-137. Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. Hildreth, E. C. (1984). Computations underlying the measurement of visual motion. Artificial Intelligence, 23(3), 309-354. Honkanen, M., & Nobach, H. (2005). Background extraction from double-frame PIV images. Experiments in fluids, 38(3), 348-362. Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artificial intelligence, 1981, 185-203. Huang, H. T., Fiedler, H. E., & Wang, J. J. (1993). Limitation and improvement of PIV. I: Limitation of conventional techniques due to deformation of particle image patterns. Experiments in fluids, 15(3), 168-174. Irmay, S. (1958). On the theoretical derivation of Darcy and Forchheimer formulas. Transactions American Geophysical Union, 39(4), 702-707. Jambunathan, K., Ju, X. Y., Dobbins, B. N., & Ashforth-Frost, S. (1995). An improved cross correlation technique for particle image velocimetry. Measurement Science and Technology, 6(5), 507. Kay, S. M. (1993). Least Squares. En Fundamentals of statistical signal processing (págs. 219-286). Englewood Cliffs, NJ: PTR Prentice-Hall. Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image velocimeters. I. Double pulsed systems. Measurement science and technology, 1(11), 1202. Keane, R. D., & Adrian, R. J. (1993). Theory of cross-correlation analysis of PIV images. En Flow visualization and image analysis (págs. 1-25). Dordrecht: Springer. Keane, R. D., Adrian, R., & Zhang, Y. (1995). Super-resolution particle imaging velocimetry. Measurement Science and Technology, 6(6), 754. Kemmerich, T., & Rath, H. J. (1994). Multi-level convolution filtering technique for digital laser-speckle-velocimetry. Experiments in fluids, 17(5), 315-322. Ledda, P. G., Siconolfi, L., Viola, F., Camarri, S., & Gallaire, F. (2019). Flow dynamics of a dandelion pappus: A linear stability approach. Physical review fluids, 4(7), 071901. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168. Liang, D., Jiang, C., & Li, Y. (2003). Cellular neural network to detect spurious vectors in PIV data. Experiments in fluids, 34(1), 52-62. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441. Masullo, A., & Theunissen, R. (2017). Automated mask generation for PIV image analysis based on pixel intensity statistics. Experiments in Fluids, 58(6), 1-11. Mejia-Alvarez, R., & Christensen, K. T. (2013). Robust suppression of background reflections in PIV images. Measurement Science and Technology, 24(2), 027003. Mendez, M. A., Raiola, M., Masullo, A., Discetti, S., Laniro, A., Theunissen, R., & Buchlin, J. M. (2017). POD-based background removal for particle image velocimetry. Experimental Thermal and Fluid Science, 80, 181-192. Mitra, S., de Castro, A. R., & El Mansori, M. (2019). On the rapid manufacturing process of functional 3D printed sand molds. Journal of Manufacturing Processes, 42, 202-212. Moin, P. (2010). Numerical Differentiation – Finite Differences. En Fundamentals of engineering numerical analysis (págs. 13-29). Cambridge University Press. Neuman, S. P. (1977). Theoretical derivation of Darcy's law. Acta mechanica, 25(3), 153-170. Nobach, H. &. (2005). Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Experiments in fluids, 38(4), 511-515. Nogueira, J., Lecuona, A., & Rodriguez, P. A. (1999). Local field correction PIV: on the increase of accuracy of digital PIV systems. Experiments in fluids, 27(2), 107-116. Nogueira, J., Legrand, M., Jiménez, R., & De Gregorio, F. (2021). Peak-locking full characterization: PIV error assessment and velocity ensemble measurement correction. Measurement Science and Technology, 32(11), 114005. Nuttall, A. (1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84-91. Pun, C. S., Susanto, A., & Dabiri, D. (2007). Mode-ratio bootstrapping method for PIV outlier correction. Measurement Science and Technology, 18(11), 3511. Raffel, M. M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). Particle Image Velocimetry. Springer. Ronneberger, O., Raffel, M., & Kompenhans, J. (1998). Advanced evaluation algorithms for standard and dual plane particle image velocimetry. En Proceedings of the 9th international symposium on applications of laser techniques to fluid mechanics (págs. 13-16). Lisboa, Portugal. Rosti, M. E., Brandt, L., & Pinelli, A. (2018). Turbulent channel flow over an anisotropic porous wall–drag increase and reduction. Journal of Fluid Mechanics, 842, 381-394. Scarano, F. (2001). Iterative image deformation methods in PIV. Measurement science and technology, 13(1), R1. Scarano, F. (2003). Theory of non-isotropic spatial resolution in PIV. Experiments in Fluids, 35(3), 268-277. Scarano, F., & Riethmuller, M. L. (1999). Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids, 26(6), 513-523. Sciacchitano, A., & Scarano, F. (2014). Elimination of PIV light reflections via a temporal high pass filter. Measurement Science and Technology, 25(8), 084009. Sciacchitano, A., & Wieneke, B. (2016). PIV uncertainty propagation. Measurement Science and Technology, 27(8), 084006. Shinneeb, A. M., Bugg, J. D., & Balachandar, R. (2004). Variable threshold outlier identification in PIV data. Measurement Science and Technology, 15(9), 1722. Soria, J. (1996). An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Experimental Thermal and Fluid Science, 12(2), 221-233. Spedding, G. R., & Rignot, E. J. (1993). Performance analysis and application of grid interpolation techniques for fluid flows. Experiments in Fluids, 15(6), 417-430. Stitou, A., & Riethmuller, M. L. (2001). Extension of PIV to super resolution using PTV. Measurement Science and Technology, 12(9), 1398. Suga, K., Okazaki, Y., Matsuo, T., Taneo, A., & Kuwata, Y. (2019). MEASUREMENT OF TURBULENT SQUARE DUCT FLOWS OVER ANISOTROPIC POROUS MEDIA. En Eleventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP11). Begel House Inc. Sugii, Y., Nishio, S., Okuno, T., & Okamoto, K. (2000). A highly accurate iterative PIV technique using a gradient method. Measurement Science and Technology, 11(12), 1666. Takehara, K., & Etoh, T. (1998). A study on particle identification in PTV particle mask correlation method. Journal of Visualization, 1(3), 313-323. Theunissen, R., Scarano, F., & Riethmuller, M. L. (2006). An adaptive sampling and windowing interrogation method in PIV. Measurement Science and Technology, 18(1), 275. Thevenaz, P., Ruttimann, U. E., & Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE transactions on image processing, 7(1), 27-41. Wereley, S. T., & Meinhart, C. D. (2001). Second-order accurate particle image velocimetry. Experiments in fluids, 31(3), 258-268. Wereley, S. T., Gui, L., & Meinhart, C. D. (2002). Advanced algorithms for microscale particle image velocimetry. AIAA journal, 40(6), 1047-1055. Westerweel, J. (1994). Efficient detection of spurious vectors in particle image velocimetry data. Experiments in fluids, 16(3), 236-247. Westerweel, J. (1995). Digital particle image velocimetry: Theory and application. Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Measurement science and technology, 8(12), 1379. Westerweel, J. (2000). Theoretical analysis of the measurement precision in particle image velocimetry. Experiments in Fluids, 29(1), S003-S012. Westerweel, J., & Scarano, F. (2005). Universal outlier detection for PIV data. Experiments in fluids, 39(6), 1096-1100. Westerweel, J., Dabiri, D., & Gharib, M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Experiments in fluids, 23(1), 20-28. Whitaker, S. (1986). Flow in porous media I: A theoretical derivation of Darcy's law. Transport in porous media, 1(1), 3-25. Willert, C. E. (1997). Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Measurement science and technology, 8(12), 1465. Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry. Experiments in fluids, 10(4), 181-193.
Subjects:Mechanical engineering > Termohidráulica
Divisions:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Materiales metálicos y nanoestructurados
ID Code:1181
Deposited By:Tamara Cárcamo
Deposited On:11 Aug 2023 16:18
Last Modified:11 Aug 2023 16:18

Repository Staff Only: item control page