Valoración radiobiológica de tratamientos radiantes mediante el programa Albireo Target . / Radiobiological assessment of radiation treatments through the program "Albireo target"

Bront, Federico J. (2011) Valoración radiobiológica de tratamientos radiantes mediante el programa Albireo Target . / Radiobiological assessment of radiation treatments through the program "Albireo target". Master in Medical Physics, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

La radioterapia es una técnica de tratamiento usada en oncología basada en el efecto de las radiaciones ionizantes sobre las células. Sus objetivos son lograr la regresión tumoral protegiendo tanto como sea posible los tejidos sanos adyacentes. Se planifica el tratamiento siguiendo estos objetivos expresados en la prescripción médica. El médico debe elegir, frecuentemente entre varias, la planificación más adecuada para el paciente. Las herramientas de análisis que los planificadores le ofrecen al médico no siempre son suficientes. El programa informático Albireo Target incorpora modelos radiobiológicos que cuantifican aspectos relevantes en la clínica diaria. Este trabajo evalúa el desempeño del programa analizando datos exportados de tratamientos radiantes planificados. Se analizaron 7 casos comparando planificaciones con igual fraccionamiento y 1 con variación del mismo. Se realizó un estudio de compensación por interrupciones en el curso del tratamiento. La incorporación de Albireo Target mejora la evaluación de tratamientos radiantes agregando nuevos elementos. Sin embargo, se reconocen limitaciones debido al índice UTCP que no contempla el grado de apartamiento de la dosis recibida por los OARs respecto su dosis de tolerancia, en los casos en los que ésta no es superada.

Abstract in English

Radiotherapy is a treatment technique used in Oncology and based on the effects of ionizing radiation upon cells. The aim is to get tumor regression while protecting healthy adjacent tissues as much as possible. Treatment is planned with this purpose in mind and following medical dose prescription. The physician has to choose, among several plans, the one which better fits patient requirements. Analysis tools provided to the physician by the treatment planning software are not always enough. The software Albireo Target incorporates radiobiological models quantifying relevant issues in the daily practice. In this thesis the performance of this application is evaluated analyzing data from radiation treatments already planned. Seven cases were analyzed comparing treatment plans with same fractionation scheme and one changing it. A study of compensation for interruptions in the course of treatment was made. Incorporating Albireo Target improves the treatment planning evaluation due to the facts it adds. Nevertheless, there are some limitations owing to the fact that the UTCP Index used in the application does not take into account the degree of departure of the doses received by OARs with respect to the tolerance dose when it is not exceeded.

Item Type:Thesis (Master in Medical Physics)
Keywords:Radiotheraphy; Radioterapia;Radiation treatments planned; Tratamientos radiantes planificados; Programa Albireo Target
References:[1] Withers, H. R. Four R's of radiotherapy. 1975. [2] Oozeer, R., Chauvet, B., Garcia, R., Berger, C., Felix-Faure, C., Reboul, F. Evaluation dosimétrique d'une radiothérapie conformationnelle: le facteur de conformation. Cancer/Radiothérapie, 4 (3), 207-216, mayo. URL http://www. [3] Fowler, J. F. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol, 62 (740), 679-694, 1989. URL http://bjr.birjournals. org/cgi/content/abstract/62/740/679. [4] Mauro, F., Arcangeli, G., D'Angelo, L., Marino, C., Benassi, M. Mathematical models of cell survival after ionizing radiation: application to radiotherapy planning. Health Physics, 57 Suppl 1, 355-361, 1989. URL http://www.ncbi.nlm., PMID: 2606693. [5] Niemierko, A., Goitein, M. Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiotherapy and Oncology, 29 (2), 140-147, nov. 1993. URL article/pii/0167814093902395. [6] Sanchez-Nieto, B., Nahum, A. E. The delta-TCP concept: a clinically useful measure of tumor control probability. International Journal of Radiation Oncology*Biology*Physics, 44 (2), 369-380, mayo 1999. URL http://www. [7] Munro, T. R., Gilbert, C. W. The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol, 34 (400), 246-251, 1961. URL [8] Cooper, B. E. Statistics for Experimentalists. electronic version ed"on. Oxford: Pergamon Press, 1969. URL [9] Sanchez-Nieto, B., Nahum, A. E. Bioplan: software for the biological evaluation of radiotherapy treatment plans. Medical Dosimetry, 25 (2), 71-76, 2000. URL [10] Nahum, A. Tumour control probability modelling: Basic principles and applications in treatment planning., 2001. URL [11] Xiong, W., Li, J., Ma, C. Effect of patient variation on standard- and hypofractionated radiotherapy of prostate cancer. Physics in Medicine and Biology, 50, 1483-1492, abr. 2005. URL [12] Zagars, G. K., Schultheiss, T. E., Peters, L. J. Inter-tumour heterogeneity and radiation dose-control curves. Radiother. Oncol., 9, 353-362, 1987. [13] Tucker, S. L., Thames, H. D., Taylor, J. M. G. How well is the probability of tumor cure after fractionated irradiation described by poisson statistics? Radiation Re- search, 124 (3), 273-282, 1990. URL, ArticleType: research-article / Full publication date: Dec., 1990 / Copyright c 1990 Radiation Research Society. [14] Deasy, J. Poisson formulas for tumor control probability with clonogen proliferation. Radiation Research, 145 (3), 382-384, mar. 1996. URL http://www.jstor. org/stable/3578994, ArticleType: research-article / Full publication date: Mar., 1996 / Copyright c 1996 Radiation Research Society. [15] Buffa, F. M., West, C., Byrne, K., Moore, J. V., Nahum, A. E. Radiation response and cure rate of human colon adenocarcinoma spheroids of dierent size: the signicance of hypoxia on tumor control modelling. International Jour- nal of Radiation Oncology*Biology*Physics, 49 (4), 1109-1118, mar. 2001. URL [16] Nahum, A. E., Movsas, B., Horwitz, E. M., Stobbe, C. C., Chapman, J. D. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the = ratio. Int. J. Radiat. Oncol. Biol. Phys., 57, 391-401, 2003. URL 1/mphya6/v33/i11/p4044_s1?isAuthorized=no. [17] Popple, R. A., Ove, R., Shen, S. Tumor control probability for selective boosting of hypoxic subvolumes, including the eect of reoxygenation. International Journal of Radiation Oncology*Biology*Physics, 54 (3), 921-927, nov. 2002. URL http: // [18] Ruggieri, R., Nahum, A. E. The impact of hypofractionation on simultaneous dose-boosting to hypoxic tumor subvolumes. Medical Physics, 33, 4044, 2006. URL s1?isAuthorized=no. [19] Ruggieri, R. Hypofractionation in non-small cell lung cancer (nsclc); suggestions from modelling both acute and chronic hypoxia. Phys. Med. Biol., 49, 4811-4823, 2004. [20] Schultheiss, T. E. Models in radiotherapy: Volume eects. Medical Physics, 10 (4), 410, 1983. URL i4/p410_s1?isAuthorized=no. [21] Lyman, J. T. Complication probability as assessed from dose-volume histograms. Radiation Research. Supplement, 8, S13-19, 1985. URL http://www.ncbi.nlm., PMID: 3867079. [22] Kutcher, G. J., Burman, C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The eective volume method gerald. International Journal of Radiation Oncology*Biology*Physics, 16 (6), 1623- 1630, jun. 1989. URL 0360301689909723. [23] Fowler, J. F. Normal tissue complication probabilities: How well do the models work? Physica Medica, 17(Suppl. 2) (2), 24-35, 2001. URL http://online. [24] Wheldon, T. E., Deehan, C., Wheldon, E. G., Barrett, A. The linear-quadratic transformation of dose-volume histograms in fractionated radiotherapy. Radiother. Oncol., 46 (2), 285-295, 1998. URL mphya6/v24/i1/p103_s1?isAuthorized=no. [25] Glatstein, E. Personal thoughts on normal tissue tolerance, or, what the textbooks don't tell you. International Journal of Radiation Oncology, Biology, Phy- sics, 51 (5), 1185-1189, dic. 2001. URL 11728675, PMID: 11728675. [26] Deasy, J. O., Niemierko, A., Herbert, D., Yan, D., Jackson, A., Ten Haken, R. K., et al. Methodological issues in radiation dose{volume outcome analyses: Summary of a joint AAPM/NIH workshop. Medical Physics, 29, 2109, 2002. URL s1?isAuthorized=no. [27] Niemierko, A., Goitein, M. Modeling of normal tissue response to radiation: The critical volume model. International Journal of Radiation On- cology*Biology*Physics, 25 (1), 135-145, ene. 1993. URL http://www. [28] Withers, H. R., Taylor, J. M. Critical volume model. 1993, 25, 151-152. [29] Elizabeth L., T. Organizational response of normal tissues to irradiation. Se- minars in Radiation Oncology, 11 (3), 184-196, jul. 2001. URL http://www. [30] Deasy, J. O., Chao, K., Markman, J. Uncertainties in model-based outcome predictions for treatment planning. International Journal of Radiation Oncology*Biology*Physics, 51 (5), 1389-1399, dic. 2001. URL http://www. [31] Lebesque, J., Bruce, A., Guuskroes, A., Touw, A., Shouman, T., Vanherk, M. Variation in volumes, dose-volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of t3 prostate cancer. International Journal of Radiation OncologyBiologyPhysics, 33, 1109-1119, dic. 1995. URL reload=0;jsessionid=57BD3360227A93B42EADBDB775341313. [32] Gagliardi, G., Bjohle, J., Lax, I., Ottolenghi, A., Eriksson, F., Liedberg, A., et al. Radiation pneumonitis after breast cancer irradiation: analysis of the complication probability using the relative seriality model. International Jour- nal of Radiation Oncology*Biology*Physics, 46 (2), 373-381, ene. 2000. URL [33] Sren M, B. High-tech in radiation oncology: should there be a ceiling? International Journal of Radiation Oncology*Biology*Physics, 58 (2), 320- 330, feb. 2004. URL S0360301603019965. [34] Fowler, J. F., Tome, W. A., Fenwick, J. D., Mehta, M. P. A challenge to traditional radiation oncology. International Journal of Radiation Oncology*Biology*Physics, 60 (4), 1241-1256, nov. 2004. URL article/pii/S0360301604020851. [35] Mohan, R. Clinically relevant optimization of 3-D conformal treatments. Medi- cal Physics, 19 (4), 933, 1992. URL mphya6/v19/i4/p933_s1?isAuthorized=no. [36] Niemierko, A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Medical Physics, 24 (1), 103, 1997. URL http://online.medphys. org/resource/1/mphya6/v24/i1/p103_s1?isAuthorized=no. [37] Niemierko, A. A generalized concept of equivalent uniform dose [eud]. Med Phys, 26, 755, 1999. URL p755_s1?isAuthorized=no. [38] Wu, Q., Mohan, R., Niemierko, A., Schmidt-Ullrich, R. Optimization of intensitymodulated radiotherapy plans based on the equivalent uniform dose. Internatio- nal Journal of Radiation Oncology*Biology*Physics, 52 (1), 224-235, 2002. URL [39] Lippincott, J. Radiobiology for the Radiologist. Hall, E.J., 1994.
Subjects:Medicine > Oncology
Medicine > Image diagnosis and nuclear medicine
ID Code:309
Deposited By:Marisa G. Velazco Aldao
Deposited On:11 Apr 2012 10:08
Last Modified:11 Apr 2012 10:08

Repository Staff Only: item control page