Caracteristicas no lineales de cuerpos oscilantes en helio superfluido en regimen turbulento. / Turbulent flow around an oscillating body in superfluid helium: dissipation characteristics of the non linear regime.

Zemma, Elisa and Luzuriaga, Javier Caracteristicas no lineales de cuerpos oscilantes en helio superfluido en regimen turbulento. / Turbulent flow around an oscillating body in superfluid helium: dissipation characteristics of the non linear regime. Journal of Low Temperature Physics . (In Press)

WarningThere is a more recent version of this item available.

[img]
Preview
PDF (Artículo - Journal of Low Temperature Physics) - Accepted Version
English
296Kb

Abstract in English

By examining the resonance curves of an oscillator submerged in superfluid liquid helium, it is found that their shape is affected by two distinct dissipation regimes when the amplitude is large enough to generate turbulence in the liquid. In a resonance curve, the central part close to resonance, may be in a turbulent regime, but the response is of much lower amplitude away from the resonance frequency, so that the oscillation can still be in the linear regime for frequencies not exactly at resonance. This introduces an ambiguity in estimating the inverse quality factor Q"-1 of the oscillator. By analyzing experimental data we consider a way of matching the two ways of estimating Q"-1 and use the information to evaluate the frictional force as a function of velocity in a silicon paddle oscillator generating turbulence in the superfluid.

Item Type:Article
Publisher:Springer
Keywords:Quantum fluids; Turbulence; Turbulencia; Superfluid helium; Non linear oscillator; Vibrating Paddle; Critical velocity; Velocidad crítica
References:1. J. Jäger, B. Schuderer, and W. Schoepe, Phys. Rev. Lett., 74, 566 (1995). 2. J. Luzuriaga, J. Low Temp. Phys., 108, 267 (1997). 3. W. Schoepe,J. Low Temp. Phys. ,150,724 (2008). 4. M. Blazková, D. Schmoranzer, L. Skrbek, and W. F. Vinen, Phys. Rev. B, 79,054522(2009). 5. M. Blazková, M. Clovecko, E. Gao, L. Skrbek, and P. Skyba, J. Low Temp. Phys., 148,305 (2007). 6. M. Blazková, T. Chagovets, M. Rotter, D. Schmoranzer, and L. Skrbek, J. Low Temp. Phys., 150, 194 (2008). 7. W. F. Vinen, L. Skrbek, and H. A. Nichol, J. Low Temp. Phys.,135(5-6),423 (2004). 8. H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett.,92, 244501 (2004). 9. H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. E, 70, 056307 (2004). 10. D. Charalambous, L. Skrbek, P. C. Hendry, P. V. E. McClintock, and W. F. Vinen, Phys. Rev. E,74,036307 (2006). 11. V. Emov, D. Garg, M. Giltrow, P. McClintock, L. Skrbek, and W. Vinen, Journal of Low Temperature Physics, 158,462 (2010). 12. H. Yano, A. Handa, H. Nakagawa, M. Nakagawa, K. Obara, O. Ishikawa, and T. Hata, J. of Phys. Chem. Solids, 66(8-9),1501 (2005). 13. H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, and T. Hata, Phys. Rev. B ,75,012502 (2007). 14. H. Yano, Y. Nago, R. Goto, K. Obara, O. Ishikawa, and T. Hata, Phys. Rev. B, 81, 220507 (2010).
Related URLs:
Identification Number:10.1007/s10909-013-0862-1
Subjects:Physics
Divisions:Investigación y aplicaciones no nucleares > Física > Bajas temperaturas
ID Code:389
Deposited By:Dr Javier Luzuriaga
Deposited On:07 Feb 2013 14:50
Last Modified:22 Mar 2013 09:27

Available Versions of this Item

Repository Staff Only: item control page