Tecnología en circuitos fotónicos integrados. / Photonic integrated circuits.

Pelli, Pablo N. (2016) Tecnología en circuitos fotónicos integrados. / Photonic integrated circuits. Integration Project in Telecommunications Engineering, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

Se presenta en este trabajo el estudio y diseño de los componentes básicos utilizados en tecnologías fotónicas. Partiendo de un enfoque matemático, del mismo se derivan las ecuaciones de diseño que se analizarán. Se analizan tres dispositivos principales en el mundo de la fotónica integrada, se muestra además como a partir de estos dispositivos es posible sintetizar bloques funcionales más complejos. Además del diseño de estos dispositivos, se describe el procedimiento de fabricación de los mismos a partir de un nuevo método propuesto en este trabajo. A pesar de que los resultados obtenidos al momento de cierre de este trabajo fueron parciales, los mismos resultan satisfactorios. Finalmente este trabajo pretende ser un punto de referencia al comenzar un estudio en dispositivos fotónicos. Por lo cual todo el trabajo realizado se encuentra debidamente referenciado a trabajos tanto teóricos como diseños de aplicaciones reales.

Abstract in English

In this work we present the study and design of the basic components for photonic devices design. Starting from the background theory to the derivation of the design equations. We analyze 3 primary components, those are basic blocks from almost all complex device. It's showed how it's possible to sinthetyze complex devices based on these primary blocks. Also, the fabrication procedure and characteriscts to obtain SOI wafers that was used is described. Although the results obtained at the moment of writting this work was partial, these results are highly satisfactory. Finally, this work is intenteded to be a starting point for those who are trying to develop new designs on Photonics devices. Hereby, all the steps on this works is properly referred to different theoric papers and real applications design papers as well.

Item Type:Thesis (Integration Project in Telecommunications Engineering)
Additional Information:Este trabajo se realizó: Grupo de fotónica en microondas y comunicaciones ópticas. Área Temática: Comunicaciones ópticas, Fotónica en microondas.
Keywords:[Photonic devices design; Tecnologías fotónicas; Microphotonic; Microfotónica; Integrated optics; Óptica integrada; Silicon Photonics; Fotónica de silicio]
References:[1] Nagarajan, R., Kato, M., Pleumeekers, J., Lambert, D., Lal, V., Dentai, A., et al. 10 channel, 45.6Gb/s per channel, polarization multiplexed dqpsk InP receiver photonic integrated circuit. En: Proc. Conf Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conf. (OFC/NFOEC), pags. 1-3. 2010. 2 [2] Nagarajan, R., Kato, M., Pleumeekers, J., Evans, P., Lambert, D., Chen, A., et al. Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s. Electronics Letters, 42 (13), 771-773, jun. 2006. [3] Nagarajan, R., Kato, M., Pleumeekers, J., Evans, P., Corzine, S., Hurtt, S., et al. InP photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics, 16 (5), 1113-1125, sep. 2010. [4] Nagarajan, R., Kato, M., Dominic, V., Pleumeekers, J., Dentai, A., Evans, P., et al. Large scale InP photonic integrated circuits for high speed optical transport. En: Proc. Int Conf. Indium Phosphide and Related Materials, pags. 237-240. 2006. 2 [5] Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A., Coldren, L. A. Programmable photonic microwave lters monolithically integrated in InP {ingaasp. Journal of Lightwave Technology, 29 (11), 1611-1619, jun. 2011. 2 [6] Himeno, A., Kato, K., Miya, T. Silica-based planar lightwave circuits. IEEE Journal of Selected Topics in Quantum Electronics, 4 (6), 913-924, nov. 1998. 3 [7] Himeno, A., Goh, T., Okuno, M., Takahashi, H., Hattori, K. Silica-based low loss and high extinction ratio 88 thermo-optic matrix switch with path-independent loss arrangement using double mach-zehnder interferometer switching units. En: Proc. 22nd European Conf. Optical Communication ECOC '96, tomo 4, pags. 149-152 vol.4. 1996. 3 [8] Jalali, B., Yegnanarayanan, S., Yoon, T., Yoshimoto, T., Rendina, I., Coppinger, F. Advances in silicon-on-insulator optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 4 (6), 938-947, nov. 1998. 3 [9] Jalali, B., Paniccia, M., Reed, G. Silicon photonics. IEEE Microwave Magazine, 7 (3), 58-68, jun. 2006. 3 [10] Xiao, S., Khan, M. H., Shen, H., Qi, M. Ultralow-loss compact silicon microring resonators. En: Proc. 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS 2007, pags. 850-851. 2007. 3 [11] Leinse, A., Zhang, S., Heideman, R. Triplex: The versatile silicon nitride waveguide platform. En: Proc. Progress in Electromagnetic Research Symp. (PIERS), pag. 67. 2016. 4 [12] Leinse, A., Heideman, R. G., Klein, E. J., Dekker, R., Roelozen, C. G. H., Marpaung, D. A. I. Triplex TM platform technology for photonic integration: Applications from UV through nir to IR. En: Proc. ICO Int Information Photonics (IP) Conf, pags. 1-2. 2011. [13] Heideman, R. G., Leinse, A., Hoekman, M., Schreuder, F., Falke, F. H. Triplex TM: The low loss passive photonics platform: Industrial applications through multi project wafer runs. En: Proc. IEEE Photonics Conf, pags. 224-225. 2014. [14] Heideman, R., Hoekman, M., Schreuder, E. Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection. IEEE Journal of Selec- ted Topics in Quantum Electronics, 18 (5), 1583-1596, sep. 2012. [15] Dekker, R., Klein, E. J., Geuzebroek, D. H. Polarization maintaining single mode color combining using triplex TM based integrated optics for biophotonic applications. En: Proc. IEEE Photonics Conf. 2012, pags. 286-287. 2012. 4 [16] Born, M., Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diraction of Light. Elsevier Science, 1980. URL https:// books.google.es/books?id=HY-GDAAAQBAJ. 9 [17] Cozens, R. R. A. S. . J. R. Optical Guided Waves and Devices. McGraw-Hill, 1992. 10 [18] Love, A. W. S. J. Optical Waveguide Theory. 1983. 11, 13, 15 [19] Pozar, D. M. Microwave Engineering. JOHN WILEY & SONS INC, 2011. URL http://www.ebook.de/de/product/14948033/david_m_pozar_ microwave_engineering.html. 11 [20] Agrawal, G. P. Lightwave Technologies, Components and device. 2004. 14, 16, 26, 28 [21] Okamoto, K. Fundamentals of Optical Waveguides. Optics and photonics. Academic Press, 2000. URL https://books.google.com/books?id=Igfx0KJc7ZoC. 19 [22] Marcatili, E. A. J. Dielectric rectangular waveguide and directional coupler for integrated optics. The Bell System technical Journal, pags. 2071-2102, 1969. 19, 20, 21, 26 [23] Cassan, F. G. L. V. S. L. E. Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides. Journal of Lightwave Technology, 24 (2), 891-896, feb. 2006. 22, 87 [24] Selvaraja, D. X. J. H. S. G. T. R. G. Z. M. D. J. T. M. N. X. C. D. V. T. S. K. S. K. Silicon photonic integration platform { have we found the sweet spot?, 2013. 22 [25] Streifer, A. H. W. Coupled mode theory of parallel waveguides. Journal of Light- wave Technology, LT-3 (5), 1135-1146, oct. 1985. 26 [26] Huang, H. A. H. W. Coupled-mode theory. Proceedings of the IEEE, 79 (10), 1505-1518, oct. 1991. 26 [27] Chrostowski, L., Hochberg, M. Silicon Photonics Design. Cambridge University Press, 2015. URL https://books.google.com/books?id=XbDGBgAAQBAJ. 29 [28] Vafaei, N. R. L. C. R. Temperature eects on silicon-on-insulator (soi) racetrack resonators: A coupled analytic and 2-d nite dierence approach. Journal of Lightwave Technology, 28 (9), 1380-1391, mayo 2010. 29, 33, 66, 67 [29] Maker, A. J., Armani, A. M. Low-loss silica-on-silicon waveguides. Opt. Lett., 36 (19), 3729-3731, Oct 2011. URL http://ol.osa.org/abstract.cfm?URI= ol-36-19-3729. 32 [30] Zhuang, L. Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas. Tesis Doctoral, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 2010. 44, 46, 48, 63, 75, 76, 79 [31] Rabus, D. Integrated Ring Resonators, The compendium. Springer, 2007. 44, 45 [32] J. Proakis, D. M. Digital Signal Processing: Principles, Algorithms and Applications. 3a edon. Prentice-Hall, 1996. 45, 46 [33] Bogaerts, W., Heyn, P. D., Vaerenbergh, T. V., Vos, K. D., Selvaraja, S. K., Claes, T., et al. Silicon microring resonators. Laser Photonics reviews, 6 (1), 47-73, sep. 2012. 49 [34] Teich, B. E. A. S. . M. C. Fundamentals of Photonics. 2a edon. Wiley, 2007. 50 [35] Hoekstra, H. P. U. L. Z. C. G. H. R. H. J. W. M. Direct experimental observation of pulse temporal behavior in integrated-optical ring-resonator with negative group velocity. En: Proceedings of the 13th European Conference on Integrated Optics, pags. 25-27. 2007. 51 [36] Madsen, C., Zhao, J. Optical Filter Design and Analysis: A Signal Processing Approach. Wiley Series in Microwave and Optical Engineering. Wiley, 1999. URL https://books.google.com/books?id=JfnFQgAACAAJ. 61 [37] Watts, M. R., Sun, J., DeRose, C., Trotter, D. C., Young, R. W., Nielson, G. N. Adiabatic thermo-optic mach{zehnder switch. OPTICS LETTERS, 38 (5), 733- 735, mar. 2013. 65 [38] Beck, M. M. D. L. M., Santos, R. H. P. V. Compact mach-zehnder acoustooptic modulator. Applied Physics Letters, 89 (12), 121104, 2006. URL http: //dx.doi.org/10.1063/1.2354411. 65 [39] Green, W. M. J., Rooks, M. J., Sekaric, L., Vlasov, Y. A. Ultra-compact, low rf power, 10 gb/s silicon mach-zehnder modulator. Optics Express, 15 (25), dic. 2007. 66 [40] Soref, R., Bennett, B. Electrooptical eects in silicon. IEEE Journal of Quantum Electronics, 23 (1), 123{129, ene. 1987. 67, 68 [41] Dainesi, P., Kung, A., Chabloz, M., Lagos, A., Fluckiger, P., Ionescu, A., et al. CMOS compatible fully integrated mach-zehnder interferometer in SOI technology. IEEE Photonics Technology Letters, 12 (6), 660-662, jun. 2000. 67 [42] Oda, K., Takato, N., Toba, H., Nosu, K. A wide-band guided-wave periodic multi/ demultiplexer with a ring resonator for optical fdm transmission systems. Jour- nal of Lightwave Technology, 6 (6), 1016-1023, jun. 1988. 76 [43] Tachimori, M. Simox wafers (silicon wafers with a thin supercial silicon lm separated from the body by implanted oxigen). Nippon Steel Technical Report, 73, 19-25, 1997. 85, 86 [44] Division, E. S. E., Meeting, E. Semiconductor Wafer Bonding : Science, Technology, and Applications ...: Proceedings of the International Symposia. Proceedings (Electrochemical Society). Electrochemical Society, 2003. URL https: //books.google.com/books?id=yAxTAAAAMAAJ. 86 [45] Ogura, A. Method of fabricating soi substrate, mar. 30 1999. URL https://www. google.com/patents/US5888297, uS Patent 5,888,297. [46] Fujioka, H. Method of manufacturing semiconductor on insulator, oct. 29 1991. URL https://www.google.com/patents/US5061642, uS Patent 5,061,642. [47] Bajor, G., Raby, J. Using a rapid thermal process for manufacturing a wafer bonded soi semiconductor, sep. 13 1988. URL https://www.google.com/patents/ US4771016, uS Patent 4,771,016. 85 [48] Tsybeskov, L., Lockwood, D. J., Ichikawa, M. Silicon photonics: CMOS going optical [scanning the issue]. Proceedings of the IEEE, 97 (7), 1161-1165, jul. 2009. 87 [49] McLaren, M. CMOS nanophotonics for exascale systems. En: Proc. Int. Green Computing Conf, pag. 535. 2010. 87 [50] UPenn. Pecvd recipes. URL https://www.seas.upenn.edu/~nanosop/PECVD_ Recipes.htm. 89 [51] BYU. Pecvd deposition recipes. URL http://www.cleanroom.byu.edu/pecvd_ deposition.phtml. 89 [52] Jaeger, R. C. Introduction to Microelectronic Fabrication: Volume 5 of Modular Series on Solid State Devices. ADDISON WESLEY PUB CO INC, 2001. URL http://www.ebook.de/de/product/3261386/richard_c_jaeger_ introduction_to_microelectronic_fabrication_volume_5_of_modular_ series_on_solid_state_devices.html. 89 [53] Sigmund, P. Mechanisms and theory of physical sputtering by particle impact. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 27 (1), 1-20, jun 1987. URL http: //dx.doi.org/10.1016/0168-583X(87)90004-8. 94 [54] Guan, D., Bruccoleri, A. R., Heilmann, R. K., Schattenburg, M. L. Stress control of plasma enhanced chemical vapor deposited silicon oxide lm from tetraethoxysilane. Journal of Micromechanics and Microengineering, 24 (2), 027001, dec 2013. URL http://dx.doi.org/10.1088/0960-1317/24/2/027001. 94 [55] Sze, S., Irvin, J. Resistivity, mobility and impurity levels in gaas, ge, and si at 300 k. Solid-State Electronics, 11 (6), 599-602, 1968. 98 [56] Elihu, M. A. A. Impurity conduction at low concentrations. Physical Review, 120 (3), 745, 1960. [57] C, I. J. Resistivity of bulk silicon and of diused layers in silicon. Bell System Technical Journal, 41 (2), 387-410, 1962. 98 [58] Fu, Y., Ye, T., Tang, W., Chu, T. Ecient adiabatic silicon-on-insulator waveguide taper. Photon. Res., 2 (3), A41-A44, Jun 2014. URL http://www. osapublishing.org/prj/abstract.cfm?URI=prj-2-3-A41. 99
Subjects:Physics > Optics
ID Code:584
Deposited By:Tamara Cárcamo
Deposited On:12 May 2017 17:03
Last Modified:12 May 2017 17:32

Repository Staff Only: item control page