Filtrado de clutter terrestre en aplicaciones de radar meteorológico. / Wather radar clutter cancellation.

Trujillo Rodríguez, Javier (2018) Filtrado de clutter terrestre en aplicaciones de radar meteorológico. / Wather radar clutter cancellation. Integration Project in Telecommunications Engineering, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Preview
PDF (Tesis)
Available under license Creative Commons Attribution Non-commercial Share Alike.

Spanish
8Mb

Abstract in Spanish

En este proyecto, lidiamos con el problema del filtrado del clutter terrestre en aplicaciones de radar meteorológico. Mostramos las ideas teóricas y los detalles de implementación de cuatro algoritmos de filtrado de clutter terrestre: Filtros Canceladores de Pulsos, Filtro Regresivo, GMAP y GMAP-TD. Los algoritmos fueron evaluados en diversas situaciones, empleando datos simulados y datos reales correspondientes a las regiones de Córdoba y Bariloche. Podemos concluir que, aunque todos los algoritmos eliminan las componentes de clutter, los filtros adaptativos, al incorporar una etapa de recuperación de las muestras de fenómeno eliminadas, presentan estimadores de menor sesgo y varianza. Dentro de los filtros adaptativos implementados GMAP-TD fue el algoritmo que presentó el mejor desempeño en todas las situaciones evaluadas, tanto en los datos simulados como en los datos reales. Esto se debe a que, además de presentar una etapa de interpoblación, opera en el dominio del tiempo, por lo que sus estimadores no están afectados por el sesgo que introduce la ventana en la estimación espectral.

Abstract in English

In this project, we deal with the problem of ground clutter cancellation in weather radar applications. We showed the theoretical ideas and implementation details of four ground clutter cancellation algorithms: Pulse Cancellation Filters, Regressive Filter, GMAP and GMAP-TD. The algorithms were evaluated in different situations, using simulated data and real data corresponding to the regions of Cordoba and Bariloche. Although we can conclude that all the algorithms eliminate the clutter components, the adaptive filters, when incorporating a stage of recovery of the eliminated weather samples, present estimators of less bias and variance. GMAP-TD was the algorithm that presented the best performance in all the evaluated situations, both in the simulated data and in the real data. This is because, in addition to presenting an interpolation stage, it operates in the time domain, so its estimators are not affected by the bias introduced by the window in the spectral estimation.

Item Type:Thesis (Integration Project in Telecommunications Engineering)
Keywords:Radar; Radar; [ Statistical signal processing; Procesamiento estadístico de señales; Weather radar; Radar meteorológico ]
References:[1] The first tornadic hook echo weather radar observation. Colorado State University, 2008. 1 [2] Richard J. Doviak, D. S. Z. Doppler radar and weather observations. pag. 69. Dover Publications, inc, 1984. 2, 8, 9 [3] Torres, Z. D. S., Sebastián M. Ground clutter canceling with a regression filter. Journal of Atmospheric and Oceanic Technology, 16, 9, 1998. 2, 29 [4] Siggia, P. R. E. J., A. D. Gaussian model adaptive processing (gmap) for improved ground clutter cancellation and moment calculation. European Conference on Radar in Meteorology and Hydrology (ERAD), pag. 7, 2004. 2, 37 [5] Nguyen, C. V., Cuong M. Gaussian model adaptive processing in time domain(gmap-td) for weather radars. pag. 14, 2012. 2, 44, 45 [6] Groginsky, K. M., H. L ; Glover. Weather radar canceller design. pags. 192–198. Conference on Radar Meteorology, 1980, 1980. 2 [7] Hubbert, J. C. . D. M. . E. S. M. Weather radar ground clutter. National Center for Atmospheric Research, Boulder, Colorado, 2008. 2, 71 [8] Warde, T. S. M., David A. The autocorrelation spectral density for dopplerweather-radar signal analysis. IEEE transaction on geoscience and remote sensing, 2014. 3 [9] Warde, T. S. M., David A. Automatic detection and removal of ground clutter contamination on weather radars. Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma, 2014. 3, 71 [10] Welch, P. D. The use of fast fourier transform for the estimation of power espectra: A method based on time averaging over short, modified periodograms. tomo AU-15, p´ag. 4. IEEE Transactions on Audio and Electroacoustics, 1967. 13 [11] Hildebrand, S. R. S., Peter H. Objective determination of the noise level in doppler spectra. tomo 13, pag. 4. Journal of Applied Meteorology, 1973. 18 [12] Papoulis, A. Signal analysis. p´ag. 431. McGraw-Hill, 1986. 29 [13] Denham, M. . L. E. . A. J. Weather radar data processing on graphic cards. Journal of Supercomputing, 2017. 70
Subjects:Ingeniería en telecomunicaciones > Procesamiento estadístico de señales
Divisions:Gcia. de área Académica > Gcia. Instituto Balseiro > Laboratorio de ingeniería
ID Code:742
Deposited By:Tamara Cárcamo
Deposited On:19 Feb 2021 08:44
Last Modified:19 Feb 2021 08:44

Repository Staff Only: item control page